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Abstract: This study combined density functional theory (DFT) calculations and multivariate linear
regression (MLR) to analyze the monomer poisoning effect in ethylene/polar monomer copolymer-
ization catalyzed by the Brookhart-type catalysts. The calculation results showed that the poisoning
effect of polar monomers with relatively electron-deficient functional groups is weaker, such as ethers,
and halogens. On the contrary, polar monomers with electron-rich functional groups (carbonyl,
carboxyl, and acyl groups) exert a stronger poisoning effect. In addition, three descriptors that signifi-
cantly affect the poisoning effect have been proposed on the basis of the multiple linear regression
model, viz., the chemical shift of the vinyl carbon atom and heteroatom of polar monomer as well as
the metal-X distance in the σ-coordination structure. It is expected that these models could guide the
development of efficient catalytic copolymerization system in this field.

Keywords: density functional theory; multivariate linear regression; poisoning effect of polar
monomers; Brookhart-type catalysts

1. Introduction

Compared with the polyolefins, the incorporation of polar monomers into nonfunction-
alized polyolefin backbones can significantly improve various properties of polymers, such
as flexibility, adhesion, protective properties, surface properties, solvent resistance, which
leads to expanding the range of applications [1–6]. It is well known that metal-catalyzed
coordination-insertion copolymerization of olefinic hydrocarbons with polar monomers is
the most convenient and economical synthetic strategy. Generally, the early-transition-metal
complexes with high oxygen affinity are easily poisoned by polar functional groups [7]. It
is, therefore, necessary to use late-transition-metal complexes (Ni or Pd) with low oxygen
affinity to catalyze the coordination copolymerization of polar monomers.

In this context, various late-transition-metal catalysts have been developed
(Figure 1a) [8,9]. In the mid-1990s, a groundbreaking work was achieved by using cationic
Ni/Pd catalysts based on α-diimine ligands by Brookhart (II in Figure 1a,) [10]. Since
then, a series of complexes [11–14] have been developed on the basis of the Brookhart-type
catalysts, which are only suitable for a small part of simple monomers such as acrylates [15],
vinyl ketones [10], and silyl vinyl ethers [16–19]. In 2002, Drent-type catalysts were reported
by Drent and co-workers (III in Figure 1a,) [20]. In addition, they expanded the scope of
substrate for copolymerization, such as vinyl fluoride [21], vinyl ethers [22], and some
important methylene-spaced polar monomers (with a spacer between the polar group and
the double bond) [23–28]. However, there are still some obvious disadvantages in these
catalytic systems: low copolymerization activity, low insertion rate and low molecular
weight [29], etc. Among them, the low copolymerization activity is a common challenge
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for these catalysts. It is noteworthy that the main reason for the low activity of copoly-
merization is the occurrence of the poisoning effect. The tolerance of the same catalyst to
different functional groups is obviously different, but there is a lack of systematic study on
this difference. Therefore, systematically exploring the poisoning effect of polar monomers
is helpful for improving the copolymerization activity. Herein, multivariate linear regres-
sion analyses on the poisoning effect of different polar monomers have been conducted
based on DFT calculations at the molecular level, taking the conventional Brookhart-type
catalysts II as a model. Various polar monomers [30–32] and the copolymerization mech-
anism are shown in Figure 1 and Figure S1. When ∆∆E(π-σ) < 0, the π-complex (double
bond coordination) is more stable than the heteroatom coordination complex (σ-complex),
and vice versa. As shown in Figure 1c, if the σ-complex (B2) is more stable than the
vinyl-coordination π-complex (B3), the catalyst could be poisoned and inactive. Through
multiple linear regression analysis, it has been demonstrated that the chemical shifts of
a vinyl carbon atom (monNMRC

β) and the coordinating heteroatom (monNMRX) of polar
monomers, as well as the metal-heteroatom distance (B2bondPd/Ni-X), are the key factors
governing the poisoning effect. The current prediction models are expected to be useful
for the prediction of the poisoning effect of other polar monomers in the polymerization
catalyzed by Brookhart-type catalysts.
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Figure 1. (a) Four conventional catalyst structures [8–10,20]. (b) Several different polar monomer
structures. (c) The copolymerization mechanism of ethylene/polar monomer meditated by Brookhart-
type catalysts II.

2. Computational Details

All DFT calculations were performed with Gaussian 16 program [33]. The D3 [34]
dispersion-corrected density functional method B3LYP functional [35–37], together with
the 6-311G(d) basis set for nonmetal atoms (C, H, O, N, P, S, F, Si and Cl) and the
LANL2DZ [38–40] basis set, as well as the associated poseupotential for metal atoms
(Pd and Ni) was used for geometry optimizations. All optimizations were carried out
in the gas-phase. The noncovalent interaction (NCI) analysis [41] by Multiwfn [42] and
VMD [43] softwares was carried out for important structures. The optimized tridimensional
geometrical structures were represented by CYLView [44]. Color map and multiple linear
regression analysis were performed with Matlab program. Taking diimide palladium as an
example, single-point calculations were further performed at the higher level by using the
density functional method M06 [45]; 6-311 + G (d, p) was used for the nonmetal atoms; the
basis set LANL2DZ [38–40], as well as the associated pseudopotential, were applied for the
Pd atom. In these single-point calculations, the solvation effect of toluene (ε = 2.37) was
considered through the CPCM model [46,47]. It can be seen from comparison of results by
solvated and gas-phase that the effect of solvation exerted a minor effect on the trend of
poisoning effects (see Figure S1).

3. Results and Discussion

The poisoning effect of several different types of polar monomers (see Figure S2)
were explored by DFT calculation and multiple linear regression analysis. Generally, the
energy difference ∆∆E(π-σ) (Figure 1c) between double bond coordination and heteroatom
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coordination is directly related to the poisoning effect. Firstly, the coordination process of a
series of polar monomers catalyzed by complex IIPd and IINi were calculated. Through
theoretical calculation, it was found that the energy difference of some polar monomers
was too high (∆∆E(π-σ) > 0), such as acrylonitrile, methylene spacer vinyl and internal
olefin monomers; thus, there are very obvious poisoning effects. On the contrary, the
poisoning effect of ether olefins and halogenated olefins is relatively weaker theoretically
(∆∆E(π-σ) < 0, Figure 2). However, although the poisoning effect of halogenated olefins
is weak (Figure 2a), the β-halide or or β-OR elimination reaction can easily occur in the
polymerization, resulting in low polymerization activity [48,49]. For polar monomers 42,
56, 57, this is a kind of styrenic monomers, which are easy to coordinate metal to produce
stable and inactive η3-complexes [50]. These results are consistent with the experimen-
tal phenomena [51]. Moreover, the number of polar monomers that cannot poison Ni
complexes (Figure 2a) is significantly less than that of Pd complexes (Figure 2a,b).
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Figure 2. (a) The polar monomers with weak poisoning effect catalyzed by IINi and IIPd complexes
(∆∆E(π-σ) < 0). (b) Other monomers with weak poisoning effect catalyzed by IIPd complex.

Before the MLR analysis, it is necessary to calculate the electronic and stereoscopic de-
scriptors of different polar monomers by DFT calculation. At present, as hundreds of molec-
ular descriptors are available in the literature [42–54], we selected a number of them based
on our previous experience on olefin polymerization [55–58] and the literature about MLR
analysis of transition-metal-based reactivity. For the predictive effect and the convenience of
the MLR model, only one of heteroatom coordination and double bond coordination should
be selected for descriptor calculation. Firstly, the descriptors of heteroatom coordination
structure B2 and polar monomers are calculated for multivariate linear regression. A total of
21 descriptors were calculated, including Sterimol values [59] (B2B1Ni/Pd-X, B2B5Ni/Pd-X and
B2LNi/Pd-X), steric hindrance of metal center (B2StericNi/Pd), bond length (B2bondNi/Pd-X),
LUMO (B2LUMO), dihedral angle (B2∠XNi/PdN1C1 and B2∠C3Ni/PdN2C2), Infrared freq
(monIRC=C) and Freq Intensities (monvC=C), NMR (monNMRC

α, monNMRC
β and monNMRX),
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NBO (B2NBONi/Pd, monNBOX, monNBOC
α and monNBOC

β), Polarizability (monα), HOMO
(monHOMO), volume (monV) and Dipole Moment (monµ). Having both computed ∆∆E(π-σ)
and descriptors in hand, we performed univariate correlation analysis for the whole data
set (87 reactions) to investigate the relationship between descriptors and ∆∆E(π-σ), and
to see the variation trends in poisoning effect (by complex IINi). For this purpose, a
correlation matrix for the selected parameters was generated, as represented by a color
map [60] (Figure 3). As shown in Figure 3, relatively strong correlations were found be-
tween ∆∆E(π-σ) and some electronic parameters involving D2 (monNMRC

β, |R| = 0.76),
D3 (monNMRX, |R| = 0.59), D5 (monNBOX, |R| = 0.60) and D15 (B2bondNi-X, |R| = 0.70).
These descriptors with high correlation coefficient |R| can presumably exert a major influ-
ence on ∆∆E(π-σ). Conversely, steric hindrance descriptors exert little effect on ∆∆E(π-σ),
such as D17–D21.
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Figure 3. Correlation color map. The first column corresponds to the single-parameter correlations of
the ∆∆E(π-σ), while the others represent the interparameter correlations [60].

According to the color map in Figure 3, we selected four single parameters D2
(monNMRC

β, |R| = 0.76), D3 (monNMRX, |R| = 0.59), D5 (monNBOX, |R| = 0.60) and D15
(B2bondNi-X, |R| = 0.70) with relatively higher absolute values of R to performed univariate
correlation analysis to investigate the relationship between descriptors and ∆∆E(π-σ) and
to see the variation trends of poisoning effect. However, when we evaluated the full set
of data (87 reactions) in Figure S1, the single parameters cannot describe well the trend
of the ∆∆E(π-σ) value (R2 < 0.60, Figure 4), suggesting that multivariate linear regression
analysis was required to describe the combined multivariate influences of polar monomers
on poisoning effect.
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Next, Linear regression modeling was applied to correlate the poisoning effect (ex-
pressed as ∆∆E(π-σ)) to the above calculated descriptors. A total of 87 reactions were
used in this paper, of which 60 reactions were randomly selected as the training set and
27 reactions as the test set. Considering that the accuracy of the simplified regression model
can be expressed more clearly via a graphical manner, a plot of the calculated ∆∆E(π-σ)
values and that predicted by this model is depicted in Figure 5. When complex IINi was
used, the results demonstrated a high correlation (R2 = 0.85, Q2 = 0.83; Q2 represents the
value of leave-one-out cross validation and showed that there was no overfitting) between
predicted ∆∆E(π-σ) values and calculated ones (Figure 5a). Moreover, when complex IIPd
is used, the result shows a relatively lower correlation between predicted ∆∆E(π-σ) values
and calculated ones (R2 = 0.79, Q2 = 0.78, Figure 5b). Notably, as the models were acquired
from normalized descriptors, the resulting coefficients can indicate the significance of the
represented descriptor. Therefore, it can be seen from the model that, for complex IINi
and IIPd systems, the descriptors monNMRC

β and B2BondNi/Pd-X exert a significant impact
on the poisoning effect. Nevertheless, monoNMRX holds a relatively weaker effect on the
poisoning effect of IINi systems and almost no effect on IIPd systems. Besides, the descrip-
tors of π-coordination structure B3 (in complex IINi systems) and polar monomers are also
calculated (Figure S3), but the prediction results (R2 = 0.82) based on these descriptors are
not as satisfactory as the above results (R2 = 0.85, Figure 5a).
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Figure 5. Plot of computed vs. predicted ∆∆E(π-σ) (kcal/mol) for complexes IINi (a) and IIPd (b)
using the multivariate linear regression models.

It is worth noting that there were several deviation points in both complexes IINi
(a) and IIPd (b) systems (points in green circle, Figure 5a,b), and these deviation points
may reduce the prediction accuracy of the MLR model; thus, it is necessary to analyze
the origins of these deviation points. Through structural analysis, it was found that these
deviation points share something in common, that is, there are obvious non-covalent
weak interactions in the σ-coordination structure (Figure 6), including hydrogen bond,
H···π interactions and heteroatom···π interactions. In order to confirm the effect of non-
covalent weak interaction on energy of σ-coordination structure, the aromatic ring on the
ligand was substituted with methyl, and the ∆∆E(π-σ) was calculated (Figure S4). By
comparing the calculation results, it can be seen that the non-covalent weak interaction
between polar monomers and aromatic ring on ligands exerted an obvious effect on the
energy of ∆∆E(π-σ), but the non-covalent weak interaction is not considered in above
descriptors. Therefore, there is a certain deviation in the prediction results of the system
with obvious non-covalent weak interaction. Furthermore, external validation of the MLR
model for the complex IINi (a) and IIPd were performed separately; results are shown in
Figure 7. These results indicate that these MLR models have certain extrapolation and
prediction ability. It is noted that some monomers containing an active hydrogen or a
strong electrophilic group could undergo side reactions in the polymerization system rather
than polymerize. However, these monomers were considered for expending the scope
of data set and were helpful for constructing the prediction models [61–63]. It is also
noteworthy that there may be secondary interactions between polar monomer molecules
in the polymerization system [4,64]. Our work mainly focuses on the influence of the
electronic or stereoscopic effect of the monomer itself on the poisoning effect of the catalyst.
The actual experimental reaction system was very complex; there will be a variety of
interactions. In order to explore the main reasons affecting the poisoning effect, this work
simplifies the experimental conditions and provides a valuable reference for experimenters
to screen suitable polymerized monomers.
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4. Conclusions

In summary, the poisoning effect of different polar monomers by Brookhart-type
catalyst were explored through the combination of DFT calculations and multiple linear
regression analyses. The results show that the combination of the structure of heteroatom-
coordination complex and the descriptors of polar monomer can establish a relationship
between the structure and the poisoning effect represented by ∆∆E(π-σ). It is found that the
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descriptors of monNMRC
β and B2BondNi/Pd-X are the key factors affecting the poisoning

effect. In addition, in the case of the Ni system, the monNMRX descriptor also plays a
certain role in the poisoning effect. Besides, by analyzing the σ-coordination structure of
the deviation point, it was found that the non-covalent interaction between polar monomers
and the catalyst may be the main reason for the deviation of the predicted value by the
multiple linear regression model. Moreover, the result of external verification shows that
such prediction models possess a certain ability to predict and extrapolate the poisoning
effect of other polar monomers. Such a combination of DFT-derived energy difference
and multidimensional quantitative analysis is expected to be effective in assessing the
other polymerization performance and can provide new and efficient monomer screening
strategies for experimentalists.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10020026/s1, Figure S1: Gas-phase vs. solvation effect
∆∆E(π-σ) (kcal/mol) for complex IIPd; Figure S2: structures of polar monomers; Figure S3: plot
of computed vs. predicted ∆∆E(π-σ) (kcal/mol) for complex IINi (base on B3 structure) using the
multivariate linear regression models; Figure S4: changes of structure and ∆∆E(π-σ) after substitution
of aromatic ring on catalyst (complex IINi) with methyl. Electronic energy data of polar monomers
coordination, polar monomers and other structures; and electronic and stereoscopic descriptors of
polar monomers, complexes B2 and B3 (Excel) (XLSX). Optimized stationary points (ZIP).
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