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Abstract: Herein, the synthesis, structural characterization and in vitro biological evaluation of a
novel Cu(II) complex with the 2-(4-aminophenyl)benzothiazole pharmacophore conjugated with the
(2-pyridinyl)methylamino chelating moiety is reported for the first time. A full characterization of the
Cu(II) complex was conducted by X-ray crystallography, EPR, IR, elemental and MS analysis, and its
binding to CT-DNA was investigated by UV-vis spectroscopy, ethidium bromide competition studies,
circular dichroism, viscometry and thermal denaturation. The data clearly indicate that the Cu(II)
complex interacts with CT-DNA via intercalation, registering a difference compared to previously
reported Pt(II) and Pd(II) analogues. To evaluate the anticancer activity of the complex, a series
of in vitro experiments against breast, glioblastoma, prostate and lung cancer cell lines along with
healthy fibroblasts were implemented. Cytotoxicity, cellular uptake, intracellular ROS production,
cell cycle and apoptosis analysis revealed an increased anticancer activity towards breast cancer
cells that is accompanied by an induction in intracellular ROS levels and a significant G2/M arrest
followed by apoptosis.

Keywords: 2-(4-aminophenyl)benzothiazole; copper(II) complex; DNA binding studies; in vitro evaluation

1. Introduction

The use of copper for medical purposes has been known since ancient times, espe-
cially in the sterilization of wounds and drinking water [1,2]. In more recent years, copper
complexes have been explored as highly effective metallodrugs against viruses [3], inflam-
mation [4] and various microbes [5]. Until recently, Cu-salicylate was available for external
use in humans as a topical anti-inflammatory gel, while a Cu(II)–indomethacin coordina-
tion compound is currently used in Australia, New Zealand and some other countries as a
veterinary anti-inflammatory drug [6–8].

Cu(II) complexes have emerged as an attractive chemotype against cancer due to their
capacity to affect malignant cells more than normal, a property partially attributed to the
fact that copper is an endogenous metal [8]. The reduced general nephro- and neurotoxi-
city [9,10] and myelosuppression [11] compared to clinically used platinum based drugs
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advocates a role for copper complexes as nontoxic substitutes for platinum agents. The an-
ticancer activity of Cu(II) complexes is associated in the literature with various mechanistic
pathways, such as reactive oxygen and nitrogen species-induced oxidative damage and
cellular death, telomerase and topoisomerase inhibition, DNA binding and degradation,
cell cycle intervention and alterations in death effector proteins [12–17]. In many cases, the
anticancer activity is unique to the copper complex and is absent in the organic ligand, sug-
gesting a definite role for the metal core or the metal–ligand entity [18]. It should be noted
that complexes of Cu(II) with 4,7-dimethyl-1,10-phenanthroline and either glycine (CasII-
gly) or acetylacetone (CasIII-Ea) (Supplementary Information Figure S1, compounds 1 and
2, respectively) have entered phase I clinical trials against cervical cancer and against acute
myeloid leukemia and colon cancer, respectively [19]. Moreover, N-malonyl-bis(N-metil-
N-tiobenzoyl Hidrazide) known as elesclomol, and its copper complex Cu(II)–elesclomol
(Supplementary Information Figure S1, compound 3), have also entered clinical trials for
various types of cancer including melanoma, ovarian and metastatic prostate [20]. Lately,
complexes of casiopeinas with copper have been undergoing clinical trials against several
cancer cell lines and xenotransplanted tumors, illustrating the overall promise that copper
complexes offer in anticancer treatment [21].

Within this framework and utilizing our long experience with the anticancer 2-(4′-
aminophenyl)benzothiazole pharmacophore [22,23], we report herein the synthesis, crys-
tallographic characterization and in vitro biological evaluation of a copper complex Cu-1
(Figure 1) with ligand L1 (Figure 1) in which the 2-(4-aminophenyl)benzothiazole phar-
macophore is conjugated with the (2-pyridinyl)methylamino chelating moiety. Complex
Cu-1 was fully characterized through X-ray crystallography and its anticancer activity was
extensively evaluated via DNA interaction studies, cytotoxicity and cell uptake studies in
breast (MCF-7 and MDA-MB-231), glioblastoma (U-87 MG), prostate (PC-3) lung cancer cell
lines (A-549) and healthy fibroblasts (DSF) combined with intracellular ROS production,
cell cycle and apoptosis analysis. The results from the in vitro biological evaluation reveal
noteworthy anticancer properties with no significant cytotoxicity towards healthy cells
that, combined with their significant interaction with DNA, render it a strong candidate for
further evaluation as anticancer agent.
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Figure 1. The structures of the 2-(4-aminophenyl)benzothiazole-bearing ligand (L1) of this work and
its corresponding Cu(II) complex (Cu-1).

2. Results and Discussion
2.1. Synthesis

The ligand was designed following the conjugated approach where the pharma-
cophore 2-(4′-aminophenyl)benzothiazole is joined to a (2-pyridinyl)methylamino chelating
moiety (Figure 1, ligand L1). Pyridyl-methylamine, widely known as picolyl amine, is
among ligands that have been explored to stabilize the Cu(II) coordination sphere [24].
In our previous investigations this ligand was used to afford complexes with Pt(II) and
Pd(II) [22]. The employment of the neutral system of imidazole as a coligand was crucial
for the stabilization of the Cu(II) coordination sphere.

Various reaction conditions for the preparation of the heteroleptic complex Cu-1 were
investigated thoroughly including reaction solvation system, pH, temperature, reagent
stoichiometry and finally isolation and crystallization conditions. Methanol was found to
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be the optimum reaction solvent. The stoichiometric reaction describing the preparation of
Cu-1 is shown below:

n Cu(NO3)2·3H2O + n C21H18N4OS + n C3H4N2
MeOH−−−−→

[Cu(C21H18N4OS)(C3H4N2)(NO3)]n·n(NO3) + 3n H2O + n MeOH

Diethyl ether was used as the precipitating agent for the reaction mixture. Bluish crys-
tals emerged in the reaction mixture, the structure of which was positively confirmed using
X-ray crystallography, elemental analysis, FT-IR and EPR spectroscopy. The crystalline
material is air-stable, soluble in DMSO, DMF, MeOH and acetonitrile, and insoluble in
dichloromethane, acetone and H2O at ambient temperature.

2.2. Description of the Structure

A discrete solid-state lattice is depicted by the X-ray crystal structure of Cu-1. Figure 2a
shows an illustration of the structure of Cu-1; specific interatomic angles and distances
are given in Tables 1 and 2. The structure of complex Cu-1 is one dimensional polymeric
forming chains that lie parallel to the crystallographic a-axis. Cu-1 crystallizes in the
monoclinic space group P21/n and four monomers can be found in the unit cell. The
asymmetric unit of the crystal contains one nitrate (NO3

−) counterion and one monocationic
[Cu(C21H18N4OS)(C3H4N2)(NO3)]+ complex monomer. In the molecular structure of Cu-1,
Cu(II) is coordinated with the nitrogen atom of one imidazole molecule and one neutral
N,N,O-donor ligand in a tridentate chelating mode through the carbonyl oxygen atom
of the amide moiety, the pyridine nitrogen, and the nitrogen atom of the intermediate
secondary amine. The coordinated nitrate ion is acting as a bidentate bridging ligand,
coordinating through two of the three oxygen atoms to the Cu(II) centers of the title
asymmetric unit and a neighboring monomer. Cu(II) ion exhibits a coordination number
six and the geometry around it can be described as disordered octahedral with O(1), O(2),
N(1) and O(3) forming the equatorial plane, and N(2) and N(5) (most axial vector) occupying
the axial positions. The Cu-N (ligand and imidazole) and Cu-O bond distances have values
between 1.966(2)–2.021(2) Å and 2.0421(18)–2.494(2) Å, respectively. The observed distances
are close to bond lengths reported in the literature for heteroleptic Cu(II) complexes [25,26].
In the lattice of Cu-1, intermolecular hydrogen-bonding interactions were found to emerge
between all amine hydrogen atoms and the oxygen atoms of the nitrate groups, giving
extra stability to the system (Figure 2b, Supplementary Information Table S1).
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Table 1. Summary of crystal, intensity collection and refinement data for [Cu(C21H18N4OS)(C3H4N2)(NO3)]n
· n(NO3) (Cu-1).

Crystal Data

Chemical formula sum (C24H22CuN8O7S)n
Chemical formula moiety (C24H22CuN7O4S)n · n(NO3)

Mr n (630.10)
Crystal system

Space group
Monoclinic

P21/n
Temperature (K) 295

a (Å)
b (Å)
c (Å)

6.831 (5)
27.223 (14)
14.531 (9)

β (◦) 102.309 (15)
V (Å3) 2640 (3)

Z 4
Radiation type Mo Kα
µ (mm−1) 0.97

Crystal size (mm) 0.11 × 0.09 × 0.06

Data collection

Diffractometer Bruker Kappa Apex2
Absorption correction Numerical

Tmin, Tmax 0.92, 0.94

No. of reflections
measured

independent
observed [I > 2.0σ(I)]

23,579
5055
4225

Rint 0.018
(sin θ/λ)max (Å−1) 0.619

Refinement

R[F2 > 2σ(F2)]
wR(F2)

S

0.040
0.057
1.00

No. of reflections 4225
No. of parameters 370
H-atom treatment H-atom parameters constrained

∆ρmax, ∆ρmin (e Å−3) 0.33–0.34

Table 2. Bond lengths [Å] and angles [deg] for [Cu(C21H18N4OS)(C3H4N2)(NO3)]n · n(NO3) (Cu-1).

Bond Lengths (Å)

Cu1—O3 i 2.311 (2)
Cu1—O1 2.0421 (18)
Cu1—O2 2.494 (2)
Cu1—N1 2.021 (2)
Cu1—N2 1.966 (2)
Cu1—N5 2.009 (2)

Angles (◦)

O3 i—Cu1—O1 93.32 (8)
O3 i—Cu1—O2 168.08 (6)
O1—Cu1—O2 77.26 (8)

O3 i—Cu1—N1 103.05 (8)
O1—Cu1—N1 160.14 (8)
O2—Cu1—N1 87.70 (8)

O3 i—Cu1—N2 93.53 (9)
O1—Cu1—N2 84.22 (9)
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Table 2. Cont.

Angles (◦)

O2—Cu1—N2 92.77 (9)
N1—Cu1—N2 83.62 (9)
O3 i—Cu1—N5 84.75 (9)
O1—Cu1—N5 92.37 (8)
O2—Cu1—N5 88.32 (9)
N1—Cu1—N5 100.17 (9)
N2—Cu1—N5 176.10 (8)
Cu1—O2—N7 159.60 (17)

Cu1 ii—O3—N7 129.17 (16)
i Symmetry codes: x + 1, y, z; ii Symmetry codes: x−1, y, z.

2.3. EPR Analysis

The frozen-solution X-band EPR spectrum of the Cu-1 together with its simulation is
shown in Figure 3. The spectrum revealed features that are typical for Cu(II) complexes
with a dx2−y2 ground state, i.e., axially symmetric g tensor (gx = gy = g⊥, gz = g||) with
g⊥ < g||. The lack of resolution at the low field transitions does not allow the observation of
14N superhyperfine splittings that would be expected as a result of the hyperfine interaction
between the unpaired electron and the directly coordinated nitrogen atoms. However, the
estimated spin Hamiltonian parameters g = [gx, gy, gz] = [2.065, 2.065, 2.271] ± 0.005 and
|A⊥| = 30 ± 10 MHz, |A||| = 510 ± 10 MHz show that the A|| and g|| correlation is in
line with the unpaired electron being in the dx2−y2 orbital and the equatorial coordination
mode of “3N1O” [27,28].
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incident to the cavity, 200 µW; modulation frequency, 100 kHz; modulation amplitude, 0.13 mT.

2.4. DNA Binding Studies
2.4.1. Absorption Titration Studies

In order to determine the mode and the extent of the interaction of complex Cu-1
with CT-DNA, UV-vis electronic absorption spectra were recorded upon increasing the
concentration of CT-DNA in the 300–600 nm wavelength region by monitoring the intensity
changes in the intraligand π–π* transition band at 338 nm of the phenylbenzothiazole
moiety [29]. As it is evident from Figure 4a, a progressive decrease of the intensity of the
band at 338 nm was observed upon the addition of DNA, with no indication of shift of
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the absorption maximum. The displayed hypochromism reached 29% for the higher ratio,
R = 10. Hypochromism is a common characteristic of intercalation of a molecule into DNA
base pairs, due to the strong stacking interaction between the aromatic chromophore and
the base pairs [22]. Furthermore, to quantitatively determine the DNA binding affinity
of complex Cu-1, the intrinsic binding constant with DNA, Kb, was obtained by fitting
the spectroscopic titration data at 338 nm to Equation (1) (Figure 4, inset plot). The value
of Kb was to be equal to 2.67 ± 0.75 × 106 M−1, a value that is in accordance with the
ones reported for classical intercalators bound to CT-DNA that have binding constants
within the range of 106–107 M−1 [30]. As previously shown [22], the addition of DNA
in the presence of ligand L1 (Figure 4b) induced hyperchromism and bathochromism
whereas the calculated Kb was two orders of magnitude lower (~104 M−1). Hence, it is clear
that a different mode of interaction with CT-DNA takes place with the copper complex
under study that binds more strongly than ligand L1. Thus, the obtained data in our case
are consistent with the intercalation of the complex Cu-1 into the double helix of DNA.
Our results are comparable with [31,32] or superior to [30,33] those of copper complexes
reported to interact with DNA via intercalative mode with Kb values ranging from 104

to 106 M−1.
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[DNA]/(εa − εf) × 108 vs. [DNA] × 105.

2.4.2. Circular Dichroism

Circular dichroism (CD) spectroscopy was employed to monitor the conformational
changes that CT-DNA undergoes upon incubation with Cu-1 and the results are summa-
rized in Figure 5a. It should be noted that complex Cu-1 displayed no significant CD signal
in solution. As expected, the B-form of DNA is adopted under the experimental conditions
used, which is evidenced by the positive peak around 275 nm, attributed to the stacking of
the DNA base pairs in the double helical construct and a negative peak around 245 nm,
which is a feature associated with the right-handed helicity of the polynucleotides [34]
(Figure 5, black line).
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The addition of Cu-1 did not affect the presence of either the positive or negative
peaks, even at the highest concentration of the complex, suggesting that the B-form of
DNA is not disturbed [35]. However, intensity changes of both negative and positive
bands of the CT-DNA CD spectrum were observed dose-dependently and without any
wavelength shift. More specifically, the intensity of the negative band decreased compared
to the untreated DNA by 30%, whereas the corresponding increase of the positive band was
only of the magnitude of 10%, at the highest ratio of R = 0.5 (Figure 5a). These observations
are supportive for the intercalative mode of binding of the complex Cu-1, where the Cu-1
molecules stack in between the base pairs of DNA, thus leading to the enhancement in
the positive band [36–38]. Interestingly, complex Cu-1 did not cause any induced circular
dichroism (ICD), in compliance with the fact that classical intercalators usually exhibit
weak or no ICD signals [39,40]. The CD observations for Cu-1 differed significantly to
the those caused by L1 (Figure 5b), where dissimilar CD spectral patterns accompanied
by an ICD band were recorded, observations usually detected in the case of electrostatic
interactions and/or groove binding mode of interaction with DNA.

2.4.3. Ethidium Bromide Competitive Studies

Ethidium bromide (EtBr) can serve as a very helpful DNA structural probe, and
causes significant increase in fluorescence intensity upon DNA intercalation. However,
this enhancement of the fluorescence can be decreased in the presence of another agent,
which has the ability to compete and replace the bound EtBr or disturb the secondary DNA
structure [41,42]. Consequently, the fluorescence curves shown in Figure 6 can be used to
investigate whether there are any changes in the emission intensity of EtBr in the presence
of various concentrations of either Cu-1 or L1.
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Upon addition of Cu-1 to the EtBr-DNA equilibrium system, a significant reduction in
fluorescence intensity of the band at 606 nm was observed (Figure 6a), reaching the value
of 33% of the initial fluorescence intensity. Furthermore, the results from the plots perfectly
fit into the linear Stern–Volmer equation with KSV value being 9.98 ± 0.19 × 103 M−1. This
value is in accordance with the one recorded for other intercalator copper complexes that
effectively replace the EtBr from EtBr-DNA equilibrium complex [43]. Similar experiments
using ligand L1 (Figure 6b) showed only a small reduction of the DNA-induced EtBr
emission intensity of the order of 9.8% (KSV = 3.60 ± 0.11 × 103 M−1), which suggests that
Cu-1 is much more effective in displacing EtBr.

2.4.4. Thermal Denaturation Studies

Thermal denaturation of DNA is the process of separation of double-stranded (ds)-
DNA into two single strands upon increasing the temperature of the DNA solution. There
is a specific temperature under a given set of experimental conditions at which half of the
DNA molecule remains in double helical form and the other half in a random coil state,
widely known as the melting temperature (Tm) of the DNA [44]. Many drugs, organic
molecules and metal complexes that interact with DNA have been shown to alter DNA Tm
to various extents depending on their mode of interaction [22]. The magnitude of ∆Tm (the
difference in Tm of a DNA molecule in the absence and presence of bound compounds)
can provide experimental information about the mode of interaction [44]. Consequently, to
further investigate the degree and the mode of Cu-1-DNA binding, the melting temperature
of CT-DNA in the presence and absence of different concentrations of either Cu-1 or L1
was monitored. Figure 7 presents the ∆Tm values obtained in the presence of different
concentrations of compounds plotted against the compound/DNA ratios (R) employed.
Under our experimental conditions, the Tm of untreated CT-DNA was found to be equal
to 69.88 ± 0.51 ◦C, in good agreement with various reported literature values [45–47]. As
can been seen in Figure 7, the ∆Tm of CT-DNA gradually increased upon addition of Cu-1
reaching a value of 5.54 ± 0.05 ◦C at the highest complex concentration (R = 0.5) (Figure 7,
blue line). The presence of L1 in the CT-DNA solution slightly affected the Tm values and
no significant alterations were recorded (Figure 7, red line).
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According to the literature, DNA double helix is stabilized upon intercalation of natu-
ral or synthetic compounds, as a result of stacking interactions stabilization, accompanied
by a considerable increase in the DNA melting temperature [48]. Classical intercalators,
such as EtBr, result in sharp increase of the CT-DNA Tm, ranging from +4 ◦C to +14 ◦C in a
dose-dependent manner until all the intercalating sites are saturated [49]. Thus, in our case,
the observed increase in the Tm of CT-DNA strongly supports intercalation of metal com-
plex into double-helix DNA. Similar increases in CT-DNA Tm was also reported for some
bipyridine-Cu(II) complexes [48,50] and copper (II) complexes of 2-aminobenzothiazole
Schiff bases with β-ketoanilides [32] that were attributed to an intercalative mode of DNA
binding. Finally, the intercalative mode of DNA binding of the copper(II) complex of
6-hydroxychromone-3carbaldehyde-(3′-hydroxy) benzoylhydrazine was clearly suggested
by the increase in Tm value by 5.6 ◦C, which was also confirmed by computational docking
simulation studies of the copper(II) complex with DNA [51]. In this study, docking into
the CT-DNA of the Cu(II) complex, revealed that the planar structure of the complex
successfully intercalated between the base pairs of DNA, forming π–π* interactions with
the adjacent nucleotide moieties, something that may also reasonably be postulated in
this case.

2.4.5. Viscometry

Changes in DNA length dramatically affect its hydrodynamic properties, making vis-
cosity measurements a very sensitive, critical and authentic test for elucidating the binding
mode of small molecules to nucleic acids in solution [52]. A graphical representation of
the viscosity measurements of DNA solutions after treatment with either Cu-1 or L1 is
shown in Figure 8. It can be clearly seen that increasing concentrations of Cu-1 resulted
in a noticeable viscosity increase of the CT-DNA solution (Figure 8, blue line). Based on
previous studies [52], the axial length of DNA increases and becomes more rigid when a
molecule intercalates. Both factors increase the frictional coefficient and hence the viscosity
of DNA in solution. The recorded increase of the viscosity of the CT-DNA in the presence of
Cu-1 is similar to the ones observed in the literature for Cu(II) complexes of benzothiazole
Schiff bases that found to strongly bind to calf thymus DNA by an intercalation mode [33].
Therefore, the viscosity studies support the intercalative mode of Cu-1–DNA interaction as
already established through absorption titration, thermal denaturation, fluorescence EtBr
displacement assay and CD studies. On the contrary, the addition of L1 causes a sharp
drop in the viscosity of the DNA solution to nearly 50% of its initial value, even at very
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low ligand concentration (Figure 8, red line). This drop reached a plateau after the addition
of only a small amount of L1, at approximately R = 0.033, after which viscosity remains
unchanged regardless of the further addition of compound.
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Taken together, the DNA binding studies of complex Cu-1 revealed a completely
different mode of interaction with CT-DNA, i.e., classical intercalation, compared to ligand
L1. Based on the extensive analysis done in our previous communication [22], the mode of
DNA binding of L1 is via a combined mode of action involving both groove binding and
nonclassical intercalation. It is of interest that in the case of the corresponding Pt(II) and
Pd(II) complexes of L1, formation of covalent bonds in the minor groove takes place as
well [22], demonstrating once again the dissimilar manner of DNA interaction in the case
of complex Cu-1. The differences may be attributed to the different coordination mode of
ligand L1 to Cu(II) compared to Pt(II) and Pd(II) complexes in which L1 acted as bidentate
ligand through coordination of the amine and pyridine nitrogens, resulting overall in a more
flexible structure. In the case of Cu-1, ligand L1 acts as tridentate ligand with coordination
taking place through the carbonyl oxygen of the amide, the pyridine nitrogen, and the
secondary amine nitrogen, limiting the mobility of the phenylbenzothiazole structure and
resulting in a more rigid structure. This may be the reason for such a distinct difference
between complex Cu-1, compared to ligand L1 and the corresponding Pt(II) and Pd(II)
complexes, which exhibited much less intercalative character [22,53–56].

2.5. Biological Evaluation
2.5.1. In Vitro Cytotoxicity

The cytotoxic profile of the new copper complex was evaluated by means of the MTT
assay against a diverse panel of cancer cell lines, namely, MCF-7 and the MDA-MB-231
breast cancer, U-87 MG glioblastoma, PC-3 prostate and A-549 lung cancer cell lines along
with the healthy fibroblasts DSF. The latter will serve as a comparative control for the assess-
ment of the specificity of the complex against cancer cells. It is worth mentioning that the
MCF-7 breast cancer cell line is very sensitive to 2-(4′-aminophenyl)benzothiazole, whereas
MDA-MB-231 breast cancer cell line is less sensitive to 2-(4′-aminophenyl)benzothiazole
moiety with much higher IC50 value [23,57,58]. Cisplatin was used as a positive control
as it is one of the most widely clinically used anticancer metallodrugs. Table 3 sum-
marizes the cytotoxicity IC50 values obtained for Cu-1, L1 and cisplatin in the above
mentioned cancer cell lines. Moreover, indicative dose–response curves are provided in



Inorganics 2023, 11, 132 11 of 21

Supplementary Information Figure S5. The cytotoxicity of copper nitrate was also evalu-
ated in order to assess the toxicity of copper and nitrate ions in the specific cells. Cu-1
exhibited IC50 values ranging between 2.2 and 39.7 µM, which render it a highly potent
compound. It is noteworthy that the activity of Cu-1 in the breast cancer cells was su-
perior (MCF-7) or equal (MDA-MB-231) to that of cisplatin. Furthermore, much lower
cytotoxicity was exhibited in the DSF healthy fibroblasts (IC50 value of 132.2 µM). L1 and
Cu(NO3)2·3H2O did not affect cell survival significantly and exhibited IC50 values > 330 µM
and >228.8 µM, respectively. Interestingly, the highest cytotoxic activity was observed in
the MCF-7 breast cancer cell line (IC50 value of 2.2 µM), which is in agreement with our ini-
tial design, suggesting that Cu-1 retains the selectivity of 2-(4′-aminophenyl)benzothiazole
against the MCF-7 cells. In our previous communication, an increased cytotoxic activity of
the corresponding Pt(II) and Pd(II) complexes against similar breast cancer cell lines was
also observed; however, in this study, complexation with copper induced a more profound
cytotoxicity with IC50 values being 10 to 35 fold higher for MCF-7- and 9-fold higher for
MDA-MB-231 cells, under the same experimental conditions [22].

Table 3. Cytotoxicity of complex Cu-1, L1, Cu(NO3)2·3H2O and cisplatin against a panel of cancer
cell lines and one healthy cell line after 72 h treatment *.

IC50 (µM)

MCF-7 MDA-MB-231 U-87 MG PC-3 A-549 DSF

Cu-1 2.2 ± 0.1 8.9 ± 1.5 25.2 ± 2.9 35.1 ± 2.4 39.7 ± 3.7 132.2 ± 6.7
L1 331.6 ± 5.9 398.2 ± 6.8 354.7 ± 7.9 405.2 ± 7.1 428.9 ± 8.8 736.2 ± 6.8

Cu(NO3)2·3H2O 228.8 ± 6.1 292.1 ± 7.8 301.5 ± 8.1 299.8 ± 4.2 325.1 ± 4.9 367.7 ± 9.8
cisplatin 7.0 ± 0.2 10.8 ± 0.9 5.6 ± 0.9 15.2 ± 2.1 8.9 ± 1.7 58.8 ± 7.9

* Values represent the mean ± SD of IC50 values (µM) obtained in at least three independent experiments.

The MCF-7 cells that displayed the higher sensitivity to Cu-1 were, therefore, selected
for further investigation on cell uptake, intracellular ROS levels, cell cycle effects and
apoptosis, aiming at further understanding the mode of anticancer activity.

2.5.2. Cellular Uptake

Cell uptake and localization of a compound is strongly related to its biological
activity [59]. Fluorescence confocal microscopy is among the most popular methods
to follow the fate of a fluorescent compound at a cellular level. Thankfully, the 2-(4′-
aminophenyl)benzothiazole pharmacophoric moiety of Cu-1 retains its fluorescent prop-
erties and the cellular uptake of either the complex or the ligand can be evaluated [23].
Representative images of MCF-7 cells after a 24 h incubation with either the complex Cu-1
(5 µM) or the ligand L1 (5 µM) are presented in Figure 9.

The fluorescence of the cells treated with L1 is very weak presumably due to the
limited entrance of the ligand into the cells. On the contrary, complex Cu-1 is highly and
uniformly taken up by the MCF-7 cells with the fluorescence signal being present mainly
in the cytoplasm and to a much lesser extent in the nucleus. This increased intracellular
fluorescence may only be attributed to the higher internalization of Cu-1 as the solution
fluorescent properties of the ligand are not significantly affected by the complexation of
copper (Supplementary Information Figure S4). Our results suggest that complexation of
copper to the pharmacophoric ligand results in increased uptake, a property that may well
contribute to increased potency against the MCF-7 cells.
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2.5.3. Intracellular ROS Levels

Cu(II) complexes can be easily transformed to Cu(I), and this redox interplay has been
suggested to contribute into the Cu(II)-induced DNA damage due to the generated reactive
oxygen species (ROS), such as singlet oxygen (1O2), superoxide anion radical (O2

•−),
hydroxyl radical (OH•), etc. [38,60]. More specifically, copper has been used as a metal
center in metallodrugs containing intercalating ligands due to its ability to catalytically
generate reactive oxygen species (ROS), such as hydroxyl radicals (OH•) [61]. Driven by
this knowledge, the generation of intracellular ROS in MCF-7 cells after treatment with
either Cu-1 or L1 was assessed through DCFH-DA assay. The DCF fluorescence related
to the presence of ROS in the cells treated with Cu-1, L1 and Cu(NO3)2·3H2O is shown
in Figure 10. The fluorescence intensity measured for the untreated cells was found to be
very similar to that of the cells treated with L1, between 15 and 20%. ROS production was
higher, reaching the value of 31%, when Cu(NO3)2·3H2O was added into the cell culture,
demonstrating the ability of copper to participate in redox reactions and radical generation
as long as it is in solution and can penetrate the cells [62]. However, the presence of complex
Cu-1 in the MCF-7 cells induced an increase in intracellular ROS production of 65%, which
is twice as much as the Cu(NO3)2 effect. In a similar approach [61], specific Cu(II) complexes
found to have comparable to Cu-1 IC50 values; moreover, the recorded biological activity
was ascribed to the synergistic effect of ROS generation with the intercalation ability into
the DNA minor grooves and blocking DNA replication.

2.5.4. Cell Cycle Analysis and Apoptosis Assessment

In an attempt to evaluate whether Cu-1 cytotoxicity was associated with disturbance of
the cell cycle progression, cell cycle distribution of Cu-1-treated MCF-7 cells was assessed by
flow cytometry. As is summarized in Table 4 (see also Supplementary Information Figure S6),
complex Cu-1 resulted in almost doubling the number of cells in the G2/M phase of the cell
cycle relative to the control, from 24.08 to 40.78%. A noticeable reduction in the distribution
of cells in the S phase of the cell cycle, dropping to 6.52%, was also witnessed. In the case
of L1, no particular deviation from the control values of the cell cycle distribution was
observed (Table 4).
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Table 4. Cell cycle phase distribution after exposure of MCF-7 for 72 h with Cu-1 and L1 (%) *.

G0/G1 S G2/M

Cu-1 58.64 ± 3.01 6.52 ± 0.34 40.78 ± 1.01
L1 58.73 ± 3.29 16.91 ± 2.68 25.71 ± 1.09

control 59.71 ± 3.23 16.24 ± 2.45 24.08 ± 3.51
* Values represent the mean ± SD of two independent experiments.

The cytotoxicity, ROS generation and cell cycle modification results strongly support
the ability of Cu-1 to induce cell death. It is, however, equally important to examine the type
of cell death, and in particular to investigate if apoptotic events occur. The flow cytometry
evaluation of annexin V–FITC/PI-stained cells enabled us to distinguish between the
viable cells (annexin V negative (−)–PI negative (−)), apoptotic cells (annexin V positive
(+)–PI negative (−)), late apoptotic cells/secondary necrotic cells (annexin V+/PI+), and
necrotic cells (annexin V−/PI+). Quantification of living, early/late apoptotic and necrotic
cells is presented in Figure 11 and Supplementary Information Figure S7, where the flow
cytometric analysis diagrams can be seen. After exposure of MCF-7 cells to L1 no cells
undergoing apoptosis/necrosis were detected and the corresponding values were similar
to the ones obtained for the control group (Figure 11). This was not the case with Cu-1
where the amount of both early and late apoptotic MCF-7 cells increased significantly,
reaching a total apoptotic population of 52.6% of the control, with no particular change in
the percentage of necrotic cells. The difference in apoptosis induction between the Cu-1
and L1 may be correlated with the difference in cytotoxic activity.
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Overall, the enhanced anticancer activity after copper complexation represented by
the in vitro biological study of this work compares favorably to other copper complexes in
the literature. Previous studies have shown that casiopeinas, which are already undergoing
clinical tests, also act through oxidative mechanisms causing related cell damage and
death [21]. Previously reported copper(II) complexes with thiosemicarbazone-derived
Schiff bases and 2-amino-5-methylthiazole ligands have also exhibited similar cellular
effects [63,64]. The induction of oxidative stress and subsequent DNA damage has been
among the most notable molecular mechanisms reported in the literature associated with
G2/M cell phase arrest and ultimately cellular apoptosis [15,65,66].

In conclusion, complex Cu-1 is considered a very promising agent, as it displays
strong anticancer activity, especially against the MCF-7 breast cancer line. This activity
may be associated with its intercalative DNA interaction, high cell uptake, ample ROS
generation and induction of apoptosis. The study of the cellular mechanistic pathways in
cancer cell lines that are sensitive to 2-(4′-aminophenyl)benzothiazole is already in progress
to evaluate the potential use of the complex Cu-1 as an anticancer agent.

3. Experimental
3.1. Materials and Methods

All important information regarding materials and equipment used are provided in
Supplementary Information.

3.2. Synthesis and Characterization

The 2-(4′-aminophenyl)benzothiazolyl L1 was synthesized and characterized accord-
ing to the procedure previously reported by our group [22,23].

3.3. Synthesis of Complex Cu-1

Methanolic solutions of Cu(NO3)2·3H2O (0.33 mmol, 0.09 g in 5 mL MeOH) and L1
(0.33 mmol, 0.125 g in 5 mL MeOH) were mixed under continuous stirring and reflux at
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60 ◦C. To the resulting turquoise clear solution, imidazole (0.67 mmol, 0.05 g) was added un-
der continuous stirring. No color change was observed after the addition of imidazole and
the solution was allowed to cool down to ambient temperature. Subsequently, diethyl ether
was added and the reaction vessel was stored at 4 ◦C. Forty days later, bluish crystals formed
which were isolated via filtration and subsequent drying in vacuo. Yield: 0.09 g (38%).
IR (KBr, cm−1): v(N-H)pyridine = 3149, v(C=C)pyridine = 1621, 1598, v(C=O)amide I = 1619,
v(N-H)pyridine = 1597, 1552, v(C-H)benzothiazole = 1486, v(C-C)benzothiazole = 1456, 1434, v(M-
N) = 470, 501, v(M-O) = 516. UV-vis (DMSO): λ (nm) = 338, ε338 nm (M−1cm−1) = 40,000.
Anal. Calcd. for Cu-1, [Cu(C21H18N4OS)(C3H4N2)(NO3)]n·n(NO3) (C24H22N8O7SCu,
Mr 630.10): C, 45.75; H, 3.52; N, 17.78%; S, 5.09%. Found: C, 45.73; H, 3.48; N, 17.75%;
S, 5.07%. HR-ESI-MS (positive mode), calcd. for [Cu(C21H18N4OS)(NO3)]+ m/z = 499.0375,
found m/z = 499.0345 (Supplementary Information Figures S2–S4). The stability of
the complex Cu-1 in DMSO was confirmed by means of UV-vis spectroscopy
(Supplementary Information Figure S4A) where no wavelength shift or intensity changes
of the characteristic band centered at 338 nm were observed for a period of >7 days.

3.4. X-ray Crystal Structure Determination

X-ray quality crystals of Cu-1 were grown from a mixture of MeOH-diethyl ether.
Both crystals were mounted on a Bruker Kappa APEX 2 diffractometer, equipped with
a triumph monochromator, using Mo Kα radiation (λ = 0.71073 Å) at room temperature.
132 high θ reflections for Cu-1 were used for the determination of cell dimensions. Intensity
data were recorded using ϕ andω–scans. All crystals presented no decay during the data
collection. The Bruker SAINT Software package has been employed for data integration of
the frames collected [67]. SADABS program was used for data processing (numerical ab-
sorption correction based on dimensions) [68]. The structure was solved by the SUPERFLIP
package [69]. CRYSTALS program package version 14.61 build 6236 was used for the final
refinement and all subsequent remaining calculations using full-matrix least-squares meth-
ods on F2 [70]. Molecular illustrations were drawn with use of the CAMERON graphics
package [71]. All non-hydrogen atoms were anisotropically refined. Hydrogen atoms were
located from difference Fourier maps and refined at idealized positions riding on the parent
atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl,-NH
hydrogens) and at distances C–H 0.95 Å, N–H 0.86 Å. Crystallographic details for complex
Cu-1 are summarized in Tables 1 and 2. Further details on the crystallographic studies are
provided in Supplementary Information Table S1 and in the form of a .cif file.

3.5. DNA Binding Studies

In all DNA experiments, plain solution of either Cu-1 or Cu(NO3)2·3H2O with buffer
or DNA were similarly evaluated for comparison purposes.

3.5.1. Absorption Titration Studies

UV-vis titration studies were performed in PBS (final DMSO content = 1%), by keeping
the concentration of complexes constant (10−5 M) while varying the DNA concentration
(0–10−4) to achieve ratios R = [DNA]/[compound] of 0.0, 0.01, 0.02, 0.2, 0.5, 1.0, 2.0, 10.0.
The intrinsic binding constant Kb was calculated from the absorption spectral titration data
by employing Equation (1) [72]:

[DNA]

εa− ε f
=

[DNA]

εb− ε f
+

1
Kb·(εb− ε f )

(1)

where [DNA] is the concentration of DNA in base pairs, εa is the molar absorption coefficient
of the observed absorption band at the given DNA concentration, εf is the molar absorption
coefficient of the free complex in solution, and εb is the molar absorption coefficient of the
compound when fully bound to DNA. A plot of [DNA]/(εa − εf) versus [DNA] gave a slope
1/Kb·(εb − εf). The analysis was done using Origin Lab 9.0.
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3.5.2. Thermal Denaturation Studies

DNA melting experiments were carried out by monitoring the absorbance of DNA at
258 nm in the temperature range of 25.0–95.0 ◦C. The melting temperature (Tm) of DNA
was defined as the midpoint of the optically detected transition. The thermal melting
experiments were performed in triplicate in PBS (final DMSO content = 1%) by keeping
a constant amount of DNA (5 × 10−5 M) while varying the concentration of compound
(0–2.50 × 10−5 M) to achieve ratios R = [compound]/[DNA] of 0.0, 0.01, 0.02, 0.033, 0.05,
0.1, 0.2, 0.33, 0.5.

3.5.3. Circular Dichroism

Circular dichroism (CD) spectra of CT-DNA were recorded in the range 180–600 nm
at 25 ◦C. Experiments were performed in PBS (final DMSO content = 2%). DNA concen-
tration remained constant (5 × 10−5 M) while varying the concentration of compound
(0–2.5 × 10−5 M) to achieve ratios R = [compound]/[DNA] of 0.0, 0.01, 0.02, 0.033, 0.05, 0.1,
0.2, 0.33, 0.5.

3.5.4. Competitive Binding Experiments in the Presence of Ethidium Bromide

A solution containing CT-DNA (2.50 × 10−5 M) and EtBr (6.25 × 10−6 M) was pre-
pared in Na2HPO4–K2HPO4 buffer solution (pH 7.0). The CT–DNA-EtBr solutions were
coincubated for 24 h. Experiments were performed in PBS (final DMSO content = 2%).
Constant DNA and EtBr concentrations were treated with increasing concentrations of
compounds (0–2.20 × 10−5 M) to achieve ratios R = [compound]/[DNA] of 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.625, 0.875. For the calculation of the Stern–Volmer constants (KSV), Equation (2)
was used:

Fo
F

= 1 + Ksv·[compound] (2)

where Fo and F are the emission intensities in the absence and the presence of the samples,
respectively. The concentration of the compound was plotted against the ratio Fo/F; the KSV
value was equal to the slope [73,74].

3.5.5. Viscosity Studies

Experiments were carried out in PBS (final DMSO content = 2%) by keeping the
DNA concentration constant (5 × 10−5 M) while varying the concentration of compound
(0–2.5 × 10−5 M) to achieve ratios R = [compound]/[DNA] of 0, 0.01, 0.02, 0.033, 0.05, 0.1,
0.2, 0.33, 0.5. The intrinsic viscosity ηwas calculated according to the relation η = (t − t0)/t0,
where t0 is the flow time for the buffer and t is the observed flow time for DNA in the
presence or absence of the complexes. Data are presented as (η/ηo)1/3 versus R where η
and ηo are the intrinsic viscosities in the presence or absence of the compounds. For the
low DNA concentrations used in these experiments, the intrinsic viscosity η is proportional
to the difference in the flow times for the buffer with and without DNA, resulting in the
following Equation (3):

L
Lo

=
( n

no

)1/3
=

(
t− to

tDNA − to

)1/3
(3)

where L and Lo are the DNA lengths and η and η0 are the intrinsic viscosities with and
without the compound. The tDNA, to and t are the flow times of the buffer, the plain DNA
and the DNA–compound solution, respectively [22].

3.6. In Vitro Investigation
3.6.1. MTT Viability Assay

The MTT colorimetric assay was used to evaluate the in vitro cytotoxicity of Cu-1
against the desired cell lines following a published procedure [75]. The cells were grown
overnight after they were seeded in 96-well plates (3 × 103 cells per well in 100 µL culture
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medium) at 37 ◦C in a 5% CO2 incubator. Various concentrations of ligand, complex,
copper nitrate or cisplatin (10−3–10−8 M) were added in the cells and remained for 72 h
and the final DMSO content never exceeded 0.2%. After the removal of the medium at the
endo of the incubation time, the MTT solution (100 µL, 1 mg·mL−1) was added. The 4 h
incubation, was followed by aspiration of the solution and the resulting formazan crystals
were solubilized in DMSO (100 µL). Finally, the absorbance was recorded at 540 nm (Tecan
well plate reader). The results were expressed as % cell viability = (mean optical density
(OD) of treated cells/mean OD of untreated cells)× 100. The IC50 values (the concentration
required to reduce cell viability by 50%) were calculated from the dose–response curves
using the GraphPad Prism 5.0 software.

3.6.2. Cellular Uptake by Confocal Microscopy

Cells were grown overnight on glass base dishes (1 × 105 cells per dish) [22,75].
Nontoxic concentration of the compounds was used (5 µM) for a 24 h incubation and the
specimens were examined under a multiphoton confocal microscope. The complex was
stable under the DMEM culture medium conditions during the 72 h incubation time, as
evidenced by UV-vis studies.

3.6.3. ROS Generation Detection Assay

The DCFDA assay was used to determine the abundance of intracellular reactive oxy-
gen species (ROS) [75,76]. After incubation with either Cu-1 and L1 and Cu(NO3)2·3H2O
(at IC50 concentration) for 72 h, DCFH-DA was added to the cells (10 µM in serum-free
medium) at 37 ◦C for 30 min. The DCF fluorescence intensity was recorded with a fluores-
cence microplate reader (excitation wavelength of 488 nm and an emission wavelength of
525 nm). ROS levels are presented as arbitrary fluorescence units (AFU). Untreated cells
served as controls.

3.6.4. Cell Cycle Analysis

MCF-7 cells were treated with either Cu-1 and L1 at their IC50 concentrations or
at the corresponding amount of DMSO as control, for 72 h [75]. The mixture of the
trypsinized cells with the supernatant was centrifuged for 10 min at 1000 rpm and at 4 ◦C.
The precipitated cells were then resuspended in PBS, and a second centrifugation followed.
Finally, the cells were fixed in 50% ethanol in PBS. A propidium iodide (PI) solution which
contained RNase was used for nuclei staining to analyze the DNA content using a FACS
flow cytometer.

3.6.5. Annexin V–PI Apoptosis Assay

MCF-7 cells were treated with the IC50 values of the Cu-1 and L1 or the corresponding
DMSO amount as control, for 72 h [75]. After trypsinization, cells were resuspended in PBS
and centrifuged for 5 min at 1000 rpm and the pellet mixed with PBS and 5 µL of annexin
V–FITC, and then 4 µL of 0.1 mg/mL PI solution was added. The mixture was incubated
for 15 min in the dark and the cells were then subjected to FACS flow cytometry.

3.6.6. Statistical Analysis

At least three independent experiments for each study were performed, and the data
are presented as means ± standard deviation (SD) using the GraphPad Prism 6.0 software.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics11030132/s1, Figure S1: The structures of highly
promising anticancer Cu complexes, Figure S2: ESI-MS spectrum of complex Cu-1, Figure S3: IR spec-
trum of complex Cu-1, Figure S4: Absorbance (250–500 nm) and Fluorescence spectra (350–550 nm,
after excitation at 340 nm) of complex Cu-1 (50 µM) in DMSO, Figure S5: Indicative dose–response
curves for MCF-7 and DSF cells cultured with Cu-1, L1, Cu(NO3)2·3H2O and cisplatin for 72 h,
Figure S6: Representative histograms showing cell cycle arrest following treatment with DMSO,
Cu-1 and L1 in MCF-7 cells, Figure S7: Representative dot plots from flow cytometric analysis of the
annexin V–FITC/PI assay in MCF-7 cells after treatment with either DMSO or the IC50 concentration
of Cu-1 and L1 for 72 h. Table S1: Hydrogen bonds in complex Cu-1. CCDC 2233056 (Cu-1) contains
the supplementary crystallographic data for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB21EZ; Fax: (+44) 1223-336-033; or deposit@ccde.cam.ac.uk).
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