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Abstract: In this paper, we investigate the effects of aluminum oxide (Al2O3) antireflection coating
(ARC) on silicon heterojunction (SHJ) solar cells. Comprehensive ARCs simulation with Al2O3/ITO/c-
Si structure is carried out and the feasibility to improve the short circuit current density (JSC) is
demonstrated. Based on the simulation results, we apply Al2O3 ARC on SHJ solar cells, and the
increasement in JSC to 1.5 mA/cm2 is observed with an Al2O3 layer thickness of 20 nm. It is because
the total reflectance of SHJ solar cells is decreased by the shifting of the wavelength range on con-
structive and destructive light interference. As a result, we believe that the proposed Al2O3 ARC can
support an effective engineering technic to increase JSC and efficiency of SHJ solar cells.

Keywords: Al2O3; antireflection coating; SHJ solar cell; external quantum efficiency

1. Introduction

Reducing the levelized cost of energy (LCOE) is a value used to compare the cost of
producing energy from various sources over the lifespan of a power station. In recent years,
renewable energy sources such as wind, solar, hydro, and geothermal have grown more
competitive owing to technological advancements and economies of scale. The LCOE of
renewable energy varies based on location, resource availability, financing costs, and used
technology, among other different factors. In general, however, the LCOE of renewable
energy has been decreasing, making it more cost-competitive with power derived from
fossil fuels. LCOE of crystalline silicon (c-Si) solar cells is essential in order to replace
existing energy technologies such as nuclear and coal power plants [1]. Several types of
c-Si solar cells have been or are being developed to decrease the LCOE by decreasing the
manufacturing cost and increasing light conversion efficiency [2]. These include passivated
emitter solar cells (PESCs) [3], passivated emitter and rear cells (PERCs) [4], interdigitated
back-contact (IBC) solar cells [5], passivated emitter rear-locally diffused cells (PERLs) [6,7],
and heterojunction c-Si (SHJ) solar cells [3]. Among them, SHJ solar cells have demonstrated
efficiencies of up to 26.7% [4], making them strong candidates for reducing LCOE. Even
though the SHJ solar cell shows high efficiency, the technologies to increase its efficiency
should be studied to decrease LCOE.

In order to increase the efficiency of SHJ solar cells, many technologies to improve solar
cell parameters, such as short circuit current density (JSC), open circuit voltage (VOC), and
fill factor (FF) have been proposed. Surface passivation of SHJ solar cells is crucial to reduce
carrier recombination and improve their VOC. Amorphous Si is used as a passivation layer
in SHJ solar cells to improve them. It is also used as a carrier-selective layer, which helps to
separate the electrons and holes in the SHJ solar cell efficiency [8]. In order to get a high VOC
in SHJ solar cells, optimizing amorphous Si is essential. J. Sritharathikhun et al. investigated
the use of intrinsic hydrogenated amorphous Si oxide as a buffer layer in the interplay with
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doped microcrystalline Si oxide layers to improve the efficiency of SHJ solar cells [9]. Post-
deposition argon plasma treatment was also demonstrated to improve the amorphous Si
passivation layer for SHJ solar cells [8]. Meanwhile, in order to increase FF, researchers are
investigating ways to decrease series resistance in SHJ solar cells. One study used several
approaches to obtain a low series resistance for a state-of-the-art 2 cm × 2 cm screen-printed
solar cell reaching 82.5% FF. [10]. Research related to copper plating is also conducted in
the metallization of SHJ solar cells because the performance of the copper-plated solar cell
showed enhanced characteristics as compared to that of a reference solar cell built by silver
screen printing. Especially, because copper plating has enormous advantages such as low
cost, improving JSC by fine line plating, and a low temperature process, copper-plating on
SHJ solar cells has attracted the attention of many researchers. A new plated metallization
process for SHJ solar cells involves selective plating of copper onto a positively masking
seed [11]. Researchers have developed a laser-based method for the metallization of SHJ
solar cells by copper-plating [12]. Selective copper electroplating without any resist-mask
is also being developed for SHJ solar cells [13]. In addition, studies related to the seed layer
were also investigated and reported decreased series resistance [14]. In terms of studies
related to JSC, one of the most promising research trends in improving JSC for SHJ solar cells
is anti-reflection coating (ARC) by using the development of new materials and structures
that can enhance light trapping and absorption in SHJ solar cells [15–17]. For instance,
researchers have investigated the use of nanoparticle coatings, plasmonic structures, and
microtextured surfaces to improve the light absorption of SHJ solar cells. In laboratory tests,
these methods have demonstrated promise, but additional study is required to optimize
their efficacy and scale up their production. Integration of many layers of coatings to
improve light absorption and minimize reflection is another significant development in SHJ
solar cell research. Researchers have created multilayer antireflective coatings (DLARCs)
that use a combination of dielectric and metallic layers to reduce reflection over a broad
spectrum of wavelengths [18,19]. These multilayer coatings can increase the efficiency of
SHJ solar cells by up to 20%, making them extremely promising for commercial use [20]. In
addition to the optimization of materials and structures, there has been extensive research
into the creation of cost-effective and scalable production procedures for ARCs. For instance,
researchers have investigated the use of sol-gel processes, electrochemical deposition,
and printing methods to create extremely efficient and inexpensive ARCs [21,22]. These
strategies could drastically cut the cost of solar cell production and increase solar energy’s
accessibility to a wider spectrum of consumers. Among various technologies, ARC on
indium tin oxide (ITO) have attracted attention due to its possibility to increase JSC and
reliability of the solar cell. Improved JSC was demonstrated by employing indium zinc
oxide (IZO)/ITO stacked structure [23]. A HfO2-deposited SHJ solar cell also exhibited
high current density [24]. Yamamoto et al. reported that the JSC and reliability of a SHJ
solar cell was increased via deposition of a silicon dioxide (SiO2) layer [25]. Although the
possibility of SiO2 ARC on SHJ solar cell has been demonstrated by several institutes, it
requires relative thickness of 84 nm [24], which could lead to the degradation of passivation
quality and efficiency during the deposition. Therefore, ARC studies, which feature a thin
insulator, should be conducted.

Aluminum oxide (Al2O3), which is widely used in the c-Si solar cell industry, can be
one of the candidates for ARC [26–28]. In the reported literature, the possibility of Al2O3
ARC to increase JSC has been shown with thinner thickness of 35 nm [24], while it was not
demonstrated yet. Therefore, in the present study, we investigate the influence of Al2O3
ARC on SHJ solar cell. Figure 1 shows schematic structure of the SHJ solar cell with Al2O3
and brief mechanism of it, indicating that the interference of the reflected lights can decrease
the total reflectance, resulting in the increase of JSC. In order to evaluate its feasibility, ARC
characteristics of Al2O3 were analyzed where the configuration of the Al2O3 and ITO layer
thickness and the ITO dopant concentration that afforded the highest JSC was identified.
Based on the results of the simulations, we experimentally demonstrated SHJ solar cells
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with an Al2O3 layer of various thicknesses in SHJ solar cells and analyzed the properties of
the cells.
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Figure 1. Schematic structure of the proposed SHJ solar cell with an Al2O3 layer.

2. Materials and Methods

In order to analyze the effects of Al2O3, OPAL 2 program is employed because it
is a simulation program designed for the study of ARC [29]. The program employs a
complex algorithm to evaluate the dependence of refractive index on wavelength [30]. The
light-trapping model is expressed by Z = 4 + {ln[n2 + (1 − n2) × exp−4αW]}/αW where Z
is the optical pathlength, n is the refractive index of the ARC, α is the polarization angle,
and W is the thickness of the substrate.

The air/Al2O3/ITO/Si substrate structure is used in our OPAL 2 simulations. A
180-µm thick c-Si substrate was selected, and random upright pyramids with a charac-
teristic angle of 54.74◦ were applied as texture structures. The dopant concentration in
the ITO layer on the c-Si substrate was set to 2.0 × 1020, 4.9 × 1020, and 6.0 × 1020/cm3.
The ‘Al2O3 on glass (Kum09)’ option was selected for the Al2O3 layer. AM 1.5 G was
selected for incident illumination at a 0◦ zenith angle to the normal of the plane of the
cell. The total current density from the light source was fixed at 44 mA/cm2. The reflected
current density (JR), the absorbed current density in the Al2O3 and ITO layers (JA), and the
absorbed current density in the c-Si (generation current density, JG) were analyzed. The
dependence of current density on the Al2O3 and ITO layer thickness and the ITO dopant
concentration was evaluated, and the relationship between reflectance and wavelength
was determined.

Amorphous i/n-type and i/p-type Si layers were applied to the substrates via plasma-
enhanced chemical vapor deposition (PECVD, PlasmaPro System100, Oxford Instruments,
Abingdon, UK). ITO layers 80 nm thick were deposited by using sputter (KVS-2000L, Korea
Vacuum Tech, Gimpo-si, Republic of Korea) on the n-and p-type layers. Ag evaporation
via e-beam evaporator with deposition rate of 0.5 Å/s was performed following a pho-
tolithography process. Al2O3 was deposited by atomic layer deposition (ALD, THECO
200M, WONIK IPS, Pyongtaek, Republic of Korea) using trimethylaluminium (TMA) and
O2 plasma as precursor and oxidant, respectively. The ALD was heated up to 250 ◦C, and
the thickness of Al2O3 was controlled by the number of deposition cycles. In order to inves-
tigate the possibility to improve JSC, the reflectance of the SHJ solar cell with Al2O3 layer
was measured by UV-visible spectroscopy (Cary-5000, Agilent Technologies, Santa Clara,
CA, USA) and weighted reflectance was calculated from the measured reflectance data by
the equation as follows. Solar–weighted R = (

∫
(S(λ) × R(λ) × ∆λ))/(

∫
(S(λ) × ∆λ)), where

R(λ) is the measured reflectance, and Sλ is the solar irradiance (AM 1.5 G) [31]. In order
to investigate the effect of Al2O3 ARC directly on SHJ solar cell, the solar cell parameters
were measured before and after Al2O3 deposition under illumination with a solar simulator
(K201-LAB 50, McScience, Suwon, Republic of Korea). In addition, the external quantum
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efficiency (EQE) of each cell before and after Al2O3 deposition was measured to compare
ARC performance.

3. Results

In order to investigate the influence of Al2O3 on SHJ solar cell, the dependence of JG
the Al2O3 and ITO layer thickness and the ITO dopant concentration is investigated, as
shown in Figure 2. Trend of JG was generally increased when the Al2O3 and ITO layer was
thick and thin, and the maximum JG was 43.12 mA/cm2 for all dopant concentration. In the
case of ITO dopant concentration of 2.1 × 1020/cm3, the maximum JG was observed as the
thickness of Al2O3 and ITO was 70 and 30 nm. In the case of ITO dopant concentration of
4.9 × 1020 and 6.1 × 1020/cm3, the maximum JG was observed with the structure without
ITO. In order to obtain the proper electric conductivity for the SHJ solar cells, the thickness
of the ITO layer have to resemble that of an actual solar cell. The ITO layer in an actual SHJ
cell is typically 50–100 nm thick [25]. So as to analyze the influence of Al2O3 to the practical
SHJ solar cell, the optimized ITO thickness was obtained via the Air/ITO/c-Si structure
without Al2O3. The optimized ITO thickness without Al2O3 to maximize JG was 68, 63,
and 59 nm for the ITO dopant concentration of 2.1 × 1020, 4.9 × 1020, and 6.1 × 1020/cm3.
Based on the optimized ITO, the influence of Al2O3 thickness was then analyzed.
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The dependence of JG on ITO dopant concentration and Al2O3 thickness is shown. ITO dopant
concentration: (a) 2.0 × 1020, (b) 4.9 × 1020, and (c) 6.1 × 1020/cm3.

Figure 3 shows the JG, JR, and JA depending on the thickness of Al2O3 and doping
concentrations of ITO. At an ITO dopant concentration of 2.0 × 1020/cm3, JG increased from
42.26 to 42.60 mA/cm2 when a 68 nm-thick Al2O3 layer was deposited on the optimized
ITO. At an ITO dopant concentration of 4.9 and 6.1 × 1020/cm3, the deposition of 52
and 50 nm-thick Al2O3 layer for each concentration yielded an increased JG from 41.19
and 40.64 to 41.93 and 41.67 mA/cm2. The JG, however, was decreased as the thickness
of Al2O3 was continuously increased. In addition, all simulation results indicated that
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the JA manifested minor changes with respect to the thickness of Al2O3, whereas JG was
dominantly affected by JR. In order to investigate the change in the reflectance in detail,
we investigated the reflectance according to wavelength, as shown in Figure 4. At an ITO
dopant concentration of 2.0 × 1020/cm3, reflectance of light at wavelengths from 400 to
700 nm was increased by Al2O3 deposition, whereas the reflectance of wavelengths in other
range was reduced, as shown in Figure 4a. At ITO dopant concentrations of 4.9 × 1020 and
6.1 × 1020/cm3, the trends of increased and decreased reflectance at each wavelength range
were similar to that observed with 2.0 × 1020/cm3 ITO dopant, as shown in Figure 4b,c. It
is because the construction and destruction interference at wavelengths was shifted after
deposition of Al2O3, which corresponded to the literatures [23,24]. In detail, it was due to
the effects of ARCs. ARCs are thin films put on a material’s surface to reduce the amount of
light reflected at the interface of materials and a substrate. These coatings are intended to
match the refractive index of the material with that of a substrate, hence decreasing surface
reflection. The antireflection coating’s thickness is crucial to its efficiency, and it must be
properly regulated to obtain the necessary amount of reflection reduction. Single layer
antireflection coatings, which is commonly used, consist of a single thin film deposited
on a Si wafer. The thickness of the film is chosen to minimize the reflection at a specific
wavelength, which is usually the wavelength of the light source being used for SHJ solar
cells. The refractive index of the film is also carefully selected to match the refractive index
of a Si wafer. For SHJ solar cells, the thicknesses of the ITO and amorphous i/n-type Si
layers are optimized to minimize reflections in the visible light region from the front. In
general, researchers want to get the lowest reflectance in the visible range because that is
where the intensity of light is the strongest, resulting in enabling to maximize the efficiency
of the solar cell. A shown in Figure 4, the lowest reflectance was thus observed in the
wavelength range between 400 and 600 nm when only the ITO was deposited. However, as
the industry demands higher efficiency from solar cells, DLARCs technology is being used
to further minimize the reflections. In a DLARC, two thin films of materials with different
refractive indices are typically placed on a substrate. Thickness of each layer is carefully
selected so that the two layers interact in a manner that cancels out the reflections that
would be generated by each layer independently. As a result of the interaction, the result
is an exceptionally low degree of reflection across a broad spectrum of wavelengths. The
main concept underlying DLACs is construction and destruction interference of light. Light
interacts with the atoms and molecules that make up a substance as it passes through it.
Consequently, the velocity of the light changes, causing it to bend or refract. The degree of
bending depends on the refractive index of the materials. The refractive indices of the two
layers of material in a double-layer antireflection coating are different. When light passes
from one material to another, light interacts with both layers, resulting in the reflectance
change with respect to the wavelength. In Figure 4b, we observed the change in reflectance
for each wavelength after the deposition of Al2O3 as above. This was due to the interaction
between the light reflected from the Al2O3 and the light reflected from the ITO as the Al2O3
was deposited, as mentioned above. The trend of reflectance was also changed as the
thickness of the Al2O3 increased, indicating that to maximize the efficiency of the solar
cell, the thickness of each layer must be adjusted so that the light reflected by one layer
adequately interferes with the light reflected by the other layer. Accordingly, the simulation
results demonstrated that Al2O3 layer of a certain thickness can improve the JG, and the
ITO dopant concentration had an effect on the JG as well.
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In order to investigate the influence of Al2O3 ARC, reflectance was first measured, and
the weighted reflectance was calculated from the measured reflectance because it was used
to estimate the feasibility of the ARCs with respect to the intensity of solar irradiation [5].
Measured reflectance and weighted reflectance according to Al2O3 thickness are shown
in Figure 5. The results of the reflectance measurements were similar to the simulation
results. Reflectance in the wavelength range from ~400 nm to 600 nm increased, but it
decreased at shorter and longer wavelengths ranges, as shown in Figure 5. As thickness of
Al2O3 was increased, the increase and decrease in reflectance were enhanced. The inset
figure in Figure 5 shows the calculated weighted reflectance depending on the thickness
of Al2O3, indicating that the weighted reflectance was decreased from 4.03% to 3.72% at
Al2O3 thickness of 25 nm. However, the weighted reflectance increased to 4.05% when the
thickness of the deposited Al2O3 layer was increased to 30 nm. These reflectance changes
were seen because the total reflectance with respect to the wavelength changed by the
deposition Al2O3, which corresponded with the simulation result.
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Figure 5. Reflectance from fabricated Al2O3-deposited SHJ solar cells where the inset figure shows
calculated weighted reflectance.

To investigate the effect of Al2O3 on SHJ solar cell parameter directly, we measured
EQE, JSC, VOC, and FF before and after Al2O3 deposition. The EQEs with Al2O3 layer
thicknesses of 5, 10, 15, 20, 25, and 30 nm from 300 to 1100 nm are shown in Figure 6.
Commonly, we observed that reflectance decreased at wavelengths from ~420 nm to
600 nm and increased at longer and shorter wavelengths. By comparing Figures 5 and 6, the
wavelength range, which manifested the improved EQE, was similar with the wavelength
range where reflectance was decreased for all solar cells. Accordingly, we observed the
change of the reflectance by deposition of Al2O3 which was similar with the simulation
results, indicating that it can improve the efficiency. In order to investigate the influence
of Al2O3 ARC directly, the SHJ solar cell parameters before and after deposition of Al2O3
are summarized in Table 1. JSC of the cell with a 5 nm-thick Al2O3 layer was 1.0 mA/cm2

higher than JSC of the cell prior to Al2O3 deposition. Compared to the JSC of cells prior
to Al2O3 deposition, JSC of the cells with Al2O3 layers 10, 15, 20, 25, and 30 nm thick was
higher by 1.25, 1.0, 1.5, 1.25, and 1.25 mA/cm2, respectively. Thus, the JSC of all cells was
increased by deposition of Al2O3. The highest increase of 1.5 mA/cm2 in JSC was observed
when 20 nm-thick Al2O3 was deposited on SHJ solar cell. Compared to HfO2 and IZO
layer on ITO, it showed an increased JSC of 0.84 and 1 mA/cm2. As a result, we obtain
the highest improvement in the efficiency from 22% to 23% by deposition of a 20 nm-thick
Al2O3 on SHJ solar cell. Figure 7 shows the current–voltage (I–V) curve of the SHJ solar
cell before and after the Al2O3 deposition, indicating that the JSC increased after the
Al2O3 deposition.
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Table 1. Results of solar simulator before and after Al2O3 deposition.

Thickness (nm) Before/After
Deposition Voc (mV) Jsc (mA/cm2) FF (%) Efficiency (%)

5
Before 712 40.5 75.4 21.74
After 704 41.5 71 20.74

10
Before 709 40.5 74.9 21.51
After 706 41.75 72.9 21.59

15
Before 711 40.5 76.1 21.91
After 708 41.5 72.3 21.24

20
Before 714 40.5 76.1 22.01
After 715 42 76.6 23.00

25
Before 711 40.25 75.1 21.49
After 710 41.5 76.4 22.51

30
Before 713 40.5 76.2 22.00
After 712 41.75 75.7 22.50
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Figure 7. J–V curves of the SHJ solar cell before and after deposition of 15 nm Al2O3, with an
Al2O3 layer.

4. Conclusions

In this paper, we analyze the influence of Al2O3 ARC on SHJ solar cells with OPAL2
simulation and by employing it in SHJ solar cells. Feasibility of the Al2O3 ARC was demon-
strated via OPAL 2 simulation, which indicated that the JSC can be affected by the thickness
of Al2O3 and the ITO dopant concentration. The JG was found to be 43.12 mA/cm2 for all
dopant concentration. The study revealed that to obtain the proper electric conductivity
for SHJ solar cells, the thickness of the ITO layer should resemble that of an actual solar
cell, which is typically 50–100 nm thick. The optimized ITO thickness without Al2O3 was
found to be 68, 63, and 59 nm for different ITO dopant concentrations. After determining
the optimized ITO thickness, the impact of Al2O3 thickness was analyzed. The results
showed that at ITO dopant concentration of 2.0 × 1020/cm3, JG increased from 42.26 to
42.60 mA/cm2 when a 68 nm-thick Al2O3 layer was deposited on the optimized ITO. How-
ever, the JG decreased as the thickness of Al2O3 was continuously increased. Additionally,
the study found that the JA manifested minor changes with respect to the thickness of Al2O3,
whereas JG was dominantly affected by JR. Finally, the authors analyzed the reflectance of
light according to wavelength and found that the lowest reflectance was observed in the
wavelength range between 400 and 600 nm when only the ITO was deposited. DLARCs
technology was demonstrated for further minimizing reflections to increase the efficiency
of the solar cell. Based on the simulation, we compared the solar cell parameters before and
after Al2O3 deposition. For all SHJ solar cells, when Al2O3 was deposited, the reflectance
in the wavelengths from 400 to 600 nm was increased, while that in the other wavelengths
range was decreased. These reflectance changes showed an effect in the total reflectance
changes, resulting in changes in the JSC. The maximum increase in JSC of 1.5 mA/cm2 was
observed in the cell with a 20 nm-thick Al2O3 layer, resulting in the highest efficiency of
23%. The J–V curve of the SHJ solar cell before and after the Al2O3 deposition showed an
increase in JSC after the deposition. Accordingly, Al2O3 deposition can be a steppingstone
to improve the current density as well as the reliability of the solar cell modules.
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