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Abstract: Singlet oxygen (1O2), representing an important reactive oxygen species, has promising
applications in biomedical, material, and environmental sciences. Photosensitized production of
1O2 using organic dyes is highly desirable and the exploration of highly efficient photosensitizers
has received considerable attention. Herein, two tridentate Pt(II) complexes, i.e., cationic 1(PF6) and
neutral 2, modified with the ethynylnaphthalimide chromophore, were designed and prepared for
the application in 1O2 generation. Spectroscopic studies and computational results suggest that 1(PF6)
and 2 display the lowest-energy absorption bands centered at 435–465 nm with the molar extinction
coefficients of 0.6–3.2 × 104 M−1 cm−1, originating from the singlet ligand-to-ligand charge transfer
(1LLCT) and a mixture of 1LLCT and singlet ligand-centered (LC) transitions, respectively. Moreover,
they show similar phosphorescence at 620–640 nm assigned to the Pt-perturbed triplet LC emission
of the ethynylnaphthalimide moiety. Thanks to the relatively long phosphorescence lifetimes, these
complexes exhibit O2-dependent phosphorescence intensities with good reversibility and stability.
They are able to behave as efficient triplet photosensitizers to promote the 1O2 generation with high
quantum yields (84–89%). This work indicates that the combination of an organic chromophore with
Pt(II) complexes provides an effective method to obtain photosensitizers for 1O2 generation.

Keywords: Pt(II) complexes; naphthalimide; photosensitizers; singlet oxygen; energy transfer

1. Introduction

Singlet oxygen (1O2), the lowest excited state of the dioxygen molecule, represents an
important reactive oxygen species and has attracted great interest in biomedical, material,
and environmental sciences due to its extensive applications in photodynamic therapy
(PDT), fine chemical synthesis, wastewater treatment, etc. [1–4]. Up until now, a number
of chemical and photochemical methods have been developed for the in situ generation
of 1O2. Among them, photosensitized production of 1O2 using various dyes (also called
photosensitizers) is more prevalent [5–7]. As briefly illustrated in Figure 1a, upon pho-
toexcitation, the photosensitizer (PS) is first converted to its lowest singlet excited state
(S1) followed by rapid transition to the lowest triplet excited state (T1) via fast intersystem
crossing (ISC). If effective collision of PS with surrounding O2 takes place at this moment,
the ground triplet-state O2 (3Σg) is subsequently excited to generate 1O2 (1∆g) through
energy transfer (EnT) from the T1 of PS to the 3Σg state of O2 [8–10]. For an ideal PS, several
characteristics should be met, including strong absorption, high ISC efficiency and long
triplet excited-state lifetime (τT), good photostability, etc. [11,12].
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Over the past few decades, several kinds of classical PSs have been explored and ad-
equately investigated, such as aromatic hydrocarbons, quinones, porphyrins, phthalocy-
anines, borondipyrromethenes, and transition metal complexes [13–20]. Among them, 
transition metal complexes, especially Ru(II), Ir(III), Pt(II), and Au(I) complexes, exhibit 
advantages including large ISC rates benefiting from the strong spin-orbit coupling (SOC), 
rich coordination modes, and excellent structural modification abilities, endowing them 
with potential photosensitizing function [Error! Reference source not found.–24]. In view 
of the larger SOC constant (ζ = 4481 cm−1) of the Pt atom relative to other transition metals 
and the fascinating photophysical properties of related complexes [25–27], Pt(II) com-
plexes become one of the most promising PSs. A certain number of Pt(II) complexes have 
been reported to display high quantum yields of 1O2 generation (Φ∆). Nonetheless, some 
drawbacks, e.g., short absorption wavelengths (≤450 nm), low molar absorptivities (≤104 
M−1 cm−1), and short triplet excited-state lifetimes, are found in these complexes. Therefore, 
continuous studies on these complexes to further improve their photosensitizing perfor-
mances are necessary [28–33]. 

 
Figure 1. (a) Simplified 1O2 generation mechanism via energy transfer process from PS to 3O2 (left) 
and electronic configurations of the ground state (3Σg) and first (1∆g) and second (1Σg) excited states 
of O2 (right). ISC: intersystem crossing; EnT: energy transfer; FL: fluorescence; PL: phosphorescence. 
(b) Previously reported naphthalimide-Pt(II) PSs 3–5 (upper) and two analogues, 1(PF6) and 2, stud-
ied in this work (lower). The quantum yield for 1O2 generation in CH3CN is indicated for each PS. 

In order to address the issues mentioned above, one straightforward approach is at-
taching a suitable light-harvesting chromophore with strong absorptivity to the metal 
component though a π-conjugated bond [11,33–36]. For instance, Zhao and coworkers 
prepared bidentate (N^N)-Pt(II) complex 3 with two ethynylnaphthalimide ligands, dis-
playing a prolonged τT of up to 64 µs (in N2-saturated solution) and higher Φ∆ of 89% in 
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Figure 1. (a) Simplified 1O2 generation mechanism via energy transfer process from PS to 3O2 (left)
and electronic configurations of the ground state (3Σg) and first (1∆g) and second (1Σg) excited states
of O2 (right). ISC: intersystem crossing; EnT: energy transfer; FL: fluorescence; PL: phosphorescence.
(b) Previously reported naphthalimide-Pt(II) PSs 3–5 (upper) and two analogues, 1(PF6) and 2,
studied in this work (lower). The quantum yield for 1O2 generation in CH3CN is indicated for
each PS.

Over the past few decades, several kinds of classical PSs have been explored and
adequately investigated, such as aromatic hydrocarbons, quinones, porphyrins, phthalo-
cyanines, borondipyrromethenes, and transition metal complexes [13–20]. Among them,
transition metal complexes, especially Ru(II), Ir(III), Pt(II), and Au(I) complexes, exhibit
advantages including large ISC rates benefiting from the strong spin-orbit coupling (SOC),
rich coordination modes, and excellent structural modification abilities, endowing them
with potential photosensitizing function [21–24]. In view of the larger SOC constant
(ζ = 4481 cm−1) of the Pt atom relative to other transition metals and the fascinating photo-
physical properties of related complexes [25–27], Pt(II) complexes become one of the most
promising PSs. A certain number of Pt(II) complexes have been reported to display high
quantum yields of 1O2 generation (Φ∆). Nonetheless, some drawbacks, e.g., short absorp-
tion wavelengths (≤450 nm), low molar absorptivities (≤104 M−1 cm−1), and short triplet
excited-state lifetimes, are found in these complexes. Therefore, continuous studies on these
complexes to further improve their photosensitizing performances are necessary [28–33].

In order to address the issues mentioned above, one straightforward approach is
attaching a suitable light-harvesting chromophore with strong absorptivity to the metal
component though a π-conjugated bond [11,33–36]. For instance, Zhao and coworkers
prepared bidentate (NˆN)-Pt(II) complex 3 with two ethynylnaphthalimide ligands, dis-
playing a prolonged τT of up to 64 µs (in N2-saturated solution) and higher Φ∆ of 89% in
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CH3CN relative to those (τT = 0.98 µs; Φ∆ = 38%) of a Pt(II)-ethynylbenzene analogue [35].
Similarly, they reported two tridentate (NˆNˆC)- and (NˆN*C)-Pt(II) complexes, 4 and 5,
modified with an ethynylnaphthalimide ligand to present a moderate Φ∆ of 57% and 65%
in CH3CN, respectively [36]. Herein, two tridentate Pt(II) complexes, cationic 1(PF6) and
neutral 2 distinguished by an NˆNˆN and cyclometalated NˆNˆC coordination mode, re-
spectively, are presented. Both of them contain an appended ethynylnaphthalimide moiety
as an additional chromophore to modulate their photophysical properties. Spectroscopic
measurements demonstrate that 1(PF6) and 2 show strong visible absorptions extending to
ca. 550 nm and improved phosphorescence lifetimes. Meanwhile, their distinct responses
to triplet oxygen (3O2) accompanied by the dramatic decrease in the phosphorescence
intensities and highly efficient in situ generation (Φ∆ = 84–89%) of 1O2 via EnT are clearly
detected and fully discussed.

2. Results and Discussion
2.1. Synthesis and X-ray Single-Crystal Diffraction Analysis

As outlined in Scheme 1, two Pt(II) complexes, 1(PF6) and 2, were prepared with the
one-step ancillary ligand exchange reaction of 2-dodecyl-6-ethynyl-1H-benzo[de]isoquinoline-
1,3(2H)-dione (NI) with the cationic precursor [(tpy)PtCl]Cl (tpy represents 2,2′:6′,2′′-
terpyridine) and the neutral precursor (pbpy)PtCl (pbpy denotes 6-phenyl-2,2′-bipyridine),
with the assistance of KOH and a catalytic amount of CuI in a 76% and 88% yield, respec-
tively. Their molecular structures were fully characterized with proton nuclear magnetic
resonance (1H NMR) spectroscopy, high-resolution mass spectrometry (HRMS), and an ele-
mental analysis (details are given in the Section 3). The introduction of the long alkyl chain
(n-C12H25) into the NI ligand and the resulting complexes can significantly improve their
solubilities in common organic solvents, and thus facilitate the separation and purification
of these materials.
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crystallographic data are summarized in Table S1 and the molecular structure and stack-
ing model are shown in Figures 2 and S1. The planar Pt component and the ethynylnaph-
thalimide fragment are linked together with a large dihedral angle of ca. 81° via a Pt-C σ-
bond with a length of 1.97 Å (Pt1-C70). This means that these two components are almost 
perpendicular to each other. The Pt-C σ-bond of Pt with the cyclometalating ligand (Pt1-
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Scheme 1. Synthetic routes to 1(PF6) and 2. Conditions: A. (i) KOH, CH3OH, 0.5 h; (ii) CuI,
[(tpy)PtCl]Cl, rt, overnight; (iii) sat. KPF6 (aq.). B. (i) KOH, CH3OH, 0.5 h; (ii) CuI, (pbpy)PtCl,
CH2Cl2, rt, overnight.

A single crystal of 2 suitable for the X-ray diffraction analysis was successfully ob-
tained with slow diffusion of ethyl ether into the solution of 2 in CH2Cl2. The relevant
crystallographic data are summarized in Table S1 and the molecular structure and stacking
model are shown in Figures 2 and S1. The planar Pt component and the ethynylnaphthal-
imide fragment are linked together with a large dihedral angle of ca. 81◦ via a Pt-C σ-bond
with a length of 1.97 Å (Pt1-C70). This means that these two components are almost perpen-
dicular to each other. The Pt-C σ-bond of Pt with the cyclometalating ligand (Pt1-C10) has a
slightly longer length of 2.063 Å. The two Pt-N bonds have a length of 2.000 Å (Pt1-N8; with
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the middle pyridine of the tridentate ligand) and 2.062 Å (Pt1-N20; with the side pyridine),
respectively (Figure 2a). These bond lengths are consistent with those of known tridentate
Pt(II)-acetylene analogues [37,38]. Additionally, complex 2 crystallizes in a triclinic P1
space group with two molecules being included in one unit cell. In the crystal packing, a
type of chain-like supramolecular polymer is formed via the alternate π–π stackings of two
intermolecular naphthalimide moieties with a distance of 3.47 Å and two cyclometalated Pt
components with a distance of 3.305 Å, respectively. No effective metallophilic interaction
is present in the crystal structure as the shortest detected intermolecular Pt···Pt distance is
about 5.11 Å, which is much longer than the van der Waals contact distance of 3.5 Å of two
Pt atoms (Figures 2b and S1).
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Figure 2. Single-crystal structure of 2 with thermal ellipsoids at 50% probability level. (a) A single
molecule viewed from the c axis. (b) A supramolecular polymeric structure formed with alternate
π−π stackings of naphthalimide moieties (blue circle) and cyclometalated Pt components (red circle).
Hydrogen atoms and counteranions (PF6

−) are omitted for clarity. Selected bond lengths (Å)—Pt1-N8:
2.000, Pt1-N20: 2.062, Pt1-C10: 2.063, Pt1-C70: 1.970, C70-C69: 1.189, C69-C59: 1.437. Selected bond
or torsion angles (◦)—∠N8-Pt1-N20: 80.464, ∠N8-Pt1-C10: 79.603, ∠N8-Pt1-N70: 178.384, ∠N20-Pt1-
C10: 160.050, ∠N20-Pt1-C70: 100.698, ∠C10-Pt1-C70: 99.215, ∠Pt1-C70-C69: 176.731, ∠C70-C69-C59:
174.449, ∠N20-N8-C10-Pt1: 0.656, ∠C70-C57-N64-C60: 8.915, ∠C57-C59-Pt-C10: 81.411.

2.2. Steady-State Absorption and Emission Spectroscopies

UV-Vis absorption and steady-state emission properties of 1(PF6) and 2 were first
investigated in 1,2-dichloroethane (DCE) with a concentration of 5 × 10−5 M (Figure 3
and Table 1). These two complexes display a series of intense absorption bands in the
monitored spectral region of 250–600 nm with the molar extinction coefficients (εmax) of
0.6–3.1 × 104 and 2.0–4.6 × 104 M−1 cm−1, respectively (Figure 3a,c). With reference to
previous reports [37–40], the high-energy vibronic-structured absorptions of 1(PF6) and
2 with the absorption maximum (λabs) below 380 nm are mainly ascribed to the ligand-
centered (1LC) 1π→π* transitions of the NI moiety, tpy and pbpy ligands, while the broad
absorptions in the range of 380–550 nm can be assigned to an admixture of 1LC/charge-
transfer (1CT) transitions. In comparison with precursors [(tpy)PtCl]Cl and (pbpy)PtCl,
complexes 1(PF6) and 2 show red-shifted absorptions with distinctly enhanced molar
absorptivities in the lower-energy region, which are also more intense than those of related
Pt(II)-phenylacetylide complexes. This reflects the effective electronic interaction between
the Pt component and the NI moiety, leading to the appearance of new CT absorptions.
The specific assignments with more detailed information will be further discussed later
with the aid of time-dependent density functional theory (TD-DFT) calculations.
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Figure 3. (a,c) UV-Vis absorption and (b,d) steady-state emission of [(tpy)PtCl]Cl (non-emissive),
(pbpy)PtCl, NI, 1(PF6), 2 in air-equilibrated (containing about 21% O2) or N2-saturated DCE
(5 × 10−5 M). Inset: photos of 1(PF6) and 2 solutions in DCE under air-equilibrated and N2-saturated
conditions upon 365 nm irradiation. Excited at 385 nm for 1(PF6) and 435 nm for 2 at rt for emis-
sion spectra.

Table 1. Photophysical parameters 1.

Parameter

Compound 1(PF6) 2 NI

DCE CH3CN DCE CH3CN DCE

λabs (nm)/ε(104 M−1 cm−1)

465/0.6
389/2.4
348/2.1
286/3.1

435/1.3
385/2.6
343/2.1
282/3.4

437/3.2
412/2.9
335/2.0
282/4.6

440/1.7
405/1.3
330/0.9
279/2.1

366/2.0
350/2.2

λem (nm) 620 618 640 636 400

τ (µs) air/N2 0.6/4.8 0.27/3.2 0.72/7.0 0.24/1.65 3 × 10−4/--
Φ 2 (%) air/N2 0.3/1.9 --/0.4 0.3/1.9 0.1/0.9 8.1/--

kr
3 (103 s−1) air/N2 5.0/4.0 --/1.2 4.2/2.7 4.2/5.4 2.7 × 105/--

knr
4 (105 s−1) air/N2 16.6/2.0 --/3.1 13.8/1.4 41.6/6.0 30.6 × 103/--

kq
5 (108 M−1 s−1) 9.1 18 7.8 19 --

Φ∆
6 (%) -- 89 -- 84 --

PT,O2
7 (%) -- 92 -- 85 --

f T,∆
8 (%) -- 97 -- 99 --

1 Monitored in specific solution with the concentration of 5 × 10−5 mol L−1. The mark of “--” denotes “No deter-
mined”. 2 Absolute quantum yield. 3 kr = Φ/τ. 4 knr = (1 − Φ)/τ. 5 Phosphorescence quenching rate constant
by air (containing about 21% O2). 6 Quantum yield of 1O2 generation with respect to that of [Ru(bpy)3]Cl2 in
CH3CN (Φ∆ = 57%). 7 The proportion of triplet excited state of PS quenched with 3O2. 8 The fraction of the triplet
state of PS quenched with 3O2, which leads to 1O2 generation.

The NI ligand shows a 1LC emission band at 400 nm (Figure 3b). Complex (pbpy)PtCl
displays a triplet LC (3LC) emission band at 560 nm (Figure 3d) [41], while complex
[(tpy)PtCl]Cl is non-emissive at rt [42,43]. In comparison, complexes 1(PF6) and 2 display a
similar lower-energy emission with vibronic characteristics in DCE (5 × 10−5 M). Under
the air-equilibrated condition, the emission of 1(PF6) locates at 620 nm with an absolute
quantum yield (Φair) of 0.3% and lifetime (τair) of 0.6 µs, and the emission of complex
2 is observed at 640 nm with Φair of 0.3% and τair of 0.72 µs. Meanwhile, at the N2-
saturated condition, both emissions exhibit a distinct intensity enhancement (ΦN2 = 1.9%)
and elongated lifetimes with τN2 of 4.8 and 7.0 µs, respectively (Tables 1 and S2). These
properties are superior to those of two Pt(II) precursors and reported Pt(II)-phenylacetylide
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analogues [37–39]. The highly O2-dependent emissions indicate their phosphorescence
features. In accordance with the previous works [36,40,44] and TD-DFT calculations, the
phosphorescences of 1(PF6) and 2 are considered to stem from the Pt-perturbed 3π→π*(3LC)
transition of the NI fragment (see further discussions in following section). Furthermore,
benefiting from the long lifetimes of triplet excited states and the good photostability of
1(PF6) and 2, their phosphorescence emissions showed a good reversibility in response
to the alternate saturation with N2 and air (containing about 21% O2). Under repeated
treatment with N2 and air for eight cycles, the phosphorescence intensity showed no
apparent attenuation, indicative of their potentials for O2 sensing (Figure S2).

Considering that the 1O2 generation experiment is often measured in CH3CN [3,9],
other than DCE, the comparative study of the spectroscopic properties of 1(PF6) and 2
in these two solvents was subsequently conducted (Figure S3). For cationic 1(PF6), the
lowest energy absorption band displays a distinct hypsochromic shift from 465 nm in
DCE to 437 nm in the more polar CH3CN. The negative solvatochromic effect suggests
that the dipole moment of 1(PF6) in the ground state is larger with respect to that in the
excited state and the ground-state molecules are better stabilized with solvation than the
excited-state molecules [44,45]. In contrast, the absorptions of neutral 2 in DCE and CH3CN
display an insignificant spectral change. In a sense, the obvious solvent polarity-dependent
absorption spectral shift of 1(PF6) points to its more CT-contributed character of the lowest-
lying singlet electronic transition relative to that of 2. Unlike the absorption spectra, the
phosphorescence profiles of 1(PF6) and 2 almost remain unchanged in these two solvents
under air/N2-satured conditions, indicative of their dominant 3LC transition characters as
mentioned above.

2.3. Theoretical Calculations

To further elucidate the electronic structures of 1(PF6) and 2, DFT and TD-DFT calcu-
lations were carried out. In order to save time and cost, the calculations were performed on
the two corresponding model complexes, [Me-1]+ and Me-2, with a methyl group as the
substituent on the nitrogen atom of the NI fragment. The crystallographic data of 2 were
used to build the initial structures for the geometry optimization of [Me-1]+ and Me-2 at
the ground state (S0) and the lowest-lying triplet state (T1). The DFT-optimized structures
of Me-2 and [Me-1]+ at the ground state show smaller dihedral angles between NI and the
Pt fragments with respect to that of 2 in the crystal state (Figure S4). The highest occupied
molecular orbitals (HOMOs) are mainly related to the ethynylnaphthalimide moiety (89%
for [Me-1]+ and 82% for Me-2) with a minor contribution of Pt (8.2% for [Me-1]+ and
13.6% for Me-2). The lowest unoccupied molecular orbital (LUMO) of [Me-1]+ is primarily
localized on the tpy fragment (86%) with a minor distribution on Pt (5.6%), but that of
Me-2 has almost equal contributions from pbpy (50%) and NI fragments (46%) with a little
participation of Pt (4%) (Figure 4c,d). More detailed information on the frontier molecular
orbitals of [Me-1]+ and Me-2 is displayed in Figures S5 and S6.

In order to obtain insight into the excited state characters of 1(PF6) and 2, TD-DFT
calculations were performed for the optimized S0 structures of Me-2 and [Me-1]+, and the
predicted vertical excitations from S0 to various singlet (Sn) excited states are summarized
in Table 2. The simulated singlet absorption spectra are shown in Figure 4a,b. The S0→S1
excitations were predicted to locate at 470 nm for [Me-1]+ with an oscillator strength (f )
of 0.2487 and at 440 nm with f of 0.3582 for Me-2, respectively. These excitations are in
good agreement with the observed lowest-energy absorption maximum of 465 nm for
1(PF6) and 437 nm for 2, respectively. The S0→S1 excitations of [Me-1]+ and Me-2 are both
dominated by the HOMO→LUMO electronic transitions and they can be interpreted as the
major ligand-to-ligand charge-transfer (1LNILtpyCT) and mixed 1LCNI/1LNILbpyCT (bpy
stands for the bipyridine segment of the pbpy ligand) transitions, respectively, which are in
accordance with the observation of their solvent-dependent absorptions.
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Table 2. Selected TD-DFT-computed singlet vertical excitations from S0 to Sn states based on opti-
mized S0 structure a.

Complexes Electronic
Transitions E (eV) λ (nm) f Major Transitions

(Percentage) Characters

[Me-1]+ S0→S1 2.64 470 0.2487 HOMO→LUMO (97%) LNILtpyCT/MLtpyCT
S0→S2 3.17 390 0.0114 HOMO→LUMO+1 (97%) LNILtpyCT/MLtpyCT
S0→S3 3.20 388 0.4426 HOMO→LUMO+2 (57%)

HOMO−1→LUMO (40%)
LCNI
MLtpyCT/LNILtpyCT

S0→S4 3.28 378 0.1013 HOMO−1→LUMO (55%)
HOMO→LUMO+2 (41%)

MLtpyCT/LNILtpyCT
LCNI

Me-2 S0→S1 2.81 440 0.3582 HOMO→LUMO (93%) LCNI/LNILbpyCT/MLbpyCT
S0→S2 2.92 424 0.0019 HOMO−1→LUMO (71%)

HOMO−1->LUMO+1 (24%)
ILpbpyCT/LbpyLNICT
ILpbpyCT/LbpyLNICT

S0→S3 3.03 408 0.4450 HOMO→LUMO+1 (84%) LCNI/LNILbpyCT/MLbpyCT
a Calculation method: PBE1PBE/6-311G*/SDD.

Furthermore, the spin density distributions of [Me-1]+ and Me-2 were calculated on
the optimized T1 geometries to probe the natures of the phosphorescence of 1(PF6) and 2
(Figure 5). The results show that the spin densities are mainly distributed on the π-orbitals
of the ethynylnaphthalimide moiety with a minor involvement of the d-orbital of Pt metal.
On the basis of these results, we tentatively assign the low-energy phosphorescence of
1(PF6) and 2 to the Pt-perturbed 3LC transition of the ethynylnaphthalimide segment.
This assignment is consistent with the fact that the phosphorescence of complexes 1(PF6)
and 2 involves similar solvent polarity-independent vibronic structures and emission
wavelength range.
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2.4. Singlet Oxygen Generation

The small triplet radiative transition rate constants (kr), even at the N2-saturated
condition, which is 4 × 103 s−1 for 1(PF6) and 2.7 × 103 s−1 for 2, respectively, result in
their low ΦN2 of ca. 1.9% (Table 1). Moreover, ΦN2 as well as the average τ are further
diminished under the air-equilibrated condition along with the relatively large nonradiative
transition rate constants (knr in the order of 106 s−1). The phosphorescence diminishment
under the air-equilibrated condition can be rationalized with Equation (1) as a result of the
emission quenching with 3O2 [46].

τN2

τair
=

ΦN2

Φair
= 1 + kqτN2[O2] (1)

wherein [O2] represents the concentration of 3O2 and is taken as 1.6 × 10−3 M in air-
equilibrated DCE at rt [47] and τN2 and τair are phosphorescence lifetimes under N2-
saturated and air-equilibrated conditions, respectively. On the basis of Equation (1),
the phosphorescence quenching rate constants (kq) were calculated to be ca. 9.1 and
7.8 × 108 M−1 s−1 for 1(PF6) and 2, respectively, which are comparable with those of other
known Pt analogues [28,48]. These kq values are around 1/9 of the diffusion-controlled rate
constant (kdiff), given that kdiff is taken to be 8.5 × 109 M−1 s−1 in DCE at rt. This suggests
that the phosphorescences of 1(PF6) and 2 are quenched with 3O2 exclusively through an
EnT process [49]. The similar EnT phosphorescence quenching processes with 3O2 are
also believed to take place in CH3CN ([3O2] = 1.9 × 10−3 M) as the kq of 1(PF6) and 2 in
CH3CN (1.8 and 1.9 × 109 M−1 s−1, respectively) are also around 1/9 of corresponding
kdiff (1.9 × 1010 M−1 s−1). In addition, the excited-state energies of the T1 state (ET1,00) of
1(PF6) and 2 were calculated with ET1,00 = 1240/λemi to be ca. 2.0 and 1.9 eV, respectively,
both of which are larger than the first (1∆g) and second (1Σg) excited-state energies of 1O2
(ca. 1.6 and 1.0 eV, respectively) in non-aqueous solvents [50–52]. This suggests that the
EnT processes from 1(PF6) and 2 to 3O2 are exothermic, leading to the effective generation
of 1O2.

The generation of 1O2 was further quantified by integrating the NIR emission of 1O2 at
1270 nm in air-equilibrated CH3CN of 1(PF6) and 2 in comparison with that of [Ru(bpy)3]Cl2
as the reference compound (Figures 6 and S7). By plotting the emission integrals of 1O2
(IO2) as a function of the absorbances (A) at the excitation wavelength of 435 nm in a series
of solutions of these compounds with variable concentrations, three linearly fitted curves
with different slopes, S(IO2/A), are obtained (Figure 6b). The quantum yields of the 1O2
generation of 1(PF6) and 2 were thus estimated to be 89% and 84%, respectively, according
to Equation (2), in which Φ∆,ref, IO2,ref, Aref, and S(IO2,ref/Aref) are the various parameters
of the reference standard [Ru(bpy)3]Cl2 (Φ∆ = 57% in CH3CN) [49,50]. The determined
Φ∆ of these complexes are comparable with or even higher than those of known tridentate
Pt(II)-arylacetylide analogues [36,53–55].

Φ∆

Φ∆,ref
=

IO2 ×Aref
IO2,ref ×A

=
S(IO2/A)

S(IO2,ref/Aref)
(2)
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Figure 6. (a) Near-infrared (NIR) emission spectra of 1O2 in air-equilibrated CH3CN containing
1(PF6) with different concentrations (sample 1–3) under excitation at 435 nm. (b) The plots and
linearly fitted curves of the integral 1O2 emission at 1270 nm versus the absorbance at 435 nm of
1(PF6) (red), 2 (blue), and [Ru(bpy)3]Cl2 (black) in air-equilibrated CH3CN.

The good linear correlation between the integral of the 1O2 emission intensity and the
absorbance at the excitation wavelength indicates that the triplet–triplet annihilation in
these diluted solutions is negligible. Furthermore, Φ∆ can be expressed with Equation (3):

Φ∆ = ΦTPT,O2 fT,∆ (3)

wherein ΦT is the efficiency of triplet formation and estimated to be unity for 1(PF6) and 2
in view of the strong SOC of the heavy Pt atom. In addition, PT,O2 refers to the proportion
of the triplet excited state quenched with 3O2 and can be estimated to be 92% and 85% for
1(PF6) and 2, respectively, with Equation (4).

PT,O2 = 1− (τAir/τN2) (4)

The values of f T,∆ in Equation (3), standing for the fraction of the triplet state quenched
with 3O2, which leads to the generation of 1O2, are calculated to be ca. 97% and 99% for
1(PF6) and 2, respectively.

3. Experimental Section
3.1. General Information for Synthesis and Characterization

A Bruker Advance 400 MHz spectrometer was employed to measure the 1H NMR
spectra in the designated solvents. The 1H NMR data are reported in ppm with respect to
the residual protons of deuterated solvents. An Autoflex III matrix-assisted laser desorption
ionization time-of-flight (MALDI-TOF) mass spectrometer was used to measure the high-
resolution mass spectra. The elemental analysis was obtained on a Flash EA 1112 or Carlo
Erba 1106 analyzer. Ligand NI and the precursor complexes [(tpy)PtCl]Cl and (pdpy)PtCl
were prepared according to the previous reports [56,57].

Synthesis of 1(PF6). Into a round-bottom flask containing the NI ligand (214 mg,
0.55 mmol, 1.1 equiv) and KOH (56 mg, 1.0 mmol, 2.0 equiv), 20 mL of CH3OH was
injected under a N2 atmosphere. The obtained mixture was stirred at rt for 0.5 h. After
that, [(tpy)PtCl]Cl (250 mg, 0.50 mmol, 1.0 equiv) and CuI (57 mg, 0.30 mmol, 0.60 equiv)
were added and the mixture was bubbled with N2 for 10 min. After stirring at rt overnight,
the mixture was concentrated, followed by the addition of the proper amount of ethyl
ether. The appeared precipitate was collected using filtration. The obtained solid was
then dispersed in 20 mL of CH3OH, followed by the addition of 20 mL of a saturated aq.
KPF6 solution. After stirring for an additional 3 h at rt, the precipitate was collected using
filtration, and washed with H2O, ethyl ether, and CH2Cl2 successively to give 210 mg of
1(PF6) as a red solid in a 76% yield. 1H NMR (400 MHz, DMSO-d6): δ 9.15 (t, J = 4.8 Hz,
2H), 8.80 (t, J = 8.4 Hz, 1H), 8.50–8.70 (m, 5H), 8.47–8.53 (m, 3H), 8.38 (t, J = 7.6 Hz, 1H),
7.88–7.97 (m, 4H), 4.03 (t, J = 7.6 Hz, 2H), 1.64 (t, J = 7.6 Hz, 2H), 1.23–1.33 (m, 18H), 0.85 (t,
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J = 6.8 Hz, 3H). MALDI-HRMS calcd for [M − PF6]+ C41H41N4O2Pt: 816.2877. Found:
816.2875. Anal. Calcd for C41H41F6N4O2PPt·H2O: C, 50.26; H, 4.42; N, 5.72. Found: C,
50.43; H, 4.26; N, 5.70.

Synthesis of 2. Into a round-bottom flask containing the NI ligand (107 mg, 0.28 mmol,
1.1 equiv) and KOH (28 mg, 0.5 mmol, 2.0 equiv), 20 mL of CH3OH was added under a N2
atmosphere. The resulting mixture was stirred at rt for 0.5 h. After that, 20 mL of CH2Cl2
was injected, followed by the addition of (pbpy)PtCl (115 mg, 0.25 mmol, 1.0 equiv) and
CuI (29 mg, 0.15 mmol, 0.60 equiv). The mixture was then bubbled with N2 for 10 min,
and stirred at rt overnight. Into the reaction system, 50 mL of H2O was added and the
mixture was extracted with CH2Cl2 (40 mL× 3). The obtained organic phase was combined.
The crude product was purified with flash column chromatography on silica gel (eluent:
CH2Cl2) to afford 167 mg of 2 as an orange solid in a 88% yield. 1H NMR (400 MHz,
CDCl3): δ 9.26 (d, J = 5.2 Hz, 1H), 9.09 (dd, J = 8.4, 1.2 Hz, 1H), 8.59 (dd, J = 7.2, 1.2 Hz, 1H),
8.52 (dd, J = 8.0 Hz, 1H), 8.09 (td, J = 7.6, 1.6 Hz, 1H), 8.86–8.99 (m, 4H), 7.72 (dd, J = 8.0,
7.2 Hz, 1H), 7.65 (dd, J = 8.0, 1.2 Hz, 2H), 7.60 (dd, J = 7.6, 5.2 Hz, 1H), 7.43 (dd, J = 7.6,
1.2 Hz, 1H), 7.20 (td, J = 7.2, 1.2 Hz, 1H), 7.11 (td, J = 7.6, 1.2 Hz, 1H), 4.18 (t, J = 7.6 Hz,
2H), 1.71–1.79 (m, 2H), 1.26–1.45 (m, 18H), 0.88 (t, J = 6.8 Hz, 3H). MALDI-HRMS calcd for
[M + H]+ C42H42N3O2Pt: 815.2925. Found: 815.2924. Anal. Calcd for C42H41N3O2Pt: C,
61.91; H, 5.07; N, 5.16. Found: C, 61.59; H, 5.05; N, 5.09.

3.2. Information on Other Physical Measurements

A TU-1810DSPC spectrometer of Beijing Purkinje General Instrument Co., Ltd., Beijing,
China., was used to measure the absorption spectra at rt. An F-380 spectrofluorimeter
of Tianjin Gang-dong Sci. & Tech. Development Co., Ltd., Tianjing, China., was used to
measure the luminescence spectra. The excited-state lifetimes were obtained on Quantaurus-
Tau Fluorescence lifetime spectrometer C11367 of Hamamatsu Photonics. The absolute
emission quantum yields were determined on Hamamatsu Quantaurus-QY spectrometer
C11347. Near-infrared 1O2 emission spectra were recorded on an FLS980 spectrometer from
Edinburgh Instruments Co., Ltd. equipped with an NIR photomultiplier tube (NIR-PMT,
R5509) from Hamamatsu Corporation using excitation at 435 nm with a Xe lamp.

X-ray single-crystal crystallography. A Rigaku Saturn 724 diffractometer was em-
ployed to obtain the X-ray diffraction data on a rotating anode (Mo Kα radiation, 0.71073 Å)
at 173 K. The structure was analyzed using the direct method with SHELXS-9758 and re-
fined on Olex 2.59. Crystallographic data are summarized in Table S1.

DFT and TD-DFT calculations. The Gaussian 09 package was employed for the DFT
and TD-DFT calculations with the PBE1PBE exchange correlation functional [58]. The SDD
basis set was used for Pt and 6-311G* for other atoms [26]. For all calculations, the solvent
effect of 1,2-dichloroethane was taken into account using the self-consistent reaction field
(SCRF) and solvent model based on density (SMD) [59].

4. Conclusions

In conclusion, two tridentate Pt(II) complexes, i.e., cationic 1(PF6) and neutral 2, modi-
fied with an ethynylnaphthalimide chromophore, were successfully synthesized and char-
acterized. These complexes possess strong UV-Vis absorptions and vibronically structured
phosphorescence emissions at 620–640 nm in nonpolar DCE and polar CH3CN. Theoretical
calculations suggest that the lowest-energy absorption bands of 1(PF6) and 2 are mainly
associated with the 1LNILtpyCT and mixed 1LCNI/1LNILbpyCT transitions, respectively,
while their low-energy phosphorescences are both associated with the 3LC transition of the
ethynylnaphthalimide moiety. Benefiting from the long lifetimes of phosphorescence, these
two complexes exhibit highly sensitive and reversible responses to O2 with the high-yield
generation (84–89%) of 1O2 via an EnT process. Thus, these complexes have potential for
O2 sensing and PDT in the future.
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Table S2: Detailed lifetime data; Figure S1: Molecular dimer in one unit cell and the stacking
model of 2; Figure S2: Responsibility of phosphorescence intensity of 1(PF6) and 2 upon repeated
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Figure S4: Single-crystal structure of 2 and optimized structures of [Me-1]+ and Me-2 at ground state;
Figures S5 and S6: Isodensity plots of frontier molecular orbitals (MOs) of [Me-1]+ and Me-2, respec-
tively; Figure S7: Absorption and NIR emission of 1O2 generated with photosensitization of 1(PF6)
and 2 and reference [Ru(bpy)3]2+ in CH3CN with different diluted concentrations; Figures S8–S11: 1H
NMR and MS spectra of 1(PF6) and 2; Data S1: cartesian coordinates of DFT-optimized S0 and T1
structure of [Me-1]+ and Me-2.
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