

Article Direct Z-Scheme CoFe₂O₄-Loaded g-C₃N₄ Photocatalyst with High Degradation Efficiency of Methylene Blue under Visible-Light Irradiation

Gebrehiwot Gebreslassie ^{1,2,*}, Mamo Gebrezgiabher ^{1,2}, Bin Lin ³, Madhu Thomas ^{1,2}, and Wolfgang Linert ^{4,*}

- ¹ Department of Industrial Chemistry, Addis Ababa Science and Technology University,
- Addis Ababa 16417, Ethiopia; mamo.gebrezgiabher@aastu.edu.et (M.G.); madhu.thomas@aastu.edu.et (M.T.)
 ² Nanotechnology Center of Excellence, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
- ³ School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; bin@uestc.edu.cn
- ⁴ Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- * Correspondence: gebrehiwot.gebreslassie@aastu.edu.et (G.G.); wolfgang.linert@tuwien.ac.at (W.L.); Tel.: +251-1246-7711 (G.G.); +43-1-58801-163613 (W.L.)

Abstract: Magnetically recyclable direct Z-scheme $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst material was fabricated using a facile hydrothermal technique and subsequently characterized by XRD, VSM, PL, FT-IR, EDX, DRS, SEM, and BET techniques. The characterization results confirmed that nanoparticles of $CoFe_2O_4$ are loaded on the surface of $g-C_3N_4$ sheets. The optical band gap of $g-C_3N_4$ has been decreased from 2.65 eV to 1.30 eV by means of the loading of $CoFe_2O_4$ nanoparticles onto the nanosheets of $g-C_3N_4$. This has enhanced the separation process of electron-hole. Under visible light irradiation, the photocatalytic activity of the developed direct Z-scheme $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst was evaluated for the photodegradation of methylene blue (MB); during this process the MB decomposed by up to 98.86% in 140 min. Meanwhile, under the same irradiation and time conditions, the $g-C_3N_4$ and $CoFe_2O_4$ themselves degraded MB up to 74.92% and 51.53%, respectively. The direct Z-scheme $CoFe_2O_4$ -loaded $g-C_3N_4$ material was recovered from the solution after the photocatalytic activity using an external magnet and studied to determine its stability. It was shown that the photoactivity did not change significantly after five consecutive cycles.

Keywords: direct Z-scheme photocatalyst; CoFe₂O₄; graphitic carbon nitride; dye degradation

1. Introduction

With the increasing expansion of global industry, the problem of access to clean water has risen to the forefront of discussion. Every year, a massive volume of industrial dye wastewater is dumped into natural water bodies, posing a risk to both the aquatic ecosystem and people [1]. Nowadays, removal of organic pollutants from wastewater/water through photocatalysis provides a viable method for solving environmental issues [2,3]. In order to eliminate environmental pollution and degrade these harmful organic pollutants, photocatalytic technology has received an increasing amount of interest. So far, TiO₂ is the most widely studied photocatalyst; it was reported by Fujishima and Honda in 1972 for use in photoelectrochemical water splitting [4]. This study was a pioneer in photocatalysis technology. Nevertheless, TiO₂ has high band gap (3.2 eV), which accounts for around 4% of sunlight; this severely restricts its ability to function as a photocatalyst and restricts the range of use of this material [5,6]. These limitations have inspired researchers to develop novel materials with narrow band gaps (E_g) to utilize solar energy in a more efficient way. Due to its chemical inertness, distinctive layered structure, nontoxic nature, a middle band

Citation: Gebreslassie, G.; Gebrezgiabher, M.; Lin, B.; Thomas, M.; Linert, W. Direct Z-Scheme CoFe₂O₄-Loaded g-C₃N₄ Photocatalyst with High Degradation Efficiency of Methylene Blue under Visible-Light Irradiation. *Inorganics* **2023**, *11*, 119. https://doi.org/ 10.3390/inorganics11030119

Academic Editor: Antonino Gulino

Received: 15 February 2023 Revised: 7 March 2023 Accepted: 11 March 2023 Published: 13 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). (i.e., band gap between 2.4–2.9 eV), and capacity to absorb visible light, graphitic carbon nitride (g- C_3N_4) is now frequently employed for the photocatalytic degradation of organic contaminants [7–14]. However, inadequate absorption of visible light, small specific surface area, and fast electron-hole pair recombination still limits its photocatalytic activity [15,16].

Thus, numerous techniques were exploited to improve graphitic carbon nitride's photocatalytic efficiency, including doping [12], morphological modification [17], copolymerization [18], and combining with one or more semiconductor materials [19]. Thanks to its appropriate valence band edge and conduction band edge positions, g-C₃N₄ can produce a heterojunction structure/nanocomposite with other semiconductor photocatalysts. This could improve its photocatalytic activity performance by improving the photogenerated electron-hole separation rate of the heterojunction photocatalyst [20–22]. Currently, spinel ferrites with the general formula of MFe_2O_4 (M = Zn, Co, Ni, Cu) have been widely used in photocatalytic applications due to their visible-light absorption, stability, environmentally friendly nature, magnetic properties, and low-cost [23]. Cobalt ferrite ($CoFe_2O_4$) is one of the inverse spinel structures that attracted significant interest because of its non-toxic nature and its abundant and narrow bandgap (1.2-2.7 eV) [24,25]. Even though pristine $CoFe_2O_4$ has a poor photocatalytic performance, its photocatalytic activity considerably increases when it is coupled with a π -conjugated semiconductor materials [26]. For instance, $CoFe_2O_4$ nanoparticles can be coupled with $g-C_3N_4$ to prepare heterojunction structures, direct Z-schemes, or all-solid-state Z-schemes due to the matching conduction band edge position and valence band edge position of $CoFe_2O_4$ and $g-C_3N_4$ semiconductors.

Huang et al. [27] reported on the CoFe₂O₄/g-C₃N₄ composites, which are synthesized using an easy calcination process. The composite containing 41.4 wt% CoFe₂O₄ showed the maximum catalytic activity for the MB degradation under irradiation of visible light in the presence of H_2O_2 . However, the use of H_2O_2 may not be economically viable during practical applications. Inbaraj et al. [28] also synthesized $CoFe_2O_4/g-C_3N_4$ composite via the coupling of a honey-mediated green approach and hydrothermal technique. The MB degradation and the adsorption removal of lead (Pb²⁺) ion from water were both used to test the photocatalytic activity of the composite photocatalyst. However, the hydrothermal process used in the synthesis is time-consuming and labor-intensive; our experimental strategy seems to be simpler. Moreover, the photocatalytic mechanism was a type-II heterojunction, which means the redox reaction takes place in the less negative conduction band/reduction potential and in the less positive valence band/oxidation potential of the semiconductors. This limits the photocatalytic performance of the $C_0Fe_2O_4/g-C_3N_4$ composites. Recently, in the presence of peroxymonosulfate (PMS), which is utilized as a sulfate radical-based Fenton-like oxidation reaction, Guo et al. [1] reported that rhodamine B (RhB) was photodegraded by CoFe₂O₄@g-C₃N₄ photocatalyst material. The Fen+/PMS system must be run at an acidic pH because of the precipitation and hydrolysis of iron ions; doing so after the reaction results in additional operational costs [29,30]. These inescapable disadvantages limit the widespread application of the homogeneous iron/PMS approach in wastewater treatment technology.

Even though several research have been widely published about the photocatalytic activity of the $CoFe_2O_4/g$ - C_3N_4 composite and its ability to photodegrade several organic dyes/pollutants, the literature currently available falls significantly short in addressing crucial variables, including (1) construction of the direct Z-scheme structure and (2) the photoactivity of the composite in the absence of a Fenton-like system. Hence, to overcome these challenges, direct Z-scheme CoFe₂O₄-loaded g-C₃N₄ photocatalyst material was successfully fabricated using the facile hydrothermal method.

The photodegradation activity of the obtained direct Z-scheme CoFe₂O₄-loaded g- C_3N_4 photocatalyst was assessed for methylene blue (MB) photodegradation under irradiation of visible light and shows degradation activity 6.6 and 3.6 times higher than pristine CoFe₂O₄ and pure g-C₃N₄ photocatalysts, respectively. Such an extraordinary enhancement of catalytic activity under irradiation of visible-light could be due to the significantly increased electron-hole separation in the direct Z-scheme g-CoFe₂O₄-loaded

 $g-C_3N_4$, which improves the oxidation/reduction ability of the photocatalytic reaction. Moreover, the direct Z-scheme $g-CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst was collected from the aqueous solution without significant loss and demonstrated a negligible decline in performance throughout five cycles.

2. Results and Discussion

2.1. Characterization of the Photocatalyst

The FT-IR spectra of CoFe₂O₄, g-C₃N₄, and CoFe₂O₄-loaded g-C₃N₄ are displayed in Figure 1. As shown in Figure 1a, the broad bands in the 3086–3252 cm⁻¹ matches to the -NH stretching mode at the uncondensed sites of the aromatic structures [31]. The peaks at 1572 and 1639 cm⁻¹, and the other four peaks at 1407, 1461, 1316, and 1236 cm⁻¹, represented typical C=N stretching vibration modes and C-N stretching of g-C₃N₄, respectively. The intense peak at 812 cm⁻¹ can be attributed to the tri-s-triazine units' breathing mode [7,32,33]. In spectrum of CoFe₂O₄, in the range of 587 and 419 cm⁻¹, there were two prominent absorption bands that are ascribed to both the tetrahedral and octahedral metal-oxygen (M-O) vibrational modes links in the spinel lattice of CoFe₂O₄ nanoparticles, as shown in Figure 1b [34]. The H-O-H bending vibration of absorbed or free water molecules is responsible for the peak seen at 3408 cm⁻¹. All the important characteristic peaks of CoFe₂O₄ and g-C₃N₄ appeared in the CoFe₂O₄-loaded g-C₃N₄ material; this confirmed the formation of CoFe₂O₄-loaded g-C₃N₄ photocatalyst material (Figure 1c).

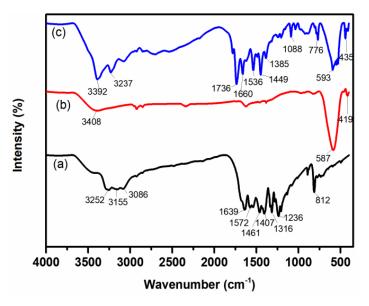
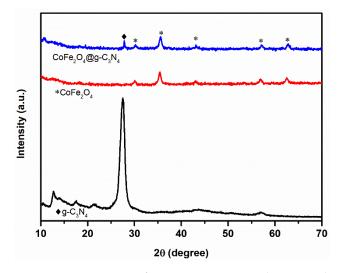
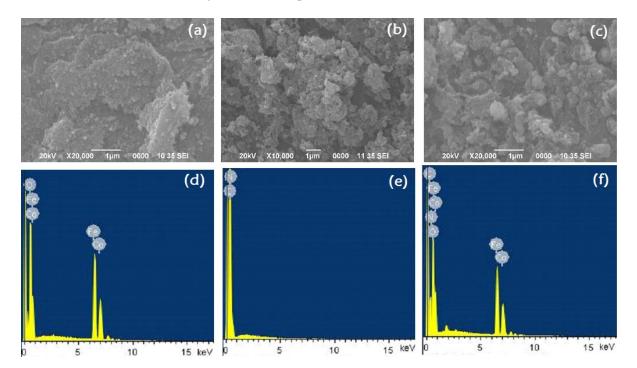
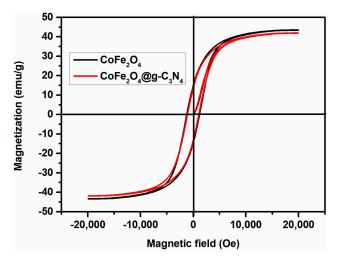


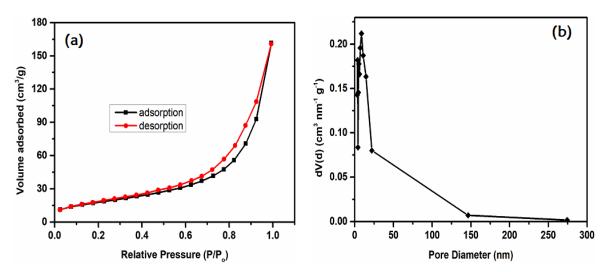
Figure 1. FTIR spectra of (a) g-C₃N₄, (b) CoFe₂O₄, (c) CoFe₂O₄-loaded g-C₃N₄ photocatalysts.

XRD spectra of all the photocatalysts were taken for phase identification. Figure 2 displays the XRD spectra of $CoFe_2O_4$, $g-C_3N_4$, and $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalysts. The diffraction peaks at 30°, 35.62°, 43.28°, 53.78°, 57°, and 62.27° are willingly attributed to the face centered cubic inverse spinel crystal structure of $CoFe_2O_4$ (JCPDS file no: 22-1086) [35]. The XRD spectrum from pure $g-C_3N_4$ exhibited peaks at 27.52° and 12.74°; these can be assigned to the (002) and (100) crystal planes of polymeric $g-C_3N_4$, respectively. In the spectrum of the $CoFe_2O_4$ -loaded $g-C_3N_4$, all diffraction peaks of $g-C_3N_4$ and $CoFe_2O_4$ are observed, indicating that the $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst materials were successfully prepared. Moreover, the Scherrer's formula was used to determine the average crystallite size of $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst and [36,37]; this was determined to be 13.43 nm.


Figure 2. XRD patterns of g-C₃N₄, CoFe₂O₄, and CoFe₂O₄-loaded g-C₃N₄ photocatalyst.

The surface morphology and texture of the photocatalysts were investigated using SEM; the image is presented Figure 3a–c. The cubic structure of $CoFe_2O_4$ and crumpled sheets g-C₃N₄ are observed in Figure 3a,b, respectively. It has also been observed that numerous nanoparticles of $CoFe_2O_4$ were loaded on the g-C₃N₄ sheet surface (Figure 3c), suggesting the formation of $CoFe_2O_4$ -loaded g-C₃N₄ photocatalyst. The elemental composition of the fabricated samples was examined using EDX; the spectra is displayed in Figure 3d–f. As shown in Figure 3a, the EDX peaks of the pristine $CoFe_2O_4$ sample are accredited to the elements Fe, Co, and O. The peaks in the EDX of neat g-C₃N₄ are linked to the elements C and N, as shown in Figure 3e. Also, the equivalent EDX spectrum of g-C₃N₄ that has $CoFe_2O_4$ loaded on it exhibits the presence of C, N, Co, Fe, and O, as shown in Figure 3f. This confirms the $CoFe_2O_4$ -loaded g-C₃N₄ photocatalyst was synthesized without any additional impurities.


Figure 3. SEM images of (**a**) pure $CoFe_2O_4$, (**b**) pure $g-C_3N_4$, and (**c**) $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst, and EDX pattern of (**d**) pure $CoFe_2O_4$, (**e**) pure $g-C_3N_4$, and (**f**) $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalyst.

The magnetic possessions of the CoFe₂O₄-loaded g-C₃N₄ material and pristine CoFe₂O₄ photocatalysts were studied; the magnetization hysteresis curves are shown in Figure 4. The saturation magnetization (Ms) of pristine CoFe₂O₄ and CoFe₂O₄-loaded g-C₃N₄ photocatalyst was determined to be 43.4 emu/g and 41.9 emu/g, respectively. As a result, the CoFe₂O₄-loaded g-C₃N₄ photocatalyst could be easily collected using a magnet.

Figure 4. The magnetic hysteresis loops of pure CoFe₂O₄ and CoFe₂O₄-loaded g-C₃N₄ photocatalyst material.

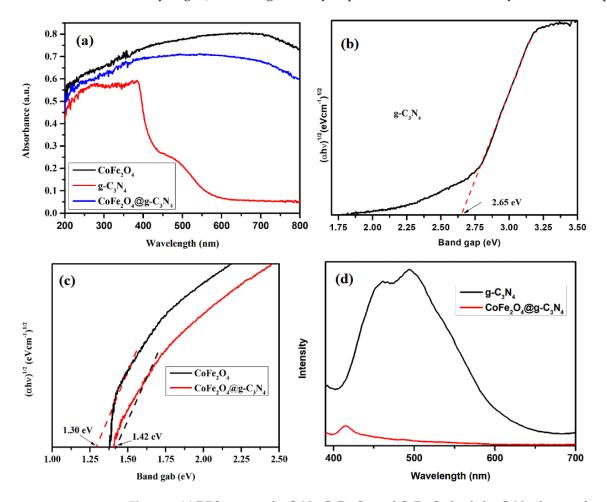

The pore size distribution, surface area, and pore volume of the CoFe₂O₄-loaded g-C₃N₄ photocatalyst were studied using N₂ adsorption and desorption isotherms. The type IV isotherm and H3 hysteresis loop of the N₂ adsorption-desorption curve are clearly visible in Figure 5a, confirming the mesoporous nature of the CoFe₂O₄-loaded gC₃N₄ photocatalyst [38]. The Barrett–Joyner–Halenda equation and Brunauer–Emmett–Teller (BET) method were used to determine the photocatalyst's pore size distribution and surface area. The BET specific surface area of CoFe₂O₄-loaded g-C₃N₄ photocatalyst was determined to be 63.632 m²/g. Furthermore, the pore volume and pore size of the CoFe₂O₄-loaded g-C₃N₄ photocatalyst was 4.29 nm and 0.247 cm³/g, respectively, as presented as Figure 5b.

Figure 5. (a) N₂ adsorption–desorption isotherm of CoFe₂O₄-loaded g-C₃N₄ photocatalyst, and (b) the pore size distribution curve of CoFe₂O₄-loaded g-C₃N₄ photocatalyst.

The UV–vis DRS spectra of $g-C_3N_4$, $CoFe_2O_4$, and $CoFe_2O_4$ -loaded $g-C_3N_4$ samples are shown in Figure 6a. The pristine $g-C_3N_4$ photocatalyst possessed an absorption edge at about 500 nm. The $CoFe_2O_4$ nanoparticle showed a wide absorption range (200 to 900 nm).

The absorption efficiency of the g-C₃N₄ photocatalyst was significantly extended in the visible-light region after loading nanoparticles of CoFe₂O₄ onto the g-C₃N₄ (Figure 6a). As a result, the boosted visible light absorption of the CoFe₂O₄-loaded g-C₃N₄ led to the production of extra electron—hole pairs under irradiation of visible-light, which boosted its photocatalytic activity. Furthermore, the band gap energy (E_g) of the photocatalysts were assessed using Tauc's equation and the results are displayed in Figure 6b,c. The obtained band gap (E_g) values for pristine CoFe₂O₄ and g-C₃N₄ are 1.30 eV and 2.65 eV, respectively. However, after loading the CoFe₂O₄ on the surface of g-C₃N₄ nanosheets, its band gap energy (E_g) decreased to 1.42 eV. This result confirmed that the visible light absorption efficiency of g-C₃N₄ was significantly improved after modification by CoFe₂O₄ nanoparticles.

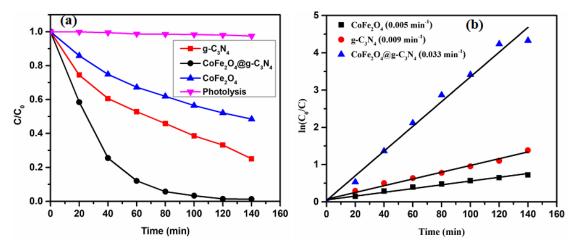


Figure 6. (a) DRS spectra of $g-C_3N_4$, CoFe₂O₄, and CoFe₂O₄-loaded $g-C_3N_4$ photocatalyst. (b) Tauc plot for $g-C_3N_4$ photocatalyst. (c) Tauc plot for CoFe₂O₄ and CoFe₂O₄-loaded $g-C_3N_4$ photocatalyst. (d) PL spectra of $g-C_3N_4$, and CoFe₂O₄-loaded $g-C_3N_4$ photocatalyst.

The photogenerated produced electron-hole pairs separation efficiency of the g-C₃N₄ and CoFe₂O₄-loaded g-C₃N₄ photocatalysts was examined using PL; the result is presented in Figure 6d. The PL strength of the CoFe₂O₄-loaded g-C₃N₄ is enormously diminished when compared to that of the pristine g-C₃N₄. This result shows that the rate of electron-hole separation efficiency in the CoFe₂O₄-loaded g-C₃N₄ was better than that in the g-C₃N₄ material. This could be because of the transfer of the electron-hole pairs between CoFe₂O₄-loaded g-C₃N₄ in the CoFe₂O₄-loaded g-C₃N₄.

2.2. Photocatalytic Activity

Figure 7a depicts the MB degradation under irradiation of visible light without photocatalyst as well as with CoFe₂O₄, g-C₃N₄, and CoFe₂O₄-loaded g-C₃N₄ photocatalysts. Figure 7a demonstrates that, without a photocatalyst, the MB is practically stable for 140 min when irradiated using visible light. This demonstrates that the presence of a photocatalyst caused MB degradation. The CoFe₂O₄-loaded g-C₃N₄ photocatalyst degraded 98.86% of the MB within 140 min under irradiation of visible light. However, under the same irradiation and time conditions, the g-C₃N₄ and CoFe₂O₄ degraded MB up to 74.92% and 51.53%, respectively. Therefore, the photodegradation rates of MB by the CoFe₂O₄loaded g-C₃N₄ photocatalyst was better than that of pure CoFe₂O₄ and pristine g-C₃N₄ photocatalysts. In addition, the rate constant (k_{ap}) of degradation of MB by the CoFe₂O₄, $g-C_3N_4$, and CoFe₂O₄-loaded $g-C_3N_4$ photocatalysts can be expressed by a pseudo-firstorder kinetics equation: $\ln(C_o/C) = k_{av}t$, where C_o is initial concentration, C is concentration after irradiation at a time t, and k_{ap} is apparent pseudo-first-order rate constant (Figure 7b). As shown in Figure 7b, the k_{ap} of g-C₃N₄ is higher than that of CoFe₂O₄. However, after loading CoFe₂O₄ on the g-C₃N₄ sheets surface, its k_{ap} increased significantly. As a result, $CoFe_2O_4$ -loaded g- C_3N_4 photocatalysts showed photodegradation activity with 6.6 and 3.6 times higher k_{ap} than pristine CoFe₂O₄ and g-C₃N₄, respectively. This might be a result of the components' synergistic interaction. Table 1 compares the degradation efficiency of different materials from the literature with the fabricated direct Z-scheme CoFe₂O₄-loaded $g-C_3N_4$ photocatalyst material for the photodegradation of organic dyes in water.

Figure 7. (a) Photodegradation of MB by $CoFe_2O_4$, $g-C_3N_4$, and $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalysts under visible light irradiation. (b) Photodegradation rate constant (k_{ap}) of MB over the $CoFe_2O_4$, $g-C_3N_4$, and $CoFe_2O_4$ -loaded $g-C_3N_4$ photocatalysts.

Table 1. Comparison of the effectiveness of several magnetic photocatalysts in the degradation of organic dyes.

No.	Photocatalyst	Light Source	Target Dye	Degradation Efficiency	Ref.
1	CoFe ₂ O ₄ /g-C ₃ N ₄	Sun light	MB	98%/150 min	[28]
2	41.4% CoFe ₂ O ₄ /g-C ₃ N ₄ -H ₂ O ₂	Xenon lamp	MB	97.3%/180 min	[27]
3	CoFe ₂ O ₄ /g-C ₃ N ₄ -PMS	Halogen tungsten lamp	RhB	96%/30 min	[1]
4	Direct Z-scheme CoFe ₂ O ₄ -loaded g-C ₃ N ₄	LED lamp	MB	98.86%/140 min	This work

The stability of CoFe₂O₄-loaded g-C₃N₄ photocatalyst was examined by recycling and using it for repeated photocatalytic reactions. The CoFe₂O₄-loaded g-C₃N₄ photocatalyst exhibits nearly the same photocatalytic activity after five consecutive cycles of the degradation reaction, as displayed in Figure 8, demonstrating the produced photocatalyst's exceptional stability. This could be due to the good adherence of the CoFe₂O₄ nanoparticles on the g-C₃N₄ sheets.

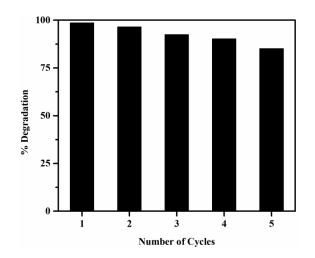


Figure 8. Reusability of the CoFe₂O₄-loaded g-C₃N₄ photocatalyst after five successive runs.

In order to explore the principal active species in the photocatalytic process, reactive species detection tests were also conducted. As superoxide radical (\bullet O₂), hydroxyl radical (\bullet OH), and hole (h⁺) scavengers, p-benzoquinone (BQ), isopropanol (IPA), and formic acid (FA) were introduced at the same concentration (0.5 mmol/L), respectively [39,40]. As shown in Figure 9, the addition of IPA has an insignificant effect on the degradation efficiency, while the addition of BQ and FA diminished the degradation efficiency to 37.8% and 62.54%, respectively. Therefore, \bullet O₂⁻ and h⁺ are the primary reactive species in the photocatalytic process, and \bullet O₂⁻ has a greater influence on the photodegradation process than h⁺.

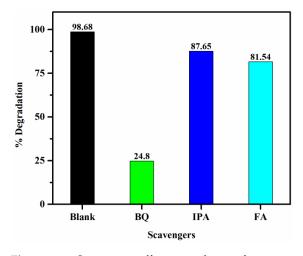
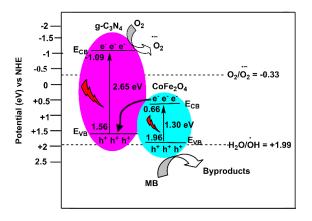


Figure 9. Scavenger effects on the performance of MB degradation over $CoFe_2O_4$ -loaded g- C_3N_4 photocatalyst.

The boosted photocatalytic efficiency of the synthesized $CoFe_2O_4$ -loaded g- C_3N_4 photocatalyst can be credited to the visible light sensitization of the g- C_3N_4 by the $CoFe_2O_4$ nanoparticles. To clarify the separation of electron-hole in the $CoFe_2O_4$ -loaded g- C_3N_4 photocatalyst, the valence band (E_{VB}) edge and conduction band (E_{CB}) edge positions of the photocatalysts were calculated by Equations (1) and (2) [40].

$$E_{CB} = X - E - \frac{1}{2}E_g$$
 (1)

$$E_{VB} = E_{CB} + E_g \tag{2}$$


where E_{CB} is conduction band potential, E_{VB} is valence band potential, χ is the absolute electronegativity of the photocatalyst (the χ values of g-C₃N₄ is 4.73 eV and χ values

CoFe₂O₄ is 5.81 eV [3,41]), *E* is the hydrogen scale's free electron energy, which is 4.5 eV, and E_g is band-gap energy. Hence, it was discovered that CoFe₂O₄ and gC₃N₄ have band-gap energies of 1.30 eV and 2.65 eV, respectively (Figure 6b,c). Then, the values of E_{VB} and E_{CB} for CoFe₂O₄ and g-C₃N₄ were calculated using Equations (1) and (2), respectively. The obtained results are shown in Table 2.

Table 2. Electronegativity (χ), band gap (E_g), and conduction band (E_{CB}) position and valance band (E_{VB}) of the photocatalysts on NHE.

Photocatalyst	χ (eV)	E_g (eV)	<i>E_{CB}</i> (eV)	E_{VB} (eV)
CoFe ₂ O ₄	5.81	1.30	+0.66	+1.96
g-C ₃ N ₄	4.73	2.65	-1.09	+1.56

Photogeneration electron-hole (e⁻-h⁺) pairs are formed by both g-C₃N₄ and CoFe₂O₄ of the CoFe₂O₄-loaded g-C₃N₄ after irradiation by sufficient photon energy. The E_{CB} of CoFe₂O₄ (+0.66 eV) is less negative than that of the g-C₃N₄ (-1.09 eV), and the E_{VB} of CoFe₂O₄ (+1.96 eV) is more positive than the E_{VB} of g-C₃N₄ (+1.56 eV). In the case of type II heterojunction phase way, the e^- in the E_{CB} of g-C₃N₄ is transferred to the E_{CB} of CoFe₂O₄ and the h^+ in the E_{VB} of CoFe₂O₄ are transferred to E_{VB} of the g-C₃N₄. These interfacial $e^{-}h^{+}$ transfers suppress the charge carrier recombination and improve its photocatalytic activity. But, the e^- at E_{CB} of CoFe₂O₄ (+0.66 eV) cannot reduce O₂ to • O_2^- (E° = -0.33 eV) [16]. Alternatively, the h^+ at E_{VB} of g- C_3N_4 (+1.56 eV) has insufficient oxidation capacity to oxidize H_2O or OH^- into $\bullet OH$ ($\bullet OH/H_2O$, $E^\circ = +1.99 \text{ eV}$) [16]. This contradicts the experiments on active species trapping. Clearly, the type-II photogenerated electron-hole ($e^{-}h^{+}$) mechanism was not appropriate for the CoFe₂O₄-loaded g-C₃N₄ photocatalytic system. Hence, the e^{-} -h⁺ mechanism of the CoFe₂O₄-loaded g-C₃N₄ may be illustrated by the direct Z-scheme system (Figure 10). In the direct Z-scheme system, the e^- in the E_{CB} of CoFe₂O₄ are tending to transfer and recombine with the h^+ in the E_{VB} of $g-C_3N_4$ by driving by the internal electric field at the intersection of surfaces, resulting in the gathering of e^- and h^+ in the E_{CB} of g-C₃N₄ and the E_{VB} of the CoFe₂O₄, respectively [42,43]. Consequently, the e^- in the E_{CB} of g-C₃N₄ can easily reduce the O₂ into \bullet O₂⁻ as shown in Figure 10. Even though these h^+ in the E_{VB} of the CoFe₂O₄ cannot oxidize H₂O or OH⁻ into •OH, they can directly participate in MB pollutants adsorbed onto the surface of the $CoFe_2O_4$ -loaded g- C_3N_4 photocatalyst [38]. The experiments on active species trapping are compatible with this strategy. As such, the $CoFe_2O_4$ -loaded gC_3N_4 photocatalyst in the present direct Z-scheme photocatalytic system not only improves the transfer and separation efficiency of photogenerated charge carriers but also retains a high degree of redox ability during the photodegradation of MB pollutant.

Figure 10. The CoFe₂O₄-loaded g-C₃N₄ under irradiation of visible-light and the proposed direct Z-scheme photocatalytic process.

3. Materials and Methods

3.1. Chemicals

Iron(III) chloride hexahydrate (FeCl₃.6H₂O, 97%), sodium hydroxide (NaOH, 98%), Cobalt(II) chloride hexahydrate (CoCl₂.6H₂O, 98%), Urea (NH₂CONH₂, 99.5%), and nitric acid (HNO₃, 70%) were obtained from Merck (India). All chemicals were utilized directly without further purification, and all experimental work was conducted with distilled water.

3.2. Synthesis of Photocatalysts

Graphitic carbon nitride (g-C₃N₄) was prepared by thermal polycondensation of urea; the detailed procedure has been described in our previously published article [7]. The CoFe₂O₄ loaded g-C₃N₄ photocatalyst was fabricated using the hydrothermal technique. Typically, 0.5 g of g-C₃N₄ was put in 50 mL of distilled water and sonicated for 40 min to form a uniform suspension (solution A). Similarly, 0.491g of FeCl₃·6H₂O (1.82×10^{-3} mol) and 21.62 mg of NiCl₂·6H₂O (9.1×10^{-5} mol) were put in 50 mL of distilled water and sonicated for 20 min (solution B). After that, the two solutions (solution A and solution B) were combined under sonication for 60 min. The resulting mixture was put in the Teflonlined autoclave at 150 °C for 8 h. Then, the mixture was centrifuged and washed several times using ethanol and distilled water separately. The obtained sample was dried at 60 °C in a hot air oven to obtain the CoFe₂O₄ loaded g-C₃N₄ photocatalyst. Likewise, we prepared CoFe₂O₄-loaded g-C₃N₄ photocatalysts using the same procedure for comparison study.

3.3. Characterization Techniques

The crystallinity of the prepared samples was performed using X-ray Diffraction (D8 XRD, Bruker AXS) with Cu K α radiation ($\lambda = 0.154060$ nm) over 2 θ range of 7° to 70°. The molecular structure of the samples was examined using Fourier transform infrared spectroscopy (FT-IR, PerkinElmer–Frontier MIR/FIR) scanned in the range of 4000 to 400 cm⁻¹. The morphology and elemental composition were determined using scanning electron microscopy (SEM, JEOL- JSM 6390LV) with energy-dispersive X-ray spectroscopy (EDX, Oxford Instruments). The UV–vis diffuse reflectance (DRS) was carried out on a UV–VIS spectrophotometer (Shimadzu–UV-2450) in the range of 200–900 nm by using BaSO₄ as the reference. The Kubelka–Munk function (F(R) was then used to determine the optical bandgap energy of the photocatalysts. The recombination rate photoluminescence (PL) spectra were obtained by Fluorescence spectrophotometer (PerkinElmer–LS 55). By employing a BET surface area analyzer (NOVA 1000E, Quantachrom) to conduct a N₂ adsorption-desorption investigation, the BET and pore size distribution of the sample were examined. A vibrating sample magnetometer (VSM, Lakeshore-7410) was used to examine the magnetic characteristics.

3.4. Photocatalytic Experiments

To study the photocatalytic activity of the photocatalysts in the breakdown of methylene blue (MB) under irradiation of visible light, several photocatalytic experiments were carried out. To attain an equilibrium between the photocatalyst and the dye, 30 mg of photocatalyst was suspended in 100 mL of MB aqueous solution (10 mg/L) and swirled in the dark for 60 min. A 10 W LED lamp (Havells, India) was used to irradiate the photocatalytic system and a 3 mL aliquot part; these were withdrawn from the reaction solution at 20 min intervals. Then, the magnetic photocatalysts was separated using a magnet and nonmagnetic photocatalysts were separated using a centrifuge (Universal 320 Hettich). The residual concentration of MB was analyzed using a UV-visible spectrophotometer (Agilent Cary 60) at a 664 nm. The primary active species were trapped using scavengers including formic acid (FA, h⁺ scavenger), benzoquinone (BQ, $\bullet O_2^-$ radical scavenger), and 2-propanol (2-PA, $\bullet OH$ radical scavenger).

4. Conclusions

In conclusion, we fabricated magnetically separable direct Z-scheme CoFe₂O₄-loaded $g-C_3N_4$ using a facile and simple hydrothermal technique. Characterization results confirmed that the $CoFe_2O_4$ -loaded g- C_3N_4 was prepared successfully. The DRS study also showed that the absorption efficiency of the g-C₃N₄ photocatalyst was significantly extended in the visible-light region after loading nanoparticles of $CoFe_2O_4$ onto the g- C_3N_4 nanosheets. The photocatalytic performance of CoFe₂O₄, g-C₃N₄, and CoFe₂O₄-loaded $g-C_3N_4$ photocatalysts were examined for the MB degradation under irradiation of visiblelight. The direct Z-scheme CoFe₂O₄-loaded g-C₃N₄ shows supreme degradation efficiency, and its activity is about 6.6 and 3.6 times higher than the $CoFe_2O_4$ and $g-C_3N_4$ photocatalysts, respectively. Such an extraordinary activity enhancement under irradiation of visible-light was possibly due to the significantly promoted electron-hole separation in the direct Z-scheme g-CoFe₂O₄-loaded g-C₃N₄; this improves the reduction/oxidation ability of the photocatalytic reaction. Mechanisms elucidated by scavenger studies revealed that $\bullet O_2^-$ and holes were the primary reactive radicals responsible for the degradation of MB. Moreover, the direct Z-scheme g-CoFe₂O₄-loaded g-C₃N₄ photocatalyst was collected from the aqueous solution without significant loss and demonstrated a negligible catalytic performance decline over five consecutive cycles. Therefore, this study can deliver novel insights for design and preparation of magnetic direct Z-scheme photocatalysts for dye degradation applications.

Author Contributions: The major work for this article, including conceptualization, methodology, software, validation, and writing the original draft, was performed by the first author (G.G.). The second author (M.G.) participated in conceptualization, software, and drawing. The final three authors (M.T., B.L. and W.L.) were responsible for conceptualization, supervising, and editing the article. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the internal grant of Addis Ababa Science and Technology University Ref. No. EG-51/11-1/20.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Tezpur University, Assam, India, for some characterization facility support. We are also thankful to Addis Ababa Science and Technology University, Ethiopia, for the financial support from the Internal grant project (Ref. No. EG-51/11-1/20).

Conflicts of Interest: The authors declare no conflict of interest.

References

- Guo, X.; Ai, S.; Yang, D.; Zhao, L.; Ding, H. Synergistic photocatalytic and Fenton-like degradation of organic contaminants using peroxymonosulfate activated by CoFe₂O₄@g-C₃N₄ composite. *Environ. Technol.* 2021, 42, 2240–2253. [CrossRef] [PubMed]
- Hassani, A.; Eghbali, P.; Ekicibil, A.; Metin, Ö. Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe₂O₄/mpg-C₃N₄): A magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes. *J. Magn. Magn. Mater.* 2018, 456, 400–412. [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Abitorabi, M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J. Colloid Interface Sci. 2016, 480, 218–231. [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* 1972, 238, 37–38. [CrossRef] [PubMed]
- 5. Yang, Y.; Luan, J. Synthesis, Property Characterization and Photocatalytic Activity of the Novel Composite Polymer Polyaniline/Bi₂SnTiO₇. *Molecules* **2012**, *17*, 2752–2772. [CrossRef] [PubMed]
- Gebrezgiabher, M.; Gebreslassie, G.; Gebretsadik, T.; Yeabyo, G.; Elemo, F.; Bayeh, Y.; Thomas, M.; Linert, W. A C-Doped TiO₂/Fe₃O₄ Nanocomposite for Photocatalytic Dye Degradation under Natural Sunlight Irradiation. *J. Compos. Sci.* 2019, *3*, 75. [CrossRef]
- 7. Gebreslassie, G.; Bharali, P.; Gebremariam, G.; Sergawie, A.; Alemayehu, E. *Graphitic Carbon Nitride with Extraordinary Photocatalytic Activity under Visible Light Irradiation*; Springer International Publishing: Cham, Switzerland, 2021; Volume 385. [CrossRef]
- Cheng, L.; Zhang, H.; Li, X.; Fan, J.; Xiang, Q. Carbon—Graphitic Carbon Nitride Hybrids for Heterogeneous Photocatalysis. Small 2020, 17, 2005231. [CrossRef] [PubMed]
- 9. Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C₃N₄-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [CrossRef]

- Zhang, M.; Yang, Y.; An, X.; Hou, L. A critical review of g-C₃N₄-based photocatalytic membrane for water purification. *Chem. Eng. J.* 2021, 412, 128663. [CrossRef]
- 11. Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic carbon nitride (g-C₃N₄)–based metal-free photocatalysts for water splitting: A review. *Carbon* **2019**, *149*, 693–721. [CrossRef]
- 12. Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G. Doping of graphitic carbon nitride for photocatalysis: A reveiw. *Appl. Catal. B Environ.* **2017**, 217, 388–406. [CrossRef]
- 13. Chebanenko, M.I.; Tikhanova, S.M.; Nevedomskiy, V.N.; Popkov, V.I. Synthesis and Structure of ZnO-Decorated Graphitic Carbon Nitride (g-C₃N₄) with Improved Photocatalytic Activity under Visible Light. *Inorganics* **2022**, *10*, 249. [CrossRef]
- Farooq, N.; Luque, R.; Hessien, M.M.; Qureshi, A.M.; Sahiba, F.; Nazir, M.A.; ur Rehman, A. A comparative study of cerium- and ytterbium-based GO/g-C₃N₄/Fe₂O₃ composites for electrochemical and photocatalytic applications. *Appl. Sci.* 2021, *11*, 9000. [CrossRef]
- Ismael, M.; Wark, M. Photocatalytic activity of CoFe₂O₄/g-C₃N₄ nanocomposite toward degradation of different organic pollutants and their inactivity toward hydrogen production: The role of the conduction band position. *FlatChem* 2022, 32, 100337. [CrossRef]
- 16. Paul, A.; Dhar, S.S. Designing Cu2V2O7/CoFe₂O₄/g-C₃N₄ ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol. *J. Solid State Chem.* **2020**, *290*, 121563. [CrossRef]
- He, W.; Liu, L.; Ma, T.; Han, H.; Zhu, J.; Liu, Y.; Fang, Z.; Yang, Z.; Guo, K. Controllable morphology CoFe₂O₄/g-C₃N₄ p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance. *Appl. Catal. B Environ.* 2022, 306, 121107. [CrossRef]
- Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J.D.; Fu, X.; Antonietti, M.; Wang, X. Synthesis of a Carbon Nitride Structure for Visible-Light Catalysis by Copolymerization. *Angew. Chem.* 2010, 49, 441–444. [CrossRef]
- Gebreslassie, G.; Bharali, P.; Chandra, U.; Sergawie, A.; Boruah, P.K.; Das, M.R.; Alemayehu, E. Novel g-C₃N₄/graphene/NiFe₂O₄ nanocomposites as magnetically separable visible light driven photocatalysts. *J. Photochem. Photobiol. A Chem.* 2019, 382, 111960. [CrossRef]
- Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. Recent advances in g-C₃N₄-based heterojunction photocatalysts. J. Mater. Sci. Technol. 2020, 56, 1–17. [CrossRef]
- Kumar, O.P.; Shahzad, K.; Nazir, M.A.; Farooq, N.; Malik, M.; Ahmad Shah, S.S.; ur Rehman, A. Photo-Fenton activated C₃N₄x/AgOy@Co1-xBi0.1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. *Opt. Mater.* 2022, 126, 112199. [CrossRef]
- 22. Wang, Q.; Li, Y.; Huang, F.; Song, S.; Ai, G.; Xin, X.; Zhao, B.; Zheng, Y.; Zhang, Z. Recent Advances in g-C₃N₄-Based Materials and Their Application in Energy and Environmental Sustainability. *Molecules* **2023**, *28*, 432. [CrossRef]
- Gupta, N.K.; Gha, Y.; Kim, S.; Bae, J.; Kim, K.S. Photocatalytic Degradation of Organic Pollutants over MFe₂O₄ (M = Co, Ni, Cu, Zn) Nanoparticles at Neutral pH. *Sci. Rep.* 2020, 10, 4942. [CrossRef]
- 24. Nife, O.; Holinsworth, B.S.; Mazumdar, D.; Sims, H.; Sun, Q.; Yurtisigi, M.K.; Sarker, S.K.; Gupta, A.; Butler, W.H.; Musfeldt, J.L. Chemical tuning of the optical band gap in spinel ferrites: CoFe₂O₄ vs. NiFe₂O₄. *Appl. Phys. Lett.* **2013**, *103*, 082406.
- 25. He, H.; Lu, J. Highly photocatalytic activities of magnetically separable reduced graphene oxide-CoFe 2 O 4 hybrid nanostructures in dye photodegradation. *Sep. Purif. Technol.* **2017**, *172*, 374–381. [CrossRef]
- Fu, Y.; Chen, H.; Sun, X.; Wang, X. Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. *Appl. Catal. B Environ.* 2012, 111, 280–287. [CrossRef]
- 27. Huang, S.; Xu, Y.; Xie, M.; Xu, H.; He, M.; Xia, J.; Huang, L.; Li, H. Synthesis of magnetic CoFe₂O₄/g-C₃N₄ composite and its enhancement of photocatalytic ability under visible-light. *Colloids Surf. A Physicochem. Eng. Asp.* **2015**, *478*, 71–80. [CrossRef]
- Inbaraj, D.J.; Chandran, B.; Mangalaraj, C. Synthesis of CoFe₂O₄ and CoFe₂O₄/g-C₃N₄ nanocomposite via honey mediated sol-gel auto combustion method and hydrothermal method with enhanced photocatalytic and efficient Pb+2 adsorption property. *Mater. Res. Express* 2019, *6*, 055501. [CrossRef]
- 29. Yuan, C.; Cao, H.; Zhu, S.; Hua, H.; Hou, L. Core-shell ZnO/ZnFe₂O₄@C mesoporous nanospheres with enhanced lithium storage properties towards high-performance Li-ion batteries. *J. Mater. Chem. A* 2015, *3*, 20389–20398. [CrossRef]
- Hou, L.; Lian, L.; Zhang, L.; Pang, G.; Yuan, C.; Zhang, X. Self-sacrifice template fabrication of hierarchical mesoporous bicomponent-active ZnO/ZnFe₂O₄ sub-microcubes as superior anode towards high-performance lithium-ion battery. *Adv. Funct. Mater.* 2015, 25, 238–246. [CrossRef]
- 31. Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S.C. Efficient synthesis of polymeric g-C 3 N 4 layered materials as novel efficient visible light driven photocatalysts. *J. Mater. Chem.* **2011**, *21*, 15171–15174. [CrossRef]
- 32. Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. *J. Mater. Chem.* **2011**, *21*, 14398–14401. [CrossRef]
- 33. Zhang, S.; Li, J.; Zeng, M.; Zhao, G.; Xu, J.; Hu, W.; Wang, X. In Situ Synthesis of Water-Soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance. *ACS Appl. Mater. Interfaces* **2013**, *5*, 12735–12743. [CrossRef]
- 34. Anand, S.; Amaliya, A.P.; Janifer, M.A.; Pauline, S. Structural, morphological and dielectric studies of zirconium substituted CoFe₂O₄ nanoparticles. *Mod. Electron. Mater.* **2017**, *3*, 168–173. [CrossRef]
- 35. Sabale, S.R. Studies on catalytic activity of MnFe₂O₄ and CoFe₂O₄MNPsas mediators in hemoglobin based biosensor. *Mater. Today Proc.* **2020**, *23*, 139–146. [CrossRef]

- Khan, M.; Pawar, H.; Kumari, M.; Patra, C.; Patel, G.; Dwivedi, U.K.; Rathore, D. Effect of concentration of SiC on physicochemical properties of CoFe₂O₄/SiC nanocomposites. *J. Alloys Compd.* 2020, *840*, 155596. [CrossRef]
- Kumar, O.P.; Ahmad, M.; Nazir, M.A.; Anum, A.; Jamshaid, M.; Shah, S.S.A.; Rehman, A. Strategic combination of metalorganic frameworks and C₃N₄ for expeditious photocatalytic degradation of dye pollutants. *Environ. Sci. Pollut. Res.* 2022, 29, 35300–35313. [CrossRef] [PubMed]
- Renukadevi, S.; Jeyakumari, A.P. A one-pot microwave irradiation route to synthesis of CoFe₂O₄-g-C₃N₄ heterojunction catalysts for high visible light photocatalytic activity: Exploration of efficiency and stability. *Diam. Relat. Mater.* 2020, 109, 108012. [CrossRef]
- Hassani, A.; Çelikdağ, G.; Eghbali, P.; Sevim, M.; Karaca, S.; Metin, Ö. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe₂O₄-rGO) nanocomposite for the removal of organic dyes from aqueous solution. *Ultrason. Sonochem.* 2018, 40, 841–852. [CrossRef] [PubMed]
- Gebreslassie, G.; Bharali, P.; Chandra, U.; Sergawie, A.; Baruah, P.K.; Das, M.R.; Alemayehu, E. Hydrothermal Synthesis of g-C₃N₄/NiFe₂O₄ Nanocomposite and Its Enhanced Photocatalytic Activity. *Appl. Organomet. Chem.* 2019, 33, e5002. [CrossRef]
- Hafeez, H.Y.; Lakhera, S.K.; Narayanan, N.; Harish, S.; Hayakawa, Y.; Lee, B.K.; Neppolian, B. Environmentally Sustainable Synthesis of a CoFe₂O₄-TiO₂/rGO Ternary Photocatalyst: A Highly Efficient and Stable Photocatalyst for High Production of Hydrogen (Solar Fuel). ACS Omega 2019, 4, 880–891. [CrossRef]
- 42. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. *Mater. Today* **2018**, *21*, 1042–1063. [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. *Adv. Mater.* 2017, 29, 1601694. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.