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Abstract: The oxygen evolution reaction (OER) is a crucial half-reaction in water splitting. However,
this reaction is kinetically sluggish owing to the four-electron (4 e−) transfer process. Therefore,
the development of low-cost, stable, highly efficient, and earth-abundant electrocatalysts for the
OER is highly desirable. Metal oxides derived from metal–organic frameworks (MOFs) are among
the most efficient electrocatalysts for the OER. Herein, Ce–MOF-derived CeO2/graphene oxide
(GO) composites were successfully prepared using a facile method. The composites with 0, 25,
50, and 100 mg GO were named CeO2, CeO2–GO-1, CeO2–GO-2, and CeO2–GO-3, respectively.
The physicochemical characteristics of the electrocatalysts were assessed using several analytical
techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution
transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer–
Emmett–Teller (BET) analysis. The TEM results revealed that the CeO2 had a sheet-like morphology
and that a GO layer was noticeable in the synthesized CeO2–GO-3 composite. The characterization
results confirmed the formation of impurity-free CeO2–GO composites. The OER activity and stability
were measured using cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry
(CA), and electrochemical impedance spectroscopy (EIS). The CeO2–GO-3 electrocatalyst has a
smaller Tafel slope (176 mV·dec−1) and lower overpotential (240 mV) than the other electrocatalysts.
In addition, it exhibited high cyclic stability for up to 10 h. Therefore, the inexpensive CeO2–GO-3
electrocatalyst is a promising OER candidate.

Keywords: cerium oxide–graphene oxide composite; room-temperature synthesis; electrocatalyst;
oxygen evolution reaction

1. Introduction

Electrochemical water splitting is a promising method for producing pollution-free,
clean hydrogen [1]. Water electrolysis consists of two half-reactions (OER and HER): the
oxygen evolution reaction at the anode and the hydrogen (H2) evolution reaction at the
cathode [2]. However, the OER is kinetically slow owing to its four-electron transfer
process [3]. Therefore, highly effective and reliable OER electrocatalysts must be developed
to address this limitation. Noble metal oxide catalysts, such as RuO2 and IrO2, are among
the most efficient electrocatalysts for OER activity; however, their high prices and scarcity
limit their large-scale application [4]. Therefore, the development of OER electrocatalysts
with high activity, long-term stability, and low cost is essential.

Metal-organic frameworks (MOFs) are a new class of porous materials composed
of metal ions or clusters connected to organic ligands via coordination bonds to form
one-dimensional, two-dimensional, and three-dimensional (1D, 2D, and 3D) structures [5].
Recently, MOFs have emerged as promising candidates for energy- and environment-
related applications [6,7] owing to their unique characteristics, such as high porosity, high
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specific surface areas, good thermal stability, and ease of modification [8,9]. However,
the poor electrical conductivity of pure MOFs limits their use in electrochemistry applica-
tions [10]. To overcome these limitations, the conversion of MOFs (MOFs as precursors
or templates) into metal oxides, porous carbon materials, metal hydroxides [11], metal
phosphides [12], metal sulfides [13], selenides [14], or their composites [11,15] has been
widely investigated for electrochemical applications.

MOF-derived materials exhibit unique properties, such as tailorable morphologies,
hierarchical porous structures, chemical and structural stabilities, high electrical conduc-
tivity, and simple surface functionalization [16]. Moreover, they play significant roles in
various energy-related applications, such as lithium-ion batteries [17], OER [18], methanol
oxidation reactions [19], urea oxidation reactions [20], fuel cells [21], and HER [22]. Gao
Han et al. [23] synthesized a bimetal oxide CuCoO2 using ZIF-67 and Cu-BTC (Co and Cu
sources) through a single-step solvothermal procedure. The synthesized CuCoO2 was used
as an electrocatalyst for the OER. With a low overpotential, a smaller Tafel slope, and good
durability in a 1.0 M KOH solution, the synthesized CuCoO2 exhibited higher OER activity.

Cerium oxide, also known as ceria (CeO2), has drawn considerable attention owing to
its low cost, non-toxicity, earth-abundance, and tunable oxygen vacancies via a reversible
transition between the Ce3+ and Ce4+ oxidation states, and high oxygen (O2) storage ca-
pacity [24,25]. These properties make CeO2 a promising material for various applications,
such as photocatalytic, forensic, electrochemical [26], and humidity sensors [27], as well as
catalytic oxidation [28], supercapacitors [29], and biological [30] applications. However,
pure CeO2 exhibits limited OER/ORR performance owing to its weak electronic conduc-
tivity [25,31]. The best method to improve the dispersibility and conductivity of CeO2 is
through deposition on conducting carbon-based materials [31].

Graphene oxide (GO) is the oxidized form of graphene with a layered structure
and shows good mechanical, electrical, and thermal properties due to its structural and
morphological characteristics [32,33]. GO structures comprise oxygen-based functional
groups, such as hydroxyl (–OH), carboxyl (–COOH), epoxide (C–O–C), and carbonyl
(C=O), that enable the dispersibility of the material in water [33,34]. In addition, as these
oxygenated functional groups are chemically active, GO can be decorated with a vari-
ety of materials [35], such as metals, metal oxides, ZIFs, MOFs, and MOF-derived metal
oxides. GO-based composites have a high potential for various applications in energy-
and environment-related fields, including dye removal (GO/SiO2NH2) [36], heavy metal
removal (TiO2/GO) [32], photochemical degradation of toluene (GO-TiO2) [37], proton
exchange membrane fuel cell (CeO2–GO) [38], supercapacitors (GO, GO–CuO, and GO–
ZnO) [39], OER (CeO2/Cu–MOF/GO) [40], HER (Pd@GO/MOF) [41], OER, ORR, and
Zn–air batteries (ZnCo–ZIF@GO) [42]. Malik et al. [43] synthesized CeO2 from a GO@Ce–
MOF precursor and used it as an electrocatalyst for OER applications. According to
Dongyang et al. [44], a simple chemical co-precipitation process was used to produce CeO2
nanoparticles decorated on GO. CeO2/GO is used as an electrode material in superca-
pacitor applications; the CeO2/GO electrode demonstrated exceptional supercapacitive
behavior with high specific capacitance. Kasinath and Byrappa [45] synthesized hexagonal
CeO2@nitrogen-doped GO composites for OER and ORR studies. The CeO2/NGO com-
posites revealed a high anodic onset potential for ORR and OER activity (0.925 V vs. RHE
for ORR and 1.2 V for OER) with a high current density in 0.5 M KOH.

In this study, we successfully synthesized Ce–MOF-derived CeO2–GO composites
using a simple, room-temperature synthesis method followed by annealing at 400 ◦C in the
air for 1 h. The as-synthesized composites were used as electrocatalysts for the OER. Com-
pared with the CeO2–GO-1 and CeO2–GO-2 composites, the CeO2–GO-3 electrocatalyst
exhibited higher OER activity and stability. The synthetic process is illustrated in Scheme 1.
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Scheme 1. Schematic of the synthesis of the CeO2–GO-3 electrocatalyst.

2. Results and Discussion
2.1. Characterization of the Electrocatalysts

Figure 1a displays the X-ray diffraction (XRD) patterns of the pristine CeO2 and CeO2–
GO electrocatalysts. The XRD data of Ce–MOF, as shown in Figure S1, exhibit sharp and
narrow peaks. All diffraction peaks matched the XRD patterns of previous reports [46,47].
After calcination, the Ce–MOF was fully converted into cubic-structured CeO2. The four
characteristic peaks at 28.4◦, 33.1◦, 47.3◦, and 56.3◦ can be attributed to the (111), (200), (220),
and (311) planes (Figure 1a) [48], which are in good agreement with JCPDS 00-004-0593.
The average crystallite size was found using the Debye–Scherrer equation [49],

D =
kλ

β cosθ
(1)

where D is the average crystallite size (nm), k is constant (0.9), λ is the wavelength of X-ray
radiation (1.5416 Å), θ is diffraction angle, and β is the full-width half maxima of diffraction
peaks. From XRD data, the average size was found to be in the range of 10 to 15 nm.
The calculated lattice parameters and volume were found to be (for pure cubic structure
a = b = c; α = β = γ = 90◦) a = 1.5411 Å and V = 161.05 Å3. Malik et al. [43] reported
similar results for CeO2 derived from the GO–Ce–MOF. A GO peak in the CeO2–GO
electrocatalysts was noted at 10.8◦ (001), indicating the presence of GO in all synthesized
samples [50]. Compared with CeO2–GO-1 and CeO2–GO-2, the CeO2–GO-3 electrocatalyst
showed the peak (10.8◦) intensity, increasing with an increase in graphene oxide.
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The Fourier-transform infrared spectra (FTIR) of the pure CeO2 and CeO2–GO elec-
trocatalysts are presented in Figure 1b. The FTIR spectrum of GO exhibits a prominent
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peak at 3409 cm−1, which is attributed to the O–H stretching; further absorption peaks at
1717, 1606, 1258, and 1051 cm−1 correspond to the C=O stretching vibrations, C=C, C–O–C
bending, and C–O stretching groups [51–53], respectively. A Ce–O stretching vibration
was observed in the CeO2–GO composites at 535 cm−1 [43,54]. The bands at 1621 and
1059 cm−1 are related to the bending vibration of the hydroxyl (–OH) groups of water
molecules [55] and Ce–O–Ce stretching vibration [56], respectively. Most of the GO peaks
were significantly reduced after the CeO2–GO composite formation.

The surface chemical states of the Ce–MOF-derived CeO2 and CeO2–GO-3 electrocata-
lysts were studied using X-ray photoelectron spectroscopy (XPS; Figure 2a). A survey scan
revealed the presence of Ce 3d, O 1s, and C 1s in the electrocatalysts. The Ce 3d spectra of
the CeO2 and CeO2–GO-3 electrocatalysts were fitted to eight peaks: the Ce 3d3/2 peaks at
900.1/900.3, 906.7/906.8, and 916.0/916.1 eV; Ce 3d5/2 peaks at 881.6/881.8, 887.9/888.0,
and 897.5/897.6 eV, which are associated with Ce4+; and peaks at 884.6/884.8 eV (Ce 3d5/2)
and 903.1/903.3 eV (Ce 3d3/2) associated with Ce3+ (Figure 2c). These values are consis-
tent with those reported in the literature [57–59]. The deconvolution of the O 1s spectra
displayed two peaks at 528.6/528.8 and 531.0/531.1 eV (Figure 2b), which are attributed to
the lattice and adsorbed oxygen [60,61]. In the composite, the C 1s spectrum (Figure 2d)
peaks at 284.5/284.4, 285.8/286.1, 288.4/288.1, and 289.5 eV are ascribed to the C=C, C-O
bonds, carbonyl (C=O), and carboxyl (HO–C=O) bonds [62–64], respectively. The 289.5 eV
small peak vanished in the CeO2 electrocatalyst but was clearly visible in the CeO2–GO-3
electrocatalyst.
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The morphologies of the Ce–MOF-derived CeO2 and CeO2–GO electrocatalysts were
characterized via scanning electron microscopy (SEM; Figure 3). The CeO2 sample had a
rod-like morphology with the appearance of some merging rods having sheet-like struc-
tures (Figure 3a-1,a-2). Kohantorabi and Gholami [65] and Ye et al. [66] reported similar
morphologies using benzene-1,3,5-tricarboxylic acid, and cerium nitrate hexahydrate, re-
spectively. CeO2 rods were visible in CeO2–GO-1 and a few GO sheets were observed. The
rods were uniformly spread on the GO sheets (Figure 3b-1,b-2). As the GO weight was
increased, layered GO sheets with smooth surfaces were observed in the CeO2–GO-2 and
CeO2–GO-3 samples (Figure 3c-1–d-2). These results confirmed the successful decoration
of CeO2 on the GO sheets.
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(b-1,b-2) CeO2–GO-1, (c-1,c-2) CeO2–GO-2, and (d-1,d-2) CeO2–GO-3.

Energy-dispersive X-ray spectroscopy (EDS) was performed to identify the elements
in the electrocatalyst, and the corresponding results are shown in Figure S2. The EDS
spectrum validated the presence of O, Ce, and C in the electrocatalyst. Figure 4a,b shows
the TEM images of the CeO2–GO-3 electrocatalyst. The synthesized CeO2 was confirmed
to have a sheet-like morphology in the TEM images, and a GO layer was visible in the
synthesized composites. The HR-TEM images (Figures 4c and S3–S5) showed a fringe
spacing of 0.311, 0.315, and 0.163 nm, which is consistent with the d-spacing of the (111),
(111), and (311) planes of CeO2. The corresponding selected area electron diffraction (SAED)
pattern displayed the polycrystalline nature of the synthesized catalyst (Figure 4d). The
ring pattern of the SAED results suggests a similar plane ((111), (222), and (311)); therefore,
the electrocatalyst matched well with the XRD results.
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2.2. OER Activity

We further explored the OER activity of the synthesized electrocatalysts under alkaline
conditions. Figure 5 shows the cyclic voltammetry (CV) curves of the CeO2, CeO2–GO-1,
CeO2–GO-2, and CeO2–GO-3 electrocatalysts under the three-electrode setup at room tem-
perature. The CV curves were measured at a constant potential between 0.1~0.6 V against
Hg/HgO at various scan rates (5–100 mVs−1). These CV curves revealed that the current
density increased with increasing GO content in the electrocatalyst owing to the increase in
ion transport between the electrocatalyst (CeO2) and GO (CeO2–GO-3). Similarly, cerium
oxide/reduced GO nanocomposites exhibited excellent photocatalytic and supercapacitor
activities owing to the increased charge transport between the electrocatalysts [67,68]. Ad-
ditionally, CeO2/multi-walled carbon nanotube nanocomposites have higher capacitive
performance and long-term stability [69], and the electrocatalytic performance increased
after the introduction of carbon-based materials. Comparative CV curves of the electro-
catalysts at a standard scan rate (60 mV s−1) are shown in Figure S6. All electrocatalysts
exhibited cathodic peaks at approximately 0.472, 0.502, 0.489, and 0.514 V and anodic peaks
at approximately 0.304, 0.303, 0.301, and 0.296 V for CeO2, CeO2–GO-1, CeO2–GO-2, and
CeO2–GO-3, respectively. These CV curves reveal that CeO2–GO-3 exhibits a larger integral
area, suggesting its higher electrochemical performance. The CV curves retained faradaic
peaks even at higher scan rates, indicating a fast charge transport in the electrode system.
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The electrochemical OER activity was measured in the same electrolyte using linear
sweep voltammetry (LSV), as revealed in Figure 6a. However, the GO content, which
increased the OER performance, also increased, and the CeO2–GO-3 electrocatalyst showed
a higher current density at higher potentials. The overpotential decreased with increasing
GO content in the electrocatalysts. The overpotentials of the CeO2, CeO2–GO-1, CeO2–
GO-2, CeO2–GO-3, and RuO2 electrocatalysts were 420, 360, 300, and 240, and 230 mV,
respectively, at a fixed current density of 10 mA cm−2. Among the electrocatalysts, CeO2–
GO-3 exhibited a lower overpotential; however, compared with standard RuO2, there was
not much difference. The electrocatalytic activity trend during the OER process followed
the order CeO2–GO-3 > CeO2–GO-2 > CeO2–GO-1 > CeO2.
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The Tafel slope is a crucial parameter for identifying the relationship between the
overpotential and steady-state current density of electrocatalysts [66]. Figure 6b shows Tafel
slopes of 261, 293, 185, 176, and 101 mV dec−1 for CeO2, CeO2–GO-1, CeO2–GO-2, CeO2–
GO-3, and RuO2 electrocatalysts, respectively. The CeO2–GO-3 electrocatalyst revealed a
smaller Tafel slope than the other electrocatalysts, showing its higher OER activity owing
to the higher percentage of GO. However, compared with RuO2, the CeO2–GO-3 Tafel
slope value was higher. The electrochemical active surface area (ECSA) is directly related
to the electrochemical performance of the electrocatalysts [69,70]. A higher ECSA indicates
better electrochemical performance. In the present work, the ECSA was measured using
the CV curves in the non-faradaic region; the corresponding CVs are shown in Figure S7.
The CeO2–GO-3 electrocatalyst showed a higher ECSA (57.5 mF cm−2) than the other
electrocatalysts (35.4, 39.4, and 40.5 mF cm−2 for CeO2, CeO2–GO-1, and CeO2–GO-2,
respectively), as shown in Figure 6c.

Electrochemical impedance spectroscopy (EIS) was used to analyze the electrochem-
ical dynamics of the electrocatalysts. Figure 6d and Table S1 show the EIS analysis of
the electrocatalysts. The CeO2–GO-3 electrocatalyst exhibited a smaller Rct than the other
electrocatalysts, revealing its lower charge transfer resistance owing to the increased elec-
tron transfer rate. The stability of electrocatalysts is a crucial parameter for OER activity.
Therefore, chronoamperometry (CA) was used for the room-temperature analysis for ap-
proximately 10 h. Figure 6e depicts the CA curves of the electrocatalysts in a 1.0 M KOH
solution, where the CeO2–GO-3 electrocatalysts show a higher current density than the
other electrocatalysts. Additionally, we compared our as-prepared materials to previously
published OER electrocatalysts, which are depicted in Table S2.

The surface area plays a key role in electrochemical studies. In the present work,
the surface area was measured via two different methods: the Brunauer–Emmett–Teller
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(BET) method using nitrogen (N2) gas adsorption and desorption and ECSA using the CV
curves in the non-faradaic region of the electrocatalysts. Figure S8 shows the adsorption
and desorption curves of the electrocatalysts. According to the IUPAC classification, these
curves exhibit Type IV isotherms; all electrocatalysts showed similar type IV isotherms,
which can be observed in mesoporous materials with a pore size of 2–50 nm [71]. The
CeO2–GO-3 electrocatalyst exhibited a higher BET surface area compared with the other
electrocatalysts. In particular, the BET surface values for CeO2, CeO2–GO-1, CeO2–GO-2, and
CeO2–GO-3 were 61.58, 80.77, 101.48, and 110.35 m2 g−1, respectively. The pore volume and
size of the CeO2–GO-3 electrocatalyst were higher than those of the other electrocatalysts.
These values are tabulated in the inset of Figure S8. Therefore, the electrocatalyst with
a higher surface area exhibits higher electrocatalytic performance. In the present study,
the CeO2–GO-3 electrocatalyst showed a higher surface area and better electrocatalytic
performance compared with the other electrocatalysts.

3. Materials and Methods

Ce–MOFs were synthesized using a previously reported method with slight modifica-
tions [46]. The required quantity of cerium nitrate hexahydrate (50.0 mM) was dissolved
in a mixture of deionized water (DI) and ethanol (v/v of 1:1). Subsequently, trimesic acid
(50.0 mM) was added to the milk-white suspension, which was stirred for 1 h at room
temperature (RT). Thereafter, the temperature was increased until the solution evaporated.
After cooling, the residue was collected and annealed at 400 ◦C in the air for 1 h to obtain the
CeO2 pure phase. The CeO2–GO composites were prepared in the same manner with differ-
ent GO contents (0, 25, 50, and 100 mg GO, denoted as CeO2, CeO2–GO-1, CeO2–GO-2, and
CeO2–GO-3, respectively), as shown in Scheme 1. The chemicals, characterization, electrode
preparation, and electrocatalytic performance followed are provided in the Supplementary
Information (SI).

4. Conclusions

In this study, we successfully synthesized Ce–MOF-derived CeO2 and CeO2–GO elec-
trocatalysts for the OER. The morphological and structural properties of the electrocatalysts
were characterized. The TEM results indicated that the CeO2–GO-3 electrocatalyst had a
sheet-like morphology with an effective attachment to the GO sheets. The electrocatalysts
produced using a low-cost, stable, and simple synthesis method demonstrated good OER
activity in the 1.0 M KOH electrolyte. The CeO2–GO-3 electrocatalyst had a low over-
potential of 240 mV at 10 mA·cm−2 and a smaller Tafel slope (176 mV·dec−1) than the
CeO2–GO-1 and CeO2–GO-2 electrocatalysts. Moreover, the CeO2–GO-3 electrocatalyst
exhibited considerable electrochemical stability over 10 h under alkaline conditions. Thus,
this study provides a new method for developing non-noble-metal-based electrocatalysts
for clean energy production.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/inorganics11040161/s1: Figure S1: XRD pattern of the pristine
Ce–MOF; Figure S2: EDS analysis of CeO2–GO-3 electrocatalyst; Figure S3: d-spacing line profiles
corresponding to the 0.311 (111) plane; Figure S4: d-spacing line profiles corresponding to the 0.315
(111) plane; Figure S5: d-spacing line profiles corresponding to the 0.163 (311) plane; Figure S6:
Comparative CV curves at standard scan rate in aqueous 1.0 M KOH electrolyte; Figure S7: CV curves
of the electrocatalysts in (a) 1.0 M KOH; CeO2, (b) CeO2–GO-1, (c) CeO2–GO-2, and d) CeO2–GO-3;
Figure S8: N2adsorption–desorption profiles of CeO2, CeO2–GO-1, CeO2–GO-2, and CeO2–GO-3;
Table S1: EIS fitted values and the equivalent circuit; Table S2: Comparison of OER performance of
different electrocatalysts [43,72–81].
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