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Abstract: Daminozide, a plant growth regulator, is an effective inhibitor of the Jumonji domain-
containing protein (JMJD) histone demethylase. Herein, four ruthenium(II)/rhenium(I)-daminozide
conjugates, with molecular formulas [Ru(N-N)2bpy(4-CH2OH-4′-CH2O-daminozide)](PF6)2 (Ru-
1/Ru-2) (N-N = 1,10-phenanthroline (phen, in Ru-1) and 4,7-diphenyl-1,10-phenanthroline (DIP, in
Ru-2)) and Re(N-N)(CO)3(PyCH2O-daminozide) (Re-1/Re-2) (Py = pyridine, N-N = phen (in Re-1)
and DIP (in Re-2)), were synthesized and characterized. Among these complexes, Ru-2 and Re-2
exhibited higher cytotoxicity against tumor cells than cisplatin. Upregulation of H3K9Me3 expression
level was found in human cervical cancer cells (HeLa) treated with Ru-2 and Re-2, indicating that
these two complexes can inhibit the activity of JMJD histone demethylase. Further investigation
revealed that Re-2 can selectively accumulate in the mitochondria of HeLa cells. Both Ru-2 and
Re-2 can cause mitochondrial damage, induce apoptosis, and inhibit cell migration and colony
formation of HeLa cells. Overall, these complexes exhibit multiple anticancer functions, including
inhibiting JMJD, inducing apoptosis, and inhibiting cell invasion, making them promising candidates
for anticancer drugs.

Keywords: ruthenium(II) complex; rhenium(I) complex; daminozide; apoptosis; anticancer

1. Introduction

Cancer is the archenemy of human health, and platinum-based drugs are one of the
powerful weapons to fight against it [1,2]. Although cisplatin and its analogs have shown
significant therapeutic efficacy in cancer treatment, their cytotoxic effects, including kidney
toxicity, ototoxicity, neurotoxicity, etc. [3–5], highlight the pressing need to explore and
develop a novel metal-based anticancer drug with reduced or negligible side effects to
address the shortcomings of platinum-based drugs. Non-platinum group metals, such
as rhenium [6–8], ruthenium [9,10], iridium [11–14], and gold [15,16], have been identi-
fied as potential anticancer agents. Compared with platinum-based drugs, ruthenium
complexes exhibit lower toxicity and greater selectivity for tumor cells, rendering them a
promising class of transition metal-based anticancer reagents. Rhenium complexes possess
rich photochemical properties that can facilitate imaging [17], phototherapy [18,19], and
radiotherapy [20]. Hence, the development of ruthenium(II) and rhenium(I) anticancer
drugs presents the possibility to overcome the limitations of platinum-based drugs and
provides greater opportunities for designing anticancer agents with optimal properties
and functions.

Recently, more and more metal-based complexes are being used for the construc-
tion of enzyme inhibitors [21–24]. Jumonji domain-containing protein (JMJD) histone
demethylases are important epigenetic regulators in cancer cells, which participate in the
methylation of histone lysine residue 9 (H3K9) [25,26]. Various studies have shown that
JMJD histone demethylases are overexpressed in various malignant tumors, which may
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result in the downregulation of H3K9Me3 and the activation of oncogenes [27,28]. Thus,
inhibition of JMJD can produce a substantial anti-tumor effect [29,30]. The research group
led by Chung-Hang Leung designed and synthesized a Rh(III) complex, which has been
identified as a selective and effective inhibitor of JMJD. It induces the accumulation of
H3K4me3 and H3K4me2 levels in cells, leading to growth arrest in the G1 phase of triple-
negative breast cancer [31]. Our group also reported two cases of metal-based complexes
that can induce tumor cell death through JMJD inhibition [32,33].

Akane Kawamura’s team found that the plant growth regulator daminozide selectively
inhibited the JMJD (IC50 = 1.5 µM) [34]. In this study, daminozide was introduced into
metal complexes to build multifunctional metal complexes. Four ruthenium(II)/rhenium(I)-
daminozide conjugates (Scheme 1), with molecular formulas [Ru(N-N)2bpy(4-CH2OH-4′-
CH2O-daminozide)](PF6)2 (Ru-1/Ru-2) (N-N = 1,10-phenanthroline (phen, in Ru-1) and
4,7-diphenyl-1,10-phenanthroline (DIP, in Ru-2)) and Re(N-N)(CO)3(PyCH2O-daminozide)
(Re-1/Re-2) (Py = pyridine, N-N = phen (in Re-1) and DIP (in Re-2)), are designed and
synthesized. Moreover, the potential anticancer mechanisms of ruthenium(II)/rhenium(I)-
daminozide conjugates were also elucidated, including JMJD inhibition, intracellular lo-
calization, mitochondrial function destruction, an increase of intracellular reactive oxygen
species (ROS) level, promotion of cell apoptosis, and inhibition of cell migration and colony
formation. In conclusion, these findings demonstrate the great potential of these metal
complexes as anticancer agents.
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Scheme 1. Chemical structures of Ru(II)/Re(I)-daminozide conjugates, Ru-1/2 and Re-1/2.

2. Results and Discussion
2.1. Synthesis, Photophysical Characterization

The synthetic route of Ru(II)/Re(I)-daminozide conjugates, Ru-1/2 and Re-1/2, was
shown in Scheme 2. Firstly, [Ru(phen)2bpy(4-CH2OH-4′-CH2OH)](PF6)2 [35], [Ru(DIP)2bpy-
(4-CH2OH-4′-CH2OH)](PF6)2 [35], [Re(phen)(CO)3(PyCH2OH)](PF6) [36] and [Re(DIP)-
(CO)3(PyCH2OH)](PF6) [36] were synthesized according to the references. Ru(II)/Re(I)-
daminozide conjugates, Ru-1/2 and Re-1/2, were then prepared through the condensation
reaction of [Ru(N-N)2bpy(4-CH2OH-4′-CH2OH)](PF6)2/[Re(N-N)(CO)3(PyCH2OH)](PF6)
with daminozide in anhydrous CH2Cl2 at room temperature, with the aid of the dehydrat-
ing agent dicyclohexylcarbodiimide (DCC) and the catalyst 4-N,N-dimethylaminopyridine
(DMAP). The products were purified using silica column chromatography, and their struc-
tures were confirmed by 1H NMR, 31P NMR, ESI-HRMS, and CHN elemental analysis
(Figures S1–S12).

The electronic absorption and emission spectra of Ru-1/2 and Re-1/2 were shown
in Figure S13. Both Ru(II) complexes and Re(I) complexes displayed 2 characteristic
absorption bands at approximately 250–500 nm, which are classified as the intraligand
and metal-to-ligand absorptions, respectively (Figure S13A). After excitation at 457 nm
for Ru(II) and 405 nm for Re(I), Ru-1/2 displayed orange luminescence with a maximum
wavelength of around 600 nm (Figure S13B-a), and Re-1/2 emitted green light with a
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maximum wavelength of around 550 nm (Figure S13B-b). Their photophysical data are
summarized in Table S1.
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2.2. Lipophilicity and In Vitro Cytotoxicity

The lipophilicity of a metal complex, as represented by its logarithmic partition co-
efficient (log Po/w), can potentially affect its cellular uptake, cytotoxicity, subcellular dis-
tribution, and anticancer mechanisms. The log Po/w values of Ru-1, Ru-2, Re-1, and Re-2
were determined by the shake-flask method and found to be Re-2 (0.65) > Ru-2 (0.57) >
Re-1 (−0.11) > Ru-1 (−0.88). Subsequently, the antiproliferative activities of Ru-1/2 and
Re-1/2 against different cell lines, including human cervical cancer cells (HeLa), human
lung adenocarcinoma epithelial cells (A549), cisplatin-resistant A549 (A549R), human hepa-
tocellular carcinoma (HepG2), and human normal liver cells (LO2), were evaluated using
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Based on
the IC50 values in Table 1, the antiproliferative effects of these compounds were as follows:
Ru-1, Re-1 < cisplatin < Ru-2 < Re-2. Re-2 was the most effective of all tested compounds,
with an IC50 value range of around 2.0. Ru-2 and Re-2 all showed higher cytotoxic effects
on HeLa cells than other cancer cell lines.

Table 1. IC50 values of tested compounds towards different cell lines a.

Compound
IC50 (µM)

HeLa A549 A549R HepG2 LO2

Ru-1 >50 >50 >50 >50 >50
Ru-2 5.0 ± 0.3 10.1 ± 2.2 12.3 ± 0.6 14.4 ± 1.6 18.2 ± 2.7
Re-1 >50 >50 >50 >50 >50
Re-2 2.0 ± 0.2 3.8 ± 1.1 2.6 ± 0.2 3.6 ± 0.3 7.6 ± 2.1

Cisplatin 26.1 ± 3.7 27.3 ± 6.1 >50 33.4 ± 4.3 35.5 ± 5.8
a Cell viability is assessed after 48 h incubation. Data are presented as mean ± standard deviation (SD).

2.3. Upregulation of the Histone-Methylation Level

The JMJD histone demethylase is overexpressed in various malignant tumors, which
may result in the downregulation of H3K9Me3 and the activation of oncogenes [27,28]. The
expression level of H3K9Me3 can be used as an alternative marker to monitor JMJD hi-
stone demethylase activity. In this study, we evaluated whether Ru-2 and Re-2 could
alter the level of histone methylation. We examined the expression of H3K9Me3 by
Western blot. As shown in Figure 1, both Ru-2 and Re-2 increased the expression of
H3K9Me3 in a dose-dependent manner, indicating that JMJD activity is inhibited. It is
worth noting that the reference complexes ([Ru(DIP)2bpy(4-CH2OH-4′-CH2OH)](PF6)2
and [Re(DIP)(CO)3(PyCH2OH)](PF6)) did not show any inhibition effect, which further
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showed that the inhibition of Ru-2 and Re-2 on JMJD was attributed to the introduction
of daminozide.
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Figure 1. Dose-dependent effects of Ru-2 (A) and Re-2 (B) on H3K9Me3 after 24 h of treatment.

2.4. Cellular Localization and Uptake Mechanisms

Ru-2 and Re-2 have been selected as target compounds due to their superior cyto-
toxicity and are being investigated for their anticancer mechanisms. These complexes
exhibit luminescent properties, so it is easy to observe the distribution of Ru-2 and Re-2
in HeLa cells by confocal laser scanning microscope. We first studied the effect of HeLa
cells pretreated with the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone
(CCCP)/endocytic inhibitor chloroquine and incubated at 37 ◦C/4 ◦C on the uptake of
Ru-2 and Re-2. After pretreatment with metabolic inhibitor CCCP, HeLa cells were incu-
bated with Ru-2 and Re-2, resulting in weaker intracellular luminescence than at 37 ◦C
(Figures 2A and S14). However, in the cells pretreated with the endocytosis inhibitor
chloroquine, there was no significant change in the intracellular luminescence level of
Ru-2 and Re-2. The results indicate that Ru-2 and Re-2 are primarily absorbed by HeLa
cells via an energy-dependent mechanism rather than an endocytic pathway. We further
explored the subcellular localization of Re-2 by co-staining HeLa cells with MTDR or LTDR
and Re-2. As shown in Figure 2B, the luminescence of Re-2 highly overlapped with the
fluorescence of MTDR but almost no overlap with that of LTDR. These results indicate that
Re-2 localizes to mitochondria rather than lysosomes.
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under different conditions (37 ◦C, 4 ◦C, pre-treated HeLa cells with CCCP (30 µM) or chloroquine
(50 µM)). (B) Confocal microscopic images of HeLa cells co-labeled with Re-2 (10 µM, 1 h) and
LTDR (50 nM, 0.5 h) or MTDR (150 nM, 0.5 h) (λex = 405 nm for Re-2 and 633 nm for MTDR/LTDR;
λem = 550 ± 20 nm for Re-2 and 665 ± 20 nm for MTDR/LTDR). Scale bar: 20 µm.

2.5. Mitochondrial Damage

Typically, mitochondria-targeted drugs can cause a series of mitochondrial damage,
including a decrease in mitochondrial membrane potential (MMP) and an increase in ROS.
5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) is com-
monly used to evaluate the change of MMP through monitoring the ratio of red-to-green
fluorescence intensity [37]. In control group cells, JC-1 mainly exists in the form of aggre-
gates and displays red fluorescence. However, when MMP decreases, the monomer form
of JC-1 increases, resulting in an increase in green fluorescence. As shown in Figure 3A,B,
HeLa cells treated with different concentrations of Ru-2 or Re-2 showed a significant de-
crease in red fluorescence and an increase in green fluorescence as observed by confocal
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microscopy, indicating the loss of MMP. The same phenomenon was also observed by
flow cytometry (Figure 3C,D). The quantitative data of the ratio of green/red fluorescence
intensity, as shown in Figure S15, compared with the control group, and Ru-2/Re-2-treated
groups exhibited an increase in the ratio of green/red fluorescence intensity, with values
of 1.1 (Ru-2, 10 µM), 1.8 (Ru-2, 15 µM), 2.1 (Ru-2, 20 µM), and 1.8 (Re-2, 4 µM), 2.6 (Re-2,
6 µM), and 3.9 (Re-2, 8 µM). These results indicate that these two complexes can reduce the
MMP of HeLa cells in a concentration-dependent manner.
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2.6. Elevation of Intracellular ROS Levels

ROS are natural byproducts of normal oxygen metabolism, but excessive production of
ROS within cells will disrupt mitochondrial integrity and induce apoptosis [38]. To investigate
the effect of Ru-2 and Re-2 on ROS levels, the fluorescence probe 2′,7′-dichlorofluorescein
diacetate (H2DCFDA) was used to observe ROS production in HeLa cells. H2DCFDA is
non-fluorescent and can be converted to highly fluorescent 2′,7′-dichlorofluorescein (DCF)
through the oxidation reaction of ROS in cells [39]. As shown in Figure 4A,B, treatment
of HeLa cells with different concentrations of Ru-2 and Re-2 for 6 h resulted in a dose-
dependent increase in ROS levels compared to the control group. In addition, the results of
quantitative analysis of intracellular ROS by flow cytometry (Figures 4C and S16) showed
that compared with the control group, the cells treated with Ru-2 and Re-2 showed an
increase in mean fluorescence intensity (MFI), which were 2.9-fold (Ru-2, 10 µM), 4.8-fold
(Ru-2, 15 µM), 8.3-fold (Ru-2, 20 µM), as well as 2.1-fold (Re-2, 4 µM), 2.4-fold (Re-2, 6 µM),
and 2.6-fold (Re-2, 8 µM).

2.7. Induction of Apoptosis

To investigate the ability of Ru-2 and Re-2 to induce apoptosis, we used the fluorescent
dye Hoechst 33342 to stain HeLa cells. As shown in Figure 5A,B, compared with the control
group, Ru-2/Re-2 treated groups exhibited typical morphological changes of apoptosis,
including cell shrinkage and nuclear fragmentation, and this trend of change increased in a
dose-dependent manner.

The externalization of phosphatidylserine (PS) is a typical marker of early cell apopto-
sis [40]. The apoptosis induced by Ru-2 and Re-2 was further verified by annexin V-labeled
flow cytometry. As shown in Figure 5C, compared to the control group (11.3%), the cells
treated with different concentrations of Ru-2 and Re-2 exhibited an increase in apop-
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totic cells, with a percentage of 17.3% (Ru-2, 10 µM), 38.9% (Ru-2, 15 µM), 48.7% (Ru-2,
20 µM), 36.6% (Re-2, 4 µM), 53.7% (Re-2, 4 µM), and 76.3% (Re-2, 8 µM), respectively.
These results indicate that the percentage of apoptotic cells increases in a concentration-
dependent manner.
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Figure 5. (A,B) Hoechst 33342 staining for the nuclei (λex = 405 nm, λem = 460 ± 20 nm). Scale bar:
20 µm. (C) Flow-cytometric quantification of Annexin V-labeled cells after treatment with Ru-2 and
Re-2 for 24 h. (D) Western blot analysis of apoptosis-related protein (Bax, Bcl-2, PARP, and Caspase-3)
in HeLa cells treated with Ru-2 and Re-2 for 24 h.

To further investigate the apoptotic mechanism induced by Ru-2 and Re-2, we exam-
ined the expression of several relevant proteins, including caspase-3, poly (ADP-ribose)
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polymerase (PARP), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax).
Caspase-3 and PARP are important biomarkers of apoptosis, and caspase-3 is a direct
participant in the process [41]. Bax is involved in the mitochondrial-related caspase activa-
tion pathway, while Bcl-2 can inhibit the action of caspase-3 [42]. As shown in Figure 5D,
Ru-2 and Re-2 upregulated the expression of Bax and caspase-3, downregulated the ex-
pression of Bcl-2, and induced the cleavage of PARP. These results suggest that Ru-2 and
Re-2 can induce apoptosis through a caspase-dependent pathway.

2.8. Inhibition of Cell Migration and Colony Formation

Cell migration and invasion assays are common experimental technologies in the
field of cancer research. The main purpose of these tests is to evaluate the migration and
invasion abilities of cancer cells. As shown in the wound healing assay (Figure 6A,B),
significant migration inhibition was observed in cells treated with Ru-2 and Re-2 at 24 and
48 h, demonstrating a concentration-dependent effect. After incubation for 48 h, the wound
closure rate was 17.2% in cells treated with Ru-2 (15 µM) and 6.3% in cells treated with
Re-2 (4 µM), far lower than that of the control group (69.8%). Additionally, the colony
formation assay (Figure 6C,D) revealed that Ru-2 and Re-2 had good anti-proliferative
activity. These results demonstrate that these two compounds have a significant inhibitory
effect on the migration ability of cancer cells.
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3. Materials and Methods
3.1. Materials and Instruments

RuCl3·nH2O (J&K, Beijing, China), Re(CO)5Cl (J&K, Beijing, China), phen (J&K, Bei-
jing, China), DIP (J&K, Beijing, China), daminozide (Alfa Aesar, Haverhill, MA, USA),
DMAP (Alfa Aesar, Haverhill, MA, USA), DCC (Alfa Aesar, Haverhill, MA, USA), MTT
(J&K, Beijing, China), CCCP (J&K, Beijing, China), chloroquine (J&K, Beijing, China), MTDR
(Life Technologies, Carlsbad, CA, USA), LTDR (Life Technologies, Carlsbad, CA, USA),
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H2DCFDA (J&K, Beijing, China), JC-1 (Beyotime Biotechnology, Shanghai, China), Hoechst
33342 (J&K, Beijing, China), Annexin V-FITC Apoptosis Detection Kit (Beyotime Biotech-
nology, Shanghai, China). Primary antibodies against Bax, Bcl-2, caspase-3, PARP, and
H3K9Me3 were obtained from Cell Signaling Technology.

ESI-HRMS spectra were obtained with an Agilent 6500 LC/Q-TOF mass spectrometer.
1H NMR spectra were recorded on a Bruker Avance 600 spectrometer. Cell viability was
measured with a SpetraMax M2 plate reader. Cell imaging was carried out using a Nikon
A1R/A1 laser-scanning confocal microscope, and flow cytometry was conducted on a BD
FACSAria flow cytometer.

3.2. Preparation of Ruthenium(II) and Rhenium(I) Complexes

[Ru(phen)2bpy(4-CH2OH-4′-CH2OH)](PF6)2 [35], [Ru(DIP)2bpy(4-CH2OH-4′-CH2OH)]-
(PF6)2 [35], [Re(phen)(CO)3(PyCH2OH)](PF6) [36] and [Re(DIP)(CO)3(PyCH2OH)](PF6) [36]
were synthesized following the literature procedures.

[Ru(phen)2((4′-(hydroxymethyl)-[2,2′-bipyridin]-4-yl)methyl 4-(2,2-dimethylhydrazineyl)-
4-oxobutanoate)](PF6)2 Ru-1: The synthetic route of Ru-1 was shown in Scheme 2. After
stirring the mixture of daminozide (5 equiv.), DMAP (1.5 equiv.), and DCC (1.5 equiv.)
in dry CH2Cl2 for 30 min, [Ru(phen)2bpy(4-CH2OH-4′-CH2OH)](PF6)2 (1 equiv.) in dry
CH2Cl2 was added drop-wise and stirred at ambient temperature for 24 h. Then, the
solvent was evaporated, and the crude product was purified using column chromatogra-
phy on silica gel by elution with acetonitrile/water/saturated potassium nitrate (100:9:1,
v/v/v). Yield: 0.185 g (orange powder), 72%. 1H NMR (600 MHz, [D6]DMSO) δ 9.00 (d,
J = 17.2 Hz, 1H), 8.86–8.80 (m, 3H), 8.74 (d, J = 7.9 Hz, 2H), 8.46–8.32 (m, 5H), 8.28–8.25 (m,
2H), 7.96 (m, 4H), 7.72 (dd, J = 8.0, 5.4 Hz, 2H), 7.66–7.62 (m, 2H), 7.39–7.33 (m, 2H),
5.79 (q, J = 5.7 Hz, 1H), 5.35 (d, J = 9.2 Hz, 2H), 4.77 (dd, J = 16.5, 5.2 Hz, 2H), 2.65 (ddd,
J = 21.5, 14.0, 6.7 Hz, 3H), 2.42 (s, 3H), 2.35 (s, 4H). 31P NMR (161.98 MHz, [D6]DMSO)
δ -133.65, −137.17, −140.68, −144.19, −147.70, −151,21, −154.73. ESI-HRMS (CH3OH):
m/z 965.1701 [M-PF6]+, 882.1934 [M-2PF6-H + 2CH3OH]+, 410.1031 [M-2PF6]2+. Elemental
analysis: calcd (%) for C42H38F12N8O4P2Ru: C, 45.45; H, 3.45; N, 10.10; found: C, 45.58; H,
3.40; N, 10.30.

[Ru(DIP)2((4′-(hydroxymethyl)-[2,2′-bipyridin]-4-yl)methyl 4-(2,2-dimethylhydrazineyl)-
4-oxobutanoate)](PF6)2 Ru-2: Ru-2 was prepared following a similar procedure to that of
Ru-1, except [Ru(DIP)2bpy(4-CH2OH-4′-CH2OH)](PF6)2 was used instead of [Ru(phen)2bpy-
(4-CH2OH-4′-CH2OH)](PF6)2. Yield: 0.167 g (orange powder), 77%. 1H NMR (600 MHz,
[D6]DMSO) δ 9.03 (d, J = 46.8 Hz, 1H), 8.90–8.80 (m, 1H), 8.38–8.34 (m, 2H), 8.31–8.21 (m,
6H), 7.99–7.91 (m, 2H), 7.83–7.59 (m, 25H), 7.50–7.43 (m, 2H), 5.85 (q, J = 5.3, 3.8 Hz, 1H),
5.40 (d, J = 9.4 Hz, 2H), 4.82 (dd, J = 15.7, 4.7 Hz, 2H), 2.66 (ddd, J = 17.2, 11.1, 6.6 Hz,
3H), 2.40 (s, 3H), 2.36 (s, 4H). 31P NMR (161.98 MHz, [D6]DMSO) δ −133.67, −137.18,
−140.66, −144.18, −147.71, −151.23, −154.74. ESI-HRMS (CH3OH): m/z 1269.2964 [M-
PF6]+, 562.1662 [M-2PF6]2+. Elemental analysis: calcd (%) for C66H54F12N8O4P2Ru: C,
56.05; H, 3.85; N, 7.92; found: C, 56.36; H, 3.60; N, 8.02.

[Re(phen)(pyridin-4-ylmethyl 4-(2,2-dimethylhydrazineyl)-4-oxobutanoate)](PF6) Re-
1: Re-1 was prepared following a similar procedure to that of Ru-1, except [Re(phen)(CO)3-
(PyCH2OH)](PF6) was used instead of [Ru(phen)2bpy(4-CH2OH-4′-CH2OH)](PF6)2. The
crude product was purified using column chromatography on silica gel by elution with
CH2Cl2/CH3OH (10:1, v/v). Yield: 0.180 g (light yellow powder), 75%. 1H NMR (600 MHz,
[D6]DMSO) δ 9.78 (t, J = 4.6 Hz, 2H), 9.05 (d, J = 8.2 Hz, 2H), 8.77 (s, 1H), 8.43 (d, J = 5.8 Hz,
2H), 8.32 (s, 2H), 8.26 (dd, J = 8.1, 5.2 Hz, 2H), 7.27 (d, J = 5.5 Hz, 2H), 5.01 (s, 2H), 4.39 (s,
2H), 2.56 (t, J = 6.2 Hz, 1H), 2.35 (d, J = 21.4 Hz, 6H), 2.19 (t, J = 6.6 Hz, 1H). 31P NMR
(161.98 MHz, [D6]DMSO) δ−133.65,−137.16,−140.67,−144.19,−147.70,−151.21,−154.72.
ESI-HRMS (CH3OH): m/z 702.1352 [M-PF6]+, 451.0099 [Re(phen)(CO)3]+, 252.1342 [M-PF6-
Re(phen)(CO)3 + H]+. Elemental analysis: calcd (%) for C27H25F6N5O6PRe: C, 38.30; H,
2.98; N, 8.27; found: C, 38.45; H, 2.78; N, 8.50.
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[Re(DIP)(pyridin-4-ylmethyl 4-(2,2-dimethylhydrazineyl)-4-oxobutanoate)](PF6) Re-2:
Re-2 was prepared following a similar procedure to that of Re-1, except [Re(DIP)(CO)3-
(PyCH2OH)](PF6) was used instead of [Re(phen)(CO)3(PyCH2OH)](PF6). Yield: 0.158 g
(yellow powder), 70%. 1H NMR (600 MHz, [D6]DMSO) δ 9.84 (t, J = 5.4 Hz, 2H), 8.79 (s,
1H), 8.59 (d, J = 6.3 Hz, 2H), 8.22 (d, J = 5.3 Hz, 2H), 8.16 (s, 2H), 7.70 (m, 10H), 7.37 (d,
J = 5.5 Hz, 2H), 5.08 (s, 2H), 2.58 (t, J = 6.3 Hz, 1H), 2.53 (m, 2H), 2.35 (d, J = 17.8 Hz,
6H), 2.21 (t, J = 6.6 Hz, 1H). 31P NMR (161.98 MHz, [D6]DMSO) δ −133.65, −137.17,
−140.68, −144.19, −147.70, −151.22, −154.73. ESI-HRMS (CH3OH): m/z 854.1980 [M-
PF6]+, 603.0718 [Re(DIP)(CO)3]+, 252.1341 [M-PF6-Re(DIP)(CO)3+ H]+. Elemental analysis:
calcd (%) for C39H33F6N5O6PRe: C, 46.89; H, 3.33; N, 7.01; found: C, 46.93; H, 3.25; N, 7.33.

3.3. Cell Lines and Culture Conditions

HeLa, HepG2, A549, A549R, and LO2 cells were purchased from Nanjing KeyGen
Biotechnology Co., Ltd., and cultured in DMEM or RPMI 1640 complete medium at 37 ◦C
with 5% CO2 atmosphere.

3.4. In Vitro Cytotoxicity Assay

The anti-cancer effects of ruthenium(II) and rhenium(I) complexes against HeLa, A549,
A549R, HepG2, and LO2 cell lines were evaluated by MTT method. Cells were seeded at
a density of 5 × 104/well in 96-well plates and incubated at 37 ◦C for 24 h. Afterward,
the culture medium was replaced with fresh medium containing the ruthenium(II) and
rhenium(I) complexes, and the cells were further incubated at 37 ◦C for 48 h. MTT solu-
tion was added, and the cells were co-incubated at 37 ◦C for an additional 4 h. Finally,
150 µL/well DMSO was added to dissolve the MTT-formazan crystals, and the absorbance
of living cells at 570 nm was measured using a SpetraMax M2 plate reader.

3.5. Cellular Localization Assay

HeLa cells were cultured in confocal dishes for 24 h. Next, a solution of Re-2 (10 µM)
was added and incubated for 30 min. After that, commercial lysosomal probe LTDR (50 nM)
or mitochondrial probe MTDR (150 nM) was added to incubate the cells for another 30 min.
Subsequently, cells were washed with PBS and visualized using confocal microscopy.
Re-2 and LTDR/MTDR were excited at 405 nm and 633 nm, respectively. The emission
wavelengths of Re-2 and LTDR/MTDR were 550 ± 20 nm and 665 ± 20 nm, respectively.

3.6. Measurement of MMP

HeLa cells were seeded into confocal dishes and cultured for 24 h. After incubation
with Ru-2 or Re-2 for 6 h, cells were washed twice with PBS and stained with JC-1 (5 µg/mL)
for 30 min. After that, cells were analyzed by confocal microscopy or flow cytometry. The
excitation wavelength of JC-1 was 488 nm, the emission wavelength was 530 ± 20 nm for
JC-1 monomer (green), and 585 ± 20 nm for JC-1 aggregate (red).

3.7. Measurement of Intracellular ROS

After 6 h of treatment with Ru-2 or Re-2, cells were stained with H2DCFDA for
25 min at 37 ◦C. Subsequently, cells were washed three times with serum-free DMEM. The
fluorescence intensity of DCF was measured by confocal laser scanning microscopy and
flow cytometry (λex = 488 nm; λem = 530 ± 20 nm).

3.8. Hoechst 33342 Staining

After treatment with the indicated concentrations of Ru-2 or Re-2 for 24 h, cells
were fixed with 4% paraformaldehyde for 15 min, followed by staining with Hoechst
33342 (5 µg/mL). Finally, the morphology of cell nuclei was visualized under a confocal
microscope (λex = 405 nm; λem = 460 ± 20 nm).
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3.9. Annexin V Staining

After 24 h of treatment with Ru-2 or Re-2 at the indicated concentrations, cells were
re-suspended with Annexin-binding buffer (195 µL) and labelled with Annexin V (5 µL).
The samples were analyzed by flow cytometry (λex = 488 nm; λem = 530 ± 20 nm).

3.10. Wound Healing Assay

HeLa cells were seeded into a 6-well plate. After reaching 85% confluency, a sterile
200 µL pipette tip was used to make cross-shaped scratches in the center of each well, and
excess cells were carefully washed away with DMEM medium. Then, cells were further
cultured in medium containing Ru-2 or Re-2. The closure of the wounds was monitored
and imaged at 0 h, 24 h, and 48 h using an inverted microscope.

3.11. Statistical Analysis

The biological experiments were conducted at least 3 repetitions, and the data were
reported as means ± SD.

4. Conclusions

In conclusion, we have designed and synthesized four Ru(II)/Re(I)-daminozide con-
jugates, Ru-1/2 and Re-1/2. MTT assay results showed that Ru-2 and Re-2 had a highly
cytotoxic effect on human tumor cells. Further research revealed that Ru-2 and Re-2 could
inhibit the activity of JMJD histone demethylase, lead to the depolarization of the mito-
chondrial membrane, an increase in ROS levels, and induction of HeLa cell apoptosis via
the caspase cascade pathway. These compounds can achieve multiple therapeutic effects
(among them, daminozide fragment is more responsible for the inhibition of the activity
of JMJD histone demethylase, and metal centers are more responsible for the localization
of mitochondria and the induction of mitochondrial damage) and have great potential
for developing anti-cancer drugs. Therefore, our study suggests that combining JMJD
inhibitors with metal complexes is an effective strategy for developing new tumor-targeted
and multifunctional metal anti-cancer drugs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics11040142/s1, Figure S1: ESI-HRMS characterization of
Ru-1; Figure S2: ESI-HRMS characterization of Ru-2; Figure S3: ESI-HRMS characterization of Re-1;
Figure S4: ESI-HRMS characterization of Re-2; Figure S5: 1 H NMR spectrum of Ru-1; Figure S6: 1 H
NMR spectrum of Ru-2; Figure S7: 1 H NMR spectrum of Re-1; Figure S8: 1 H NMR spectrum of
Re-2; Figure S9: 31 P NMR spectrum of Ru-1; Figure S10: 31 P NMR spectrum of Ru-2; Figure S11:
31 P NMR spectrum of Re-1; Figure S12: 31 P NMR spectrum of Re-2; Figure S13: UV/Vis and
emission spectra of Ru(II) and Re(I) complexes; Figure S14: Cellular uptake mechanisms of Ru-2;
Figure S15: Ratio of green to red fluorescence intensity; Figure S16: Quantitative data of MFI; Table S1:
Photophysical data of Ru(II) and Re(I) complexes.
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