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Abstract: Although boron dipyrromethene (BODIPY)-based metallacycles are expected to be promis-
ing candidates for imaging probes and therapeutic agents, their biomedical applications are restricted
by their short absorption/emission wavelengths. In this work, we report a rhombic metallacycle
M with broad absorption in the near-infrared (NIR) range and emissions at wavelengths >800 nm,
which exhibits an efficient photothermal conversion capacity. Metallacycle M was encapsulated
via Pluronic F127 to fit the biotic environment, resulting in the generation of F127/M nanoparticles
(NPs) with high hydrophilicity and biocompatibility. In vitro studies demonstrated that the F127/M
NPs underwent efficient cellular uptake and exhibited satisfactory photothermal therapeutic activity.
Furthermore, in vivo experiments revealed that tumor growth was effectively inhibited, and the
degree of undesirable biological damage was minimal in treatment with F127/M NPs and laser
irradiation. Finally, the F127/M NPs could be visualized through NIR fluorescence imaging in living
mice, thereby allowing their distribution to be monitored in order to enhance treatment accuracy
during photothermal therapy. We envision that such BODIPY-based metallacycles will provide
emerging opportunities for the development of novel therapeutic agents for biomedical applications.

Keywords: metallacycle; boron dipyrromethene; photothermal therapy

1. Introduction

Coordination-driven self-assembly provides a feasible and effective strategy for obtain-
ing metal-organic macrocycles (MOCs) with well-defined morphologies and sizes based on
the metal–ligand bonds present between the organic donors and the metal acceptors [1–5].
On account of the diverse metal centers and ligands available for their construction, MOCs
can be easily constructed from the bottom up [6–9], and they can serve as integrated
function platforms for extensive applications (e.g., optical materials [10–12], chemical
sensors [13–15], catalysis [16,17], bioimaging [18,19], and biotherapy [20,21]) via pre- and
post-self-assembly functional modifications. For example, fluorescent metallacycles with
anticancer potential have attracted widespread interest in medicinal chemistry, not only
because of the adjustable bioactivity of the metal centers and organic ligands, but also due
to the fact that they can be visually localized in vivo [22]. Thus, the judicious selection of
organic donors and metal acceptors plays an essential role in achieving superior fluorescent
metallacycles for theranostics [23,24].

As an extensively investigated organic chromophore, boron dipyrromethene (BOD-
IPY) is of particular interest because of its excellent properties, such as its facile synthesis
and structural diversification, its high absorption coefficients and fluorescence quantum
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yields, its high photostability, and its excellent chemical stability [25–31]. Owing to these
advantages, BODIPYs have been widely applied in photovoltaic devices [32–35], fluo-
rescent probes [36–39], bioimaging [40–42], photodynamic therapy (PDT) [43–46], and
photothermal therapy (PTT) [47–50]. It has been demonstrated that integrating BODIPYs
as building blocks into metallacycles may result in a range of advantages [22]. More
specifically, when well-defined metallacycles are employed, BODIPY units can endow the
metallacycles with fluorescent characteristics and bioactivity, and the photophysical proper-
ties of the formed BODIPY-based metallacycles can be modulated by directional transition
dipole moments or efficient energy transfer. Based on these factors, a number of efforts
were made to develop BODIPY-based metallacycles for bioapplications [23,51–53]. For
example, Huang et al. [54] reported two high-emission platinum(II)-centered metallacycles
containing BODIPY-derived ligands, which were suitable for fluorescence imaging-guided
chemo-photodynamic synergistic therapy upon light irradiation at 400–700 nm. However,
strong absorption in the near-infrared (NIR) region (650–1700 nm) is desirable to allow
deeper penetration and produce minimal biological damage within healthy tissue. To
date, very few BODIPY-based metallacycles have been reported that exhibit intense NIR
absorption [51].

Herein, we describe an NIR-absorbing and emissive metallacycle M constructed
via coordination-driven self-assembly using 120◦ dipyridyl BODIPY ligand 1 and 60◦

phenanthrene-based diplatinum(II) 2 as the building blocks (Scheme 1). Based on a Kno-
evenagel condensation, a N, N-diethyl-4-aminophenyl group was introduced into the
3,5-positions of the BODIPY cores to obtain BODIPY ligands with strong NIR absorption
properties. Due to its NIR emission, the visualization and localization of metallacycle
M were also investigated. Furthermore, metallacycle M was encapsulated in micelles of
Pluronic F127 to produce F127/M nanoparticles (NPs), whose photothermal conversion
behaviors and fluorescent imaging properties were evaluated both in vitro and in vivo. The
tumor growth inhibition ability of the F127/M NPs was also examined to determine the
potential for MOCs to act as versatile platforms for theranostics.
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2. Results and Discussion
2.1. Synthesis of Metallacycle M

As outlined in Scheme S1, BODIPY ligand 1 was initially synthesized via a Kno-
evenagel condensation reaction and a following palladium-catalyzed coupling reaction.
Subsequently, the coordination-driven self-assembly of BODIPY-based 120◦ dipyridyl
donor 1 with phenanthrene-based 60◦ diplatinum(II) acceptor 2 produced rhomboidal
Pt(II) metallacycle M in an excellent yield (>90%). The metallacycle was then characterized
using multinuclear NMR spectroscopy (i.e., 1H and 31P{1H}) and electrospray ionization
time-of-flight mass spectrometry (ESI-TOF-MS). In the 31P{1H} NMR spectrum, a sharp
singlet peak was observed for M at 14.25 ppm, with concomitant 195Pt satellite peaks also
being present (JPt-P = 2674.3 Hz), thereby indicating a single phosphorus environment. In
addition, an upfield shift by 7.33 ppm in comparison with the corresponding signal of
acceptor 2 confirmed the formation of metal–ligand bonds (Figure 1a,b). As shown in the
1H NMR spectrum of M (Figure 1c–e), downfield shifts were observed for the α-pyridyl
Ha protons (i.e., from 8.65 to 8.68 ppm) and for the β-pyridyl Hb proton (i.e., from 7.81
to 7.93 ppm), compared to the corresponding shifts of the free BODIPY-based dipyridyl
ligand 1; these shifts were attributed to the reduced electron densities caused by coor-
dination with the metal. In addition, aromatic protons Hc, Hd, He, and Hf of ligand 1
and aromatic protons H1, H2, and H3 of Pt(II) acceptor 2 shifted upfield. ESI-TOF-MS
provided further evidence of the formation of M, wherein isotopically resolved peaks were
observed at m/z values of 1414.945 and 1023.905, which corresponded to [M−3OTf]3+ and
[M−4OTf]4+, respectively (Figures 1g and S17).
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and (g) experimental (red) ESI-TOF-MS peaks of [M−4OTf]4+.
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2.2. Fabrication and Characterization of F127/M NPs

Owing to the hydrophobicity of M, we introduced F127 for encapsulation via the
precipitation method to yield F127/M NPs with enhanced solubility, biocompatibility,
and tumor accumulation properties. As depicted in Figure 2a,b, transmission electron
microscopy (TEM) and dynamic light scattering (DLS) were used to confirm the mor-
phology and size of the NPs, and both techniques indicated a uniform size of ~150 nm,
thereby indicating their potential for accumulating in tumor tissues owing to the enhanced
permeability and retention (EPR) effect [55]. Furthermore, after three weeks in storage,
it was found that the NP size remained relatively constant, thereby demonstrating their
excellent colloidal stability (Figure 2b). The F127/M NPs displayed broad absorption in
the NIR range from 600 to 900 nm, with a maximum absorption peak being observed at
747 nm in an aqueous solution; this represented a more pronounced red shift compared
to that observed in acetone (i.e., 716 nm). Based on the UV–vis absorption spectrum of
M, the M-loading efficiency of the F127/M NPs was calculated as 10% (Figure S20). In
addition, the maximum emission peak of the F127/M NPs was 820 nm in the NIR-I window
(Figure 2c) and the fluorescent quantum yield was 0.31%.
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Figure 2. (a) TEM image and (b) DLS results for F127/M NPs immediately after preparation and
after three weeks of storage. (c) Normalized UV–vis absorption and fluorescence spectra of the NPs
in water (λex = 660 nm). (d) Relative absorption changes recorded for aqueous solutions of F127/M
NPs or ICG at 745 or 779 nm, respectively, over different irradiation times (660 nm, 1.0 W/cm2).

The colloidal stability of M is an important property of phototherapeutic agents
for applications in vivo, which was measured by M treatment with irradiation. Insignif-
icant changes in 31P{1H} NMR spectra of M were detected after irradiation for 10 min
(Figure S20), indicating the structural stability of M. Furthermore, from comparison be-
tween the relative absorbance changes in F127/M NPs and ICG in aqueous media upon
irradiation, F127/M NPs exhibited better photobleaching resistance, aiding in the mainte-
nance of the phototherapy effect (Figures 2d and S21).

2.3. Photothermal Properties of F127/M NPs

Subsequently, we systematically evaluated the photothermal properties of the F127/M
NPs under 660 nm laser exposure. As shown in Figure 3a–c, upon 660 nm laser irradiation
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for 10 min, the temperature of the F127/M NP solution elevated in a concentration- and
power-density-dependent manner. With an increase in F127/M NP concentration (from 0 to
20 µM), the temperature of the F127/M NP solution eventually rose by 4.3 to 43 ◦C, and it
was 8.4 to 63.9 ◦C warmer upon increasing power density (from 0.3 to 1.8 W/cm2), revealing
efficient photothermal conversion with tunability. Based on the relevant literature [49],
the photothermal conversion efficiency (PCE) of the F127/M NPs was calculated to be
36% based on the cooling process (Figure 3d). Photothermal stability is a necessary factor
for photothermal agents during cancer treatment. Gratifyingly, the F127/M NPs were
confirmed to possess high photothermal stability, as demonstrated by the results that the
temperature elevation of the F127/M NP aqueous solution remained unaltered after five
heating/cooling cycles (Figure 3e). Overall, these results indicate that the F127/M NPs
possessed efficient photothermal conversion properties and high photostability, which are
beneficial for their use as promising photothermal agents.
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Figure 3. (a) Photothermal conversion of F127/M NPs (20 µM) under laser irradiation at different
power densities (660 nm, 0.3–1.8 W/cm2). (b) Photothermal conversion of F127/M NPs at different
concentrations (5–20 µM) under laser irradiation (660 nm, 1.0 W/cm2). (c) Photothermal conversion
of F127/M NPs at different concentrations (0 and 20 µM) under laser irradiation (660 nm, 1.0 W/cm2).
Insert: IR thermal images of F127/M NPs. (d) Photothermal heating curves of F127/M NPs under
irradiation (660 nm, 1.8 W/cm2) for 10 min and subsequent natural cooling. (e) Time constants for
calculation of the PCE by applying the linear time data from the cooling period to the negative natural
logarithm of temperature. (f) Photothermal stability of F127/M NPs under laser irradiation (660 nm,
1.0 W/cm2) over five heating/cooling cycles. (g) IR thermal images of F127/M NPs following
irradiation at different laser power densities (660 nm, 0.3–1.8 W/cm2).

2.4. In Vitro Photonic Cytotoxicity and Antitumor Therapy

To determine the in vitro photonic cytotoxicity of the FM127/M NPs, we initially
assessed their cellular uptake via flow cytometry (FCM). As shown in Figure 4a, the
group treated with F127/M NPs exhibited an extremely higher fluorescence intensity
than the control group, thereby indicating that the F127/M NPs could successfully enter
the cells. In addition, the quantitative mean fluorescence intensity (MFI) also intuitively
verified their cellular internalization (Figure 4b). Based on these observations and the
satisfactory photothermal properties of the F127/M NPs, we were encouraged to investigate
their efficacy at the cytological level. Thus, the phototoxicity and dark toxicity of the
F127/M NPs in U87 cancer cells were examined using an MTT assay (Figure 4c). >80% cell
viability was observed, even at high concentrations of F127/M NPs in darkness, thereby
indicating the good biocompatibility of the F127/M NPs. In contrast, under 660 nm laser
irradiation at 1.0 W/cm2, the cell viability gradually decreased with an increase in F127/M
NP concentration, which suggested dose-dependent cytotoxicity. To further verify the
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phototherapeutic properties of the F127/M NPs, calcein-AM (green) and propidium iodide
(PI, red) dyes were used to perform live–dead cell co-staining fluorescence experiments.
As shown in Figure 4d, the control group (without the F127/M NPs) exhibited a uniform
and bright green fluorescence even under laser irradiation, indicating that essentially no
cell damage occurred under laser irradiation alone. In addition, the green fluorescence
of the F127/M NP group demonstrated their stability in darkness. However, distinct red
fluorescence was observed in the U87 cells treated with the F127/M NPs plus irradiation
(660 nm, 1.0 W/cm2), and the area of red fluorescence increased upon increasing the NP
concentration from 20 to 40 µg/mL. These results therefore confirm the strong photothermal
potential of the F127/M NPs, which demonstrates their potential for use in PTT applications
in vivo.
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1.0 W/cm2, 30 s). (d) Calcein-AM-/PI-containing fluorescence imaging of U87 cells after different
treatments. Laser irradiation: 660 nm, 1.0 W/cm2, 5 min. Scale bar: 50 µm.

2.5. In Vivo Imaging and Antitumor Effect

In vivo imaging is essential for both drug localization and tumor phototherapy. The
intense absorption and emission provided by F127/M NPs in the NIR region indicated
their strong potential for use in fluorescence imaging in vivo. Thus, we injected U87 tumor-
bearing mice with F127/M NPs or PBS and evaluated the fluorescence images recorded
over time (i.e., 1, 4, 8, 16, and 24 h). As shown in Figure 5a,b, the fluorescence signal
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in the group treated with F127/M NPs gradually increased at the tumor site over time,
reaching the brightest red fluorescence after 24 h. Subsequently, the effective accumulation
of F127/M NPs in tumors was further verified by ex vivo fluorescence imaging of a tumor
and of the major organs (i.e., heart, liver, spleen, lung, and kidney). As shown in Figure 5c,d,
the F127/M NPs mainly accumulated in the liver and in the tumor, which was likely due
to hypermetabolism in the mouse models, in addition to the EPR effect described above.
These results indicate that F127/M NPs could effectively accumulate at the tumor site, and
the fluorescent signal could be used to offer therapeutic guidance and enhance the in vivo
antitumor effects of this system.
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Encouraged by the remarkable in vitro anticancer activity and in vivo imaging results
obtained for the F127/M NPs, we further evaluated their PTT efficiency using the U87
tumor-bearing mouse model in vivo (Figure 5e). PBS or F127/M NPs were injected intra-
tumorally into U87 tumor-bearing mice, followed by laser irradiation treatment (660 nm,
1.0 W/cm2) at a post-administration time of 10 min. Subsequently, tumor volume and
mouse body weight were recorded every 2 d for 14 d. As shown in Figure 5f, in the absence
of irradiation, both PBS and F127/M NP groups exhibited the fastest tumor growth among
the various groups, with the tumor volumes reaching ~3100 mm3. The PBS + Laser group
also showed rapid tumor growth, but it was slower compared to the above two groups.
This was likely due to the fact that continuous laser irradiation at 1.0 W/cm2 was capable
of producing a slight temperature increase, thereby inhibiting tumor growth to a certain
extent. In contrast, the F127/M NP + Laser group demonstrated significant suppression
of tumor growth in mice within the 14 d period. The photographic images recorded for
the four mouse tumor groups after 14 d directly confirmed that the F127/M NPs could
effectively inhibit tumor growth under constant laser irradiation (Figure S22). Finally, to
examine the biosafety of the F127/M NPs, we evaluated their systemic toxicity based on
the mouse body weight from U87 tumor-bearing nude mice after the different treatments.
During the 14 d experimental period, the body weights of all mice gradually increased
(Figure 5g), which indicates that the F127/M NPs could be used as biocompatible and
biosafe anticancer agents for tumor therapy.

3. Conclusions

In summary, a near-infrared (NIR) boron dipyrromethene (BODIPY)-based rhom-
boidal metallacycle M was successfully formed by the coordination-driven self-assembly of
strongly NIR-absorbing BODIPY ligands and phenanthrene-based Pt(II) acceptors, which
not only served as diagnostic agents for bioimaging, but also could be utilized as a class
of efficient photothermal reagents for photothermal therapy. In addition, following en-
capsulation by Pluronic F127, the F127/M nanoparticles (NPs) demonstrated enhanced
photothermal performance with a high photothermal conversion efficiency of 36% and
remarkable photobleaching resistance. In vitro studies showed that the F127/M NPs, with
good biocompatibility, were successfully taken up by tumor cells, and that under laser
irradiation, they selectively and efficiently damaged these cells. Moreover, the F127/M
NPs also exhibited excellent antitumor PTT effects in vivo. Ultimately, this work presents a
strategy for the construction of diagnostic and therapeutic agents through a BODIPY-based
metallacycle, wherein the properties can be modulated by varying the individual build-
ing blocks rather than the overall design. Therefore, this work inspires insight into the
development of metallacycle-based imaging-guided therapeutic agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10060080/s1, Scheme S1: Synthetic route to M and
chemical structures of compounds; Figure S1–S19: NMR spectra, ESI-HRMS spectra, FT-IR spectra
and fluorescence spectra; Figure S20: (a) Concentration-dependent absorbance and (b) the standard
curve of M in acetone; Figure S21: UV–vis absorption spectra and 31P{1H} NMR spectra; Figure S22:
Photographs of U87 tumor-bearing nude mice. [49,56,57].
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