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Abstract: A new 1D Ni(II) coordination polymer was synthesized by the reaction of NiSO4·6H2O with
2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (BPT) and SCN− as a linker in an acidic
medium by heating under reflux conditions. Unusually, the BPT ligand underwent acid-mediated
hydrolysis by losing one of the pyrazolyl arms afforded the polymeric [Ni(MPT)(H2O)(SCN)2]n

complex (MPT: 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazin-2-ol. The Ni(II) center is
coordinated with one MPT as a bidentate NN-chelate, one water molecule, and two thiocyanate
groups in cis positions to one another. One of the thiocyanate groups acts as a bridging ligand
between metal centers, leading to a one-dimensional polymeric structure that extends along the
c-direction. The other thiocyanate group is terminally N-coordinated. The [Ni(MPT)(H2O)(SCN)2]n

complex has been screened in vitro against two pathogenic fungal strains: A. fumigatus, C. albican,
and four pathogenic bacterial strains: S. aureus, B. subtilis as gram-positive bacteria, E. coli, P. vulgaris
as gram-negative bacteria. The results showed that the complex has the potential to be used as
both an antibacterial and an antifungal agent. Also, the [Ni(MPT)(H2O)(SCN)2]n complex showed
cytotoxic activities against hepatocellular (HepG-2) and lung (A-549) cell lines, with IC50 values of
132.67 ± 5.14 and 146.97 ± 7.34 µM, respectively.

Keywords: nickel (II); s-triazine; antimicrobial; cytotoxicity; liver and lung carcinomas

1. Introduction

In the literature, multi-functional chelating ligands sparked the interest of scientists
due to their remarkable applications in different areas. Of polydentate ligands, the highly
symmetric s-triazine scaffold with heterocyclic groups attached to it is important for a
wide range of applications in pharmaceutical chemistry [1] due to their widespread antimi-
crobial [2], anticancer [3,4], and antiviral activities [5]. Especially, s-triazine compounds
bearing a pyrazole moiety were found to have low toxicity toward growth-stimulating
activity [6,7]. Many of their derivatives showed moderate-to-strong anticancer activities,
which were found to depend on the type of groups attached to the s-triazine core [8]. s-
Triazines are also employed in diverse industries such as plastic [9], electrical [10], dye [11],
production of ion-exchange resins and cleaning wastewater [12], pesticides [13], optical
switches [14,15], low-toxicity flame-retardant materials [16], and as a replacement for some
raw materials in petrochemical industries [17]. Also, these nitrogen-rich molecules have
potential use as energetic explosives [18] and organic corrosion inhibitors [19]. This class of
versatile chelating agents has a weak ligand field [20] and is characterized by the presence
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of the symmetric triazine core, which is an essential feature in crystal engineering [21,22]
and an important factor in building stable high-spin metal complexes [23] with extended
molecular and supramolecular architectures [24,25], which are widely used in various
magnetic [26] and catalytic applications [27,28].

In our previous work with s-triazine pincer ligands comprising two pyrazolyl arms, we
reported the molecular and supramolecular structures of different metal pincer complexes
with a bis-pyrazolyl-s-triazine ligand [3,6,20,23–25,29–42]. Many homoleptic and heterolep-
tic complexes of this type with pincer ligands and divalent and trivalent metal ions were
reported to have coordination numbers ranging from five to eight. 2,4-Bis(3,5-dimethyl-1H-
pyrazol-1-yl)-6-methoxy-1,3,5-triazine is an interesting N-pincer ligand that continues to
receive the interest of our research group (BPT; Figure 1) and was used for the synthesis of
a large number of polymeric and discrete metal (II) complexes [29–42]. It is noted that the
coordination behavior of the pincer bis-pyrazolyl-s-triazine ligand (BPT) depends on many
factors, such as the type of metal ion, reaction conditions such as medium and temperature,
as well as the nature of the counter anion. In the majority of cases, the discrete pincer com-
plexes of the bis-pyrazolyl-s-triazine ligand were obtained [3,6,20,23–25,29,30,34–38,41,42].
In some instances, the ligand underwent hydrolysis, either catalyzed by the medium acid-
ity of an external acid [31] or by the Lewis acidity of the metal ion [23,31–33]. In this
regard, the methoxy group of the BPT ligand underwent hydrolysis in the presence of
Cu(ClO4)2·6H2O or FeCl3, while the hydrolysis was continued at one of the pyrazolyl
moieties in the presence of CuCl2 or PdCl2. Figure 1 shows the structures of the hydrolyzed
ligands HL1 and HL2, respectively. In the case of the two Cu(II) salts, the 1D coordination
polymers [Cu2(L1)(ClO4)3(H2O)4]·2H2O and [Cu(L2)(H2O)Cl] of the hydrolyzed ligands
were obtained as final products. These s-triazine ligands are found coordinated with the
Cu(II) ion as mononegative bidentate chelates. In the case of FeCl3, the hydrolysis of BPT
afforded the mononuclear [Fe(L1)(CH3OH)Cl2] pincer complex, and the hydrolyzed ligand
(HL1) is found coordinated to Fe(III) as a mononegative tridentate pincer chelate. For PdCl2,
the hydrolyzed s-triazine ligand (HL2) also as a mononegative bidentate chelate, but the
corresponding mononuclear Pd(II) complex [Pd(L2)(H2O)Cl] was formed in this case. In
the presence of HCl (1:1 v/v) in an aqueous solution, the hydrolysis of BPT was found
to depend on the reaction conditions. The hydrolysis reaction occurred for the methoxy
group and one of the two pyrazolyl moieties by stirring the BPT ligand with HCl at room
temperature for 2–3 h, and the final product was the free HL2. In the presence of more
vigorous conditions of heating under reflux, the complete hydrolysis of BPT occurred, and
the final product was approved as 1,3,5-triazine-2,4,6-triol. Interestingly, the reaction of
BPT with Fe(NO3)3 also proceeded with the hydrolysis to HL1, and the final product was
the µ-oxo diiron complex of the formula [Fe2(L1)2(H2O)4O](NO3)2 [43].
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Metal ions play an important role in the cell’s life and in biology. Of these metal ions,
nickel has a significant biological role in the active center of the urease enzyme [44] and
others [45,46]. Moreover, a great number of nickel complexes having interesting biological
activity have been reported for their antifungal [47], anti-inflammatory [48], and antiox-
idant [49,50] activities. Some Ni (II) complexes bearing N,O-chelating ligands are active
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towards polymerization, and the resulting coordination polymers were found to have
interesting applications in catalysis [51] and biology [52]. In addition, they showed prospec-
tive applications as luminescent [53], conductive [54], and for the recovery of trace metal
ions [55]. Dong and coworkers reported the structure and magnetic properties of some
Ni(II) coordination polymers based on 2,4-[6-(4-carboxyphenyl)pyrazin-2-yl]benzoic acid
as a NO-donor ligand [56]. The last decade has witnessed an upsurge in research efforts for
the development of coordination polymers, which have interesting molecular architectures
due to their novel and diversified structural characteristics. In this regard, polymeric
coordination compounds based on s-triazine have interesting magnetic properties and
great industrial importance [57–59].

As a continuation of our recent work concerning metal-s-triazine complexes with
pseudohalides as auxiliary ligands [39,40], our current research is focused on the synthesis
of a new polymeric Ni(II) complex with a s-triazine-type ligand employing SCN− as an
auxiliary bridging ligand. The reaction was performed by mixing NiSO4.6H2O, the BPT
ligand, and SCN¯ in the presence of diluted sulfuric acid to increase the possibility of
the hydrolysis of the BPT ligand, which in turn increases the possibility of obtaining
the coordination polymer rather than the discrete complex. The structural aspects of
the synthesized complex were analyzed using single-crystal X-ray diffraction and FTIR
spectroscopy. To evaluate the biological impact of the new Ni(II) complex, the cytotoxicity
against some cancer cell lines in addition to the antimicrobial activity were reported.

2. Results and Discussion
2.1. Synthesis and Characterizations

It was reported that the reactions of the BPT ligand with Ni(II) salts comprising
different anions (NO3

−, Cl−, and ClO4
−) have afforded a variety of mononuclear Ni(II)-

BPT complexes (Scheme 1) [41,42]. The same ligand (BPT) underwent hydrolysis in the
presence of metal ions, leading to polymeric metal-organic frameworks [31]. Also, similar
hydrolytic reactions were detected in the presence of acid. It was found that the methoxy
group is the most prominent group for hydrolysis at first, followed by either one or both of
the pyrazolyl moieties. In continuation of the work on this N-pincer ligand, we presented
here the reaction of the s-triazine functional ligand (BPT) with nickel sulfate hexahydrate
in the presence of SCN− as a co-ligand in an acidic medium by heating under reflux.
The target of the addition of KSCN solution during the reaction is to construct a Ni(II)-
thiocyanato coordination polymer comprising the s-triazine ligand. As expected, the BPT
ligand underwent acid-mediated hydrolysis, but in this case a cleavage of one of the C-N
bonds between the pyrazole and s-triazine moieties occurred, leading to the formation of
4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazin-2-ol (MPT), which in situ reacts
with Ni(II) and affords the new [Ni(MPT)(H2O)(SCN)2]n complex as a final product in a
good yield (76.4%). Its structure was confirmed by elemental analysis and FTIR spectra, and
the polymeric framework was unambiguously confirmed by single-crystal X-ray diffraction.
The antimicrobial activity of the new [Ni(MPT)(H2O)(SCN)2]n complex was evaluated
against two pathogenic fungal strains: Aspergillus fumigatus and Candida albicans, and
four pathogenic bacterial strains: Staphylococcus aureus, Bacillus subtilis as gram-positive
bacteria, Escherichia coli, and Proteus vulgaris as gram-negative bacteria, as reported
here. The obtained results were compared with Ketoconazole and Gentamycin as positive
antifungal and antibacterial controls, respectively. In addition, the anticancer activity of the
[Ni(MPT)(H2O)(SCN)2]n complex was examined against hepatocellular (HepG-2) and lung
(A-549) carcinomas, and the results were compared with cis-platin as a positive control. The
[Ni(MPT)(H2O)(SCN)2]n complex is freely soluble in DMSO, DMF, ethanol, and methanol.
In contrast, this complex is insoluble in water, carbon tetrachloride, and cyclohexane.
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2.2. Crystal Structure Description

The structure of the [Ni(MPT)(H2O)(SCN)2]n complex is shown in Figure 2, while the
crystallographic details are listed in Table 1, and the selected geometric parameters (bond
distances and angles) are presented in Table 2. The polymeric [Ni(MPT)(H2O)(SCN)2]n
complex is found crystallized in the monoclinic crystal system and the P21/c space group.
The unit cell parameters are a = 16.0718(5) Å, b = 11.0571(4) Å, c = 10.6401(4) Å, and
β = 90.889(2)◦, while the unit cell volume is 1890.60(11) Å3. The asymmetric unit comprised
one [Ni(MPT)(H2O)(SCN)2] formula unit. As clearly seen from Figure 2, the coordination
sphere of this neutral complex contains one MPT ligand, one water molecule, and two
differently coordinated thiocyanate groups.

In this complex, the Ni(II) is hexa-coordinated with a NiN4SO coordination sphere.
The organic ligand (MPT) acts as a bidentate chelate via the nitrogen atom from the pyrazole
moiety [Ni1-N1; 2.074(3) Å] and one of the s-triazine nitrogen atoms [Ni1-N5; 2.080(3) Å].
The bite angle of this ligand is 77.46(10)◦. In addition, Ni(II) is coordinated to one water
molecule [Ni1-O3; 2.086(3) Å], which is found trans to the Ni1-N1 bond of the pyrazole
moiety. The coordination sphere of the Ni(II) in the asymmetric unit is completed by two
interactions with two SCN− groups in cis-positions to one another, forming the equatorial
plane of the NiN4SO octahedron with Ni1-N6 and Ni1-N7 distances of 2.033(3) Å and
2.053(4) Å, respectively. It is worth noting that one of the two thiocyanate groups is acting
as a terminal N-donor ligand, while the other thiocyanate group is bridging between
the Ni(II) centers. This bridging thiocyanate group connects the [Ni(MPT)(H2O)(NCS)2]
complex unit with another one via the long Ni1-S2# distance of 2.5755(10) Å. Hence, the
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supramolecular structure of the complex [Ni(MPT)(H2O)(SCN)2]n could be described
as a one-dimensional zigzag-like coordination polymer of the complex units connected
by the bridged thiocyanate group through the crystallographic c-direction as shown in
Figure 3. The angles between the trans bonds in the equatorial positions are in the range
of 174.56(12)◦ for N6-Ni1-N5 to 176.59(10)◦ for N7-Ni1-S2# angles, while the bond angle
of axial trans bonds is in turn equal to 170.73(10) ◦ for N1-Ni1-O3 angle. Additionally,
the angles between the cis-bonds are to a great extent close to the ideal case of the perfect
octahedron, where N6-Ni1-N7, N6-Ni1-N1, and N7-Ni1-N1 angles are 91.93(13), 99.10(11)
and 91.17(13)◦, respectively (Table 2). As a result, the complex has a slightly distorted
octahedral coordination environment.
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Table 1. Crystallographic data for the [Ni(MPT)(H2O)(SCN)2]n complex.

[Ni(MPT)(H2O)(SCN)2]n

CCDC 2231954
empirical formula C11H13N7NiO3S2
fw 414.11
temp (K) 289(2) K
λ (Å) 0.71073
cryst syst Monoclinic
space group P21/c
a (Å) 16.0718(5)
b (Å) 11.0571(4)
c (Å) 10.6401(4)
β (deg) 90.889(2)
V (Å3) 1890.60(11)
Z 4
ρcalc (Mg/m3) 1.455
µ (Mo Kα) (mm−1) 1.270
No. reflns. 22,147
Unique reflns. 4684
Completeness to θ = 25.242◦ 99.9
GOOF (F2) 1.050
Rint 0.0538
R1

a (I ≥ 2σ) 0.0493
wR2

b (I ≥ 2σ) 0.1114
a R1 = ∑||Fo| − |Fc||/∑|Fo|. b wR2 = {∑ [w(Fo

2 − Fc
2)2]/∑ [w(Fo

2)2]}1/2.
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Table 2. The most important bond distances and angles in the [Ni (MPT)(H2O)(SCN)2]n complex.

Bond Distance Bond Distance

Ni (1)-N (6) 2.033(3) Ni (1)-N (5) 2.080(3)
Ni (1)-N (7) 2.053(4) Ni (1)-O (3) 2.086(3)
Ni (1)-N (1) 2.074(3) Ni (1)-S (2) #1 2.5755(10)

Bonds Angle Bonds Angle

N(6)-Ni(1)-N(7) 91.93(13) N(1)-Ni(1)-O(3) 170.73(10)
N(6)-Ni(1)-N(1) 99.10(11) N(5)-Ni(1)-O(3) 93.29(11)
N(7)-Ni(1)-N(1) 91.17(13) N(6)-Ni(1)-S(2)#1 84.66(9)
N(6)-Ni(1)-N(5) 174.56(12) N(7)-Ni(1)-S(2)#1 176.59(10)
N(7)-Ni(1)-N(5) 92.34(12) N(1)-Ni(1)-S(2)#1 89.21(8)
N(1)-Ni(1)-N(5) 77.46(10) N(5)-Ni(1)-S(2)#1 91.05(8)
N(6)-Ni(1)-O(3) 90.09(12) O(3)-Ni(1)-S(2)#1 90.41(8)
N(7)-Ni(1)-O(3) 89.76(13) C(11)-S(2)-Ni(1)#2 107.68(12)
Ni(1)#2-S(2)-N(1)#2 39.16(5) Ni(1)-O(3)-H(3A) 109.7
Ni(1)-O(3)-H(3B) 109.9 C(1)-N(1)-Ni(1) 141.2(2)
N(2)-N(1)-Ni(1) 112.8(2) C(6)-N(5)-Ni(1) 116.2(2)
C(9)-N(5)-Ni(1) 128.4(2) C(11)-N(6)-Ni(1) 172.0(3)
C(10)-N(7)-Ni(1) 175.9(4)

Symme. codes: #1 x,−y + 3/2,z − 1/2 #2 x, −y + 3/2,z + 1/2.
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Figure 3. The packing scheme of the 1D polymeric structure of the [Ni(MPT)(H2O)(SCN)2]n complex.
All H-atoms were omitted for better clarity.

The supramolecular structure of the [Ni(MPT)(H2O)(SCN)2]n complex showed some
weak O-H . . . C and C-H . . . S non-covalent interactions that connect the 1D polymer
chains together. The O3-H3B . . . C9 interaction occurs between one of the O-H bonds from
the coordinated water molecule and the C9 atom from the s-triazine moiety. The donor
(O3) to acceptor (C9) interaction distance is determined to be 3.388(4) Å. In addition, the
C5-H5B from one of the methyl groups forms a relatively short interaction with the S2 atom
from the bridged thiocyanate group. The donor (C5) to acceptor (S2) interaction distance is
determined to be 3.013 Å. Views of the 1D polymer chains connected by the C5-H5B . . . S2
and O3-H3B . . . C9 interactions are shown in Figures 4A and 4B, respectively.
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2.3. FTIR Spectra

The FTIR spectra of the [Ni(MPT)(H2O)(SCN)2]n complex are shown in
Figure S1 (Supplementary Materials). The results revealed the presence of the main vi-
brational fundamentals of the [Ni(MPT)(H2O)(SCN)2]n complex. For the BPT ligand, the
FTIR spectra showed the ν(C=N) and ν(C=C) vibrational characteristics at 1593 cm−1

and 1555 cm−1, respectively [60,61]. The bands appeared at 3041 and 2978–2926 cm−1

were assigned for the aromatic and aliphatic ν(C-H) modes. The respective values for
the [Ni(MPT)(H2O)(SCN)2]n complex were detected at 2991 and 2929 cm−1, respectively.
Also, the broad band detected at 3416 cm−1 could be assigned to the ν(O-H) modes in the
complex. The ν(C=N) and ν(C=C) vibrational characteristics in the Ni(II) complex were
detected at higher wavenumbers of 1603 and 1565 cm−1, respectively. Also, an intense
sharp peak was detected at 2114 cm−1, corresponding to the stretching vibrations of the
thiocyanate group. This sharp peak represents the CN stretching frequencies of the two
NCS groups found in the [Ni(MPT)(H2O)(SCN)2]n complex.

2.4. Biological Studies
2.4.1. Antimicrobial Activity

The antimicrobial activity of the [Ni(MPT)(H2O)(SCN)2]n complex was performed
using the well diffusion agar technique against two pathogenic fungal strains: A. fumigatus,
C. albican, and four pathogenic bacterial strains: S. aureus, B. subtilis as gram-positive
bacteria, E. coli, and P. vulgaris as gram-negative bacteria. Results of the initial assessment of
the Ni(II) complex as an antimicrobial agent against these selected harmful organisms are
presented in Table 3. This table shows the diameter of different inhibition zones resulting
from the treatment of these microbes by the studied complex, which in turn indicates the
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bioactivity of the prepared complex against these microbes. The activities of the complex
were also compared with those of ketoconazole and gentamycin, which were used as
antifungal and antibacterial positive controls, respectively. The inhibition zone diameters
were found to be in the range of 12–18 mm at 10 mg/mL of the investigated compound.
The presented Ni(II) complex has significant anti-fungal activity since the inhibition zone
diameter for A. fumigatus was found to be 14 mm, which is close to that of the antifungal
control ketoconazole (18 mm). Also, the tested Ni(II) complex exhibited a higher tendency
to inhibit the growth of the fungus A. fumigatus (14 mm) than C. albican (12 mm). In terms
of antibacterial activity, the Ni(II) complex has good actions against the tested bacteria
to different extents. The inhibition zone diameters are 16 and 18 mm for S. aureus and
B. subtilis as gram-positive bacteria, respectively. For Gentamycin, the respective values
of the inhibition zone diameters are 24 and 26 mm. In the case of E. coli and P. vulgaris as
gram-negative bacteria, the inhibition zone diameters are 15 and 17 mm, respectively. The
corresponding values for Gentamycin are 30 and 25 mm.

Table 3. Inhibition zones (mm) and MIC values (µM) against different microbes.

Tested Microbes Inhibition Zones (mm) MIC (µM)

A. fumigatus 14 754.6 (294) a

C. albicans 12 1509.3 (587) a

St. aureus 16 188.6 (21) b

B. subtilis 18 94.3 (10) b

E. coli 15 377.3 (10) b

P. vulgaris 17 377.3 (10) b

a Ketoconazole; b Gentamycin.

In order to further investigate the antimicrobial activity of the studied Ni(II) complex
on the selected microbes, we determined the minimum inhibitory concentrations (MICs),
which in turn indicate the potency of the complex to inhibit the microbial growth with a
relatively low dose needed for this purpose, and the results are depicted in Table 3. The
tabulated results showed that the MIC values are the lowest for the Ni(II) complex against
B. subtilis (94.3 µM) and S. aureus (188.6 µM), indicating higher activities against these
microbes as gram-positive bacteria than E. coli and P. vulgaris (377.3 µM for each) as gram-
negative bacteria. Obviously, the MIC values of the Ni(II) complex against the studied
fungi are in the range of 754.6–1509.3 µM. The results of the antimicrobial activities showed
variations in activities among the pathogenic microbes and indicated that the synthesized
[Ni(MPT)(H2O)(SCN)2]n complex has lower antimicrobial activity than ketoconazole and
gentamycin as positive controls (Table 3).

2.4.2. The Cytotoxic Activity

The [Ni(MPT)(H2O)(SCN)2]n complex was examined for its anticancer activity using
a cell viability assay against hepatocellular (HepG-2) and lung (A-549) carcinomas. The
cytotoxicity results for the investigated Ni(II) complex against the tested tumor cell lines
in a concentration-dependent manner are presented in Tables S1 and S2 (Supplementary
Data). Also, plots for dose response curves are shown in Figure 5. The 50% inhibitory
concentration (IC50) is considered a measure for the inhibitory growth activity of the
[Ni(MPT)(H2O)(SCN)2]n complex. The results of the IC50 values indicated moderate cell
growth inhibition against HepG-2 (132.67 ± 5.14 µM) and A-549 (146.97 ± 7.34 µM) cell
lines, where the [Ni(MPT)(H2O)(SCN)2]n complex has slightly better cytotoxic activity
against the HepG-2 cell line than the A-549 lung carcinoma.

For cis-platin as a positive control and under the same experimental conditions, the
IC50 values against the HepG-2 and A-549 cell lines were determined to be 11.92 ± 1.10
and 24.48 ± 2.03 µM, respectively. These results indicated lower cytotoxic activity for the
[Ni(MPT)(H2O)(SCN)2]n complex compared to cis-platin. Hence, the reported data for
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the Ni(II) complex indicate moderate anticancer activity against hepatocellular and lung
carcinoma cell lines compared to cis-platin.
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3. Materials and Methods
3.1. Synthesis of BPT Ligand

The s-triazine ligand (BPT) was synthesized as mentioned in Method S1 (Supporting
Data) [24,25].

3.2. Synthesis of [Ni(MPT)(H2O)(SCN)2]n Complex

The new Ni(II) complex was synthesized by mixing 10 mL of a methanolic solution of
BPT (30.0 mg, 0.1 mmol) with NiSO4·6H2O (26.3 mg, 0.1 mmol) in 5 mL of distilled water,
followed by the addition of 1 mL of saturated KSCN aqueous solution. Then, 1 mL of a 1 M
H2SO4 solution was added to the resulting green precipitate, and the mixture was heated
under reflux conditions for 2 h. The resulting green solution was filtered, and the clear
filtrate was left for slow evaporation. After one week, green prismatic crystals were formed
and were harvested by filtration.

Yield: C11H13N7NiO3S2: (76.4%). Anal. Calc. C, 31.91; H, 3.16; N, 23.68; S, 15.49; Ni,
14.17%. Found: C, 31.68; H, 3.07; N, 23.45; S, 15.41; Ni, 14.07%. IR (KBr, cm−1): 2991, 2929,
2114, 1603, 1565, 1505, 1470.

3.3. Physicochemical Characterizations

The chemicals used in the present work were purchased from their original suppliers,
where all chemical details are described in the Supplementary Data. In addition, the
instrument used for measuring the FTIR spectra and the machine used for single crystal
X-ray measurements, as well as the information needed for solving the structure of the
studied [Ni(MPT)(H2O)(SCN)2]n polymeric complex, were described in Supplementary
Data [62–67]. The FTIR spectra of the [Ni(MPT)(H2O)(SCN)2]n complex and BPT ligand
are shown in Figures S1 and S2 (Supplementary Data), respectively.

3.4. Biological Studies

The antibacterial activity of the [Ni(MPT)(H2O)(SCN)2]n complex was assessed against
some selected gram-positive bacteria, namely S. aureus, B. subtilis, and gram-negative
bacteria, namely E. coli and P. vulgaris, as well as the antifungal activity against the fungi,
A. fumigatus and C. albicans. The minimal inhibitory concentrations (MICs) against different
microbes were also determined [68]. In addition, the in vitro anticancer activities of the
studied complex against hepatocellular (HepG-2) and lung (A-549) cancer cell lines were
examined [69]. Further experimental details regarding the biological experiments, the cell
lines, and the cytotoxicity assays were described in the supplementary data.
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4. Conclusions

Heating an acidified solution of the BPT ligand with NiSO4·6H2O in the presence of
SCN¯ under reflux afforded a new 1D polymeric complex with the formula
[Ni(MPT)(H2O)(SCN)2]n. Single crystal X-ray diffraction confirmed the acid-mediated
hydrolysis of the BPT ligand to 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazin-2-
ol (MPT). The latter acts as a bidentate chelate and reacts with Ni(II) in the same reaction
mixture, forming the [Ni(MPT)(H2O)(SCN)2]n 1D polymer, in which one of the thiocyanate
groups acts as a connector between the Ni(II) centers. In this complex, the Ni(II) ion is
hexa-coordinated with the NiN4SO coordination sphere, and the geometry around the
metal center could be described as a slightly distorted octahedron. Evaluations of the
antimicrobial and cytotoxic activities of the [Ni(MPT)(H2O)(SCN)2]n complex are pre-
sented. The Ni(II) complex has broad-spectrum antimicrobial activities. Also, it showed
cytotoxic activity against HepG-2 and A-549 cell lines. The corresponding IC50 values are
132.67 ± 5.14 and 146.97 ± 7.34 µM, respectively.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/inorganics11030135/s1. Physicochemical characteriza-
tions: X-ray measurements; Method S1: Synthesis of BPT; Method S2: Biological Studies; Figure S1:
FTIR spectra of the [Ni(MPT)(H2O)(SCN)2]n complex; Figure S2: FTIR spectra of the BPT ligand.
Figure S3: 1H and 13C NMR spectra of the ligand (BPT). Chemical shifts are reported in parts per
million (ppm). Table S1: The cytotoxicity of the studied complex against the HepG-2 cell line; Table S2:
The cytotoxicity of the studied complex against the A-549 cell line.
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