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Abstract: Recently, the electrochemical sensing approach has attracted materials/electrochemical
scientists to design and develop electrode materials for the construction of electrochemical sensors for
the detection of para-nitrophenol (4-NP). In the present study, we have prepared a hybrid composite
of MnO2 and rGO (MnO2/rGO) using a hydrothermal approach. The morphological features of
the prepared MnO2/rGO composite were studied by scanning electron microscopy, whereas the
phase purity and formation of the MnO2/rGO composite were authenticated via the powder X-
ray diffraction method. Energy-dispersive X-ray spectroscopy was also employed to analyze the
elemental composition of the prepared MnO2/rGO composite. In further studies, a glassy carbon
electrode (GCE) was modified with MnO2/rGO composite (MnO2/rGO/GCE) and explored as
4-nitrophenol (4-NP) sensor. The fabricated MnO2/rGO/GCE exhibited a reasonably good limit of
detection of 0.09 µM with a sensitivity of 0.657 µA/µMcm2. The MnO2/rGO/GCE also demonstrates
good selectivity, stability and repeatability in 50 cycles.

Keywords: MnO2/rGO composite; 4-NP; cyclic voltammetry; electrochemical sensor

1. Introduction

In the past few decades, environmental pollution has become one of the major threats
globally. There are a large number of toxic and hazardous compounds which have neg-
ative influences on human health and the environment [1]. Nitrophenols are widely
used in various industries manufacturing rubber, pesticides, petrochemical products, plas-
tics, dyes, fungicides, and paints [2–8]. Nitrophenols are the major water pollutants
that are directly released to the water reservoir bodies from various industries as dis-
charged products. The presence of nitrophenols in water reservoir bodies and the envi-
ronment can change the biological and chemical nature of the terrestrial environment and
water [1,5]. It has been found that even the presence of nitrophenols with low concentrations
could significantly influence the human being and environment [3]. The environment and
human health may be at risk from the widespread use of 4-NP [3]. Excessive exposure to
4-NP may damage the kidney, liver, and human central nervous system, including some
other health problems such as headaches, skin irritation, cyanosis, methemoglobinemia,
sleepiness, and nausea [2,5,8]. The soil, crops, and water bodies can all be impacted by
the presence of 4-NP [2]. These are serious issues; hence it is vital to regulate the use
of 4-NP in all areas, including food, soil, and water. In this context, the sensitive de-
tection of 4-NP is essential [4]. Numerous analytical techniques, including fluorescence,
spectrofluorimetric, optical spectroscopy, enzyme-linked immunosorbent assay, liquid
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chromatography, spectrophotometry, gas chromatography, capillary zone electrophoresis,
and high-performance liquid chromatography, have been explored for the detection of
4-NP [9–17]. However, all of these approaches are time-consuming and have their own
drawbacks/limitations [18,19]. Recently, the electrochemical technique has gained much
attention because of its fast detection response, excellent selectivity, high sensitivity and
cost-effectiveness [20–23]. Electrochemical sensing approach has been employed as a de-
tection technique that records the signal during the oxidation/reduction process [24,25].
The electrochemical sensors need electro-catalysts that catalyze the oxidation/reduction of
4-NP. In previous years, various semiconducting metal oxides (manganese oxide (MnO2),
zinc oxide (ZnO), nickel oxide (NiO), copper oxide (CuO), magnesium oxide (MgO)) and
perovskite materials, including SrTiO3 have been employed as electro-catalysts for the
development of electrochemical sensor [26–31]. MnO2 is one of the promising candidates
and has been extensively used in supercapacitors, wastewater treatment, catalytic sensors,
and solar cells due to its cost-effectiveness, high energy density, natural abundance, and
non-toxicity [32]. It has been reported that pristine MnO2 has low conductivity, which can
influence the electrochemical performance of MnO2-based devices.

In this regard, recent reports showed that the incorporation of Pd with MnO2 improves
the electrochemical performance of MnO2-based devices [33]. Ahmad et al. also introduced
copper to the MnO2 to enhance the electrochemical activity of the MnO2-based sensors [26].
In some other works, it has been studied that the incorporation of carbon-based materials
such as reduced graphene oxide (rGO) can significantly improve the conductive nature
of the MnO2. rGO has excellent mechanical stability, good conductivity, thermal stability,
and high surface area [34,35]. rGO has been extensively used as conductive support
to improve the conductive nature of poor semiconducting metal oxides [36,37]. It is
clear that rGO is one of the most suitable candidates for improving the conductivity of
MnO2 [35]. Jaiswal et al. [35] prepared MnO2/rGO composite and used it as electrode
material for the construction of nitrite sensors. The fabricated nitrite sensor exhibited
good electrocatalytic properties for the detection of nitrite. This can be attributed to the
synergistic effects between MnO2 and rGO. This clearly showed that MnO2 has good
electro-catalytic properties, whereas rGO has a good surface area and conductivity [35].
This indicated that the combination of MnO2 and rGO may be useful for the development
of electrochemical sensors.

Herein, we have fabricated a hybrid composite of MnO2 and rGO using the hydrother-
mal method. Further, a 4-NP electrochemical sensor was fabricated using the drop-cast
method. The developed sensor exhibits a reasonable limit of detection, decent sensitivity,
and good selectivity and stability.

2. Experimental Section

All the used materials and chemicals were bought from Loba, SRL, TCI, Alfa-Aesar,
Sigma, and Merck and used without any further purification.

2.1. Synthesis of Graphene Oxide (GO)

In accordance with the earlier study, GO was synthesized using the renowned Hum-
mer’s Method [38]. In brief, 23.0 mL H2SO4 was added to 1.0 g of graphite flakes and
0.5 g of NaNO3, which were thoroughly mixed before being kept at room temperature for
30 min. The exothermic reaction was controlled by using ICE (temperature below 20 ◦C),
adding KMnO4 (3.0 g) gradually, which was then continuously stirred for an entire night
at room temperature. After adding, 60 mL of distilled water and 1.5 g of KMnO4 were
gently added to the reaction mixture, which was then stirred once more for 14 h at room
temperature. After completion, the mixture was allowed to cool, and 500 mL of DI water
was added, along with 7 mL of 30% H2O2. After brief washing with 1M HCl, the resulting
crude was repeatedly rinsed with water. To achieve the final product, the final crude was
washed with extra D.I. water and dried at 50 ◦C for 6 h.
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2.2. Synthesis of MnO2/rGO

The MnO2/rGO composite and MnO2 were synthesized using a hydrothermal method.
First, 3.5 mmol of KMnO4 was added to the 25 mL of distilled water, and a few drops of
HCl were added. This reaction mixture was stirred for a few minutes at room temperature.
On the other side, GO (50 mg) was dispersed in 10 mL of distilled water (having hydrazine)
using a sonication bath. The GO dispersion was added to the KMnO4 solution and stirred
for 0.5 h at RT. Further, this solution was added to the Teflon lining hydrothermal autoclave
(100 mL capacity) and heated to 140◦ for 12–14 h. Once the reaction finished, it was
allowed to cool down to room temperature before the crude product was separated using
a centrifuge. The crude was thoroughly cleaned using DI water and ethanol and dried
overnight (70 ◦C). MnO2 was prepared under similar conditions without adding GO
solution [32]. rGO was prepared according to a previous report [38].

2.3. Fabrication of Electrochemical Sensor

For the electrochemical investigations, three electrodes—counter electrode (platinum;
Pt), reference electrode (Ag/AgCl), and working electrode (GCE) were utilized. A glassy
carbon electrode (GCE) served as the working electrode for the sensing application. The
surface of GCE was modified with prepared materials (Scheme 1). The MnO2, rGO, and
MnO2/rGO coated electrodes are labeled as MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE,
respectively, which were employed as the working electrode. On the other hand, bare GCE
was labeled as GCE. 0.1 M PBS of pH 7.0 was used for all the electrochemical studies. A
computer-controlled Potentiostat was used for all of the electrochemical experiments (CH
Instrument). The working electrodes (GCE) have a 3 mm-diameter geometrical area.
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Scheme 1. Schematic diagram for the synthesis of MnO2/rGO composite.

3. Results and Discussion
3.1. General Characterization

In order to confirm the formation of the MnO2/rGO composite, we have obtained
the X-ray diffraction (XRD) of the prepared powder sample of the MnO2/rGO composite
(Rigaku, Japan, Instrument). The XRD of the MnO2/rGO composite was collected at the 2θ
of 10–80◦. The collected XRD pattern of the MnO2/rGO composite has been displayed in
Figure 1. Figure 1 demonstrates the presence of various diffraction peaks, which can be
assigned to the (110), (200), (310), (211), (301), (411), (600), (521), (002), and (521) diffraction
planes of MnO2 (JCPDS number 44-0141). However, no diffraction peak related to the rGO
could be observed. The XRD pattern of the pristine MnO2 was also collected and has been
incorporated in Figure 1. The XRD of MnO2 exhibited the presence of various diffraction
planes of (110), (200), (310), (211), (301), (411), (600), (521), (002), and (521). The XRD studies
showed that the incorporation of rGO into MnO2 changes the crystallinity of the prepared
MnO2/rGO composite, which may be due to the amorphous nature of rGO. The XRD
pattern rGO was also collected to verify the formation of rGO. The XRD data of the rGO
has been presented in Figure S1 in the supporting information.
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Figure 1. XRD pattern of MnO2 and MnO2/rGO.

A clearly defined diffraction plane (002) was visible in the rGO XRD pattern. This
confirmed the preparation of MnO2, rGO, and MnO2/rGO composite. The Raman spectra
(Horiba-Scientific Instrument; laser wavelength = 532 nm; grating = 1800 gr/mm) of the
rGO, MnO2 and MnO2/rGO were also obtained. The obtained results showed that MnO2
has two peaks at 569.4 and 640.1 cm−1, which can be assigned to the symmetric stretching
vibration of the MnO6 octahedral group and the stretching vibration of the Mn-O bond,
respectively (Figure S2). Raman spectrum of rGO exhibits the presence of D and G bands.
The Raman spectrum of MnO2/rGO showed Raman peaks for MnO2 along with D and G
bands of rGO (Figure S2). This suggested the formation of MnO2/rGO composite.

The morphology of electrode materials can significantly alter the performance of the
electrochemical devices.

Thus, morphological characteristics of the prepared MnO2 and MnO2/rGO composite
were also studied. The morphological features of the MnO2 and MnO2/rGO composite
were investigated by recording scanning electron microscopic (SEM) images on Hitachi
(S-4800) SEM instrument. The SEM pictures of the MnO2 and MnO2/rGO composite are
presented in Figure 2. Figure 2a demonstrates the presence of rod-like surface properties
of the prepared MnO2. Similarly, Figure 2b shows that MnO2 rods are present on rGO
sheets. Thus, it can be understood that rGO has a sheet-like morphology on which rod-like
MnO2 has been grown via the hydrothermal method (Figure 2b). Transmission electron
microscopy (TEM) was also used to further characterize the prepared MnO2/rGO compos-
ite. The obtained TEM image of the MnO2/rGO composite has been presented in Figure
S3, which indicates that MnO2 rods are present on the rGO surface. The determination of
the elemental composition of the MnO2 and MnO2/rGO composites is necessary to verify
the formation of the MnO2 and MnO2/rGO composites. Hence, energy-dispersive X-ray
spectroscopy (EDX; Horiba instrument) was explored to authenticate the formation of
MnO2 and MnO2/rGO composite. The obtained EDX results of the MnO2 and MnO2/rGO
composite are presented in Figure 3a–d. The EDX spectrum of MnO2 indicated the pres-
ence of Mn and O elements (Figure 3b), which suggested the formation of MnO2. On
the other side, the EDX spectrum of MnO2/rGO indicated the presence of Mn, O, and C
elements and authenticated the formation of the MnO2/rGO composite (Figure 3d). In the
MnO2/rGO composite, C, Mn, and O elements have weight percentages of 9.78%, 61.13%,
and 29.09%, respectively.
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Thus, it can be said that MnO2 and MnO2/rGO composite are prepared successfully
via the hydrothermal approach with good phase purity.

3.2. Electrochemical Performance

To calculate the electrochemically active surface area (ECSA) of the GCE, MnO2/GCE,
rGO/GCE, and MnO2/rGO/GCE, CVs curves were recorded in 5 mM [Fe(CN)6]3−/4−

redox couple scan rate of 100 mVs−1 (Figure S4). The electrochemically active surface area
of the GCE, MnO2/GCE, rGO/GCE and MnO2/rGO/GCE were calculated by using the
Randles–Sevcik equation given below,

Ip = 2.69 × 105 AD1/2 n3/2 y1/2 C (1)

In Equation (1), Ip is the peak current, A is the ECSA (to be calculated), y is scan
rate (V/s), and n = no. of electrons (n = 1) for redox couple [Fe(CN)6]3−/4−, C is the
concentration (mol/L), and D is the diffusion coefficient (6.7 × 10−6 cm2 s−1)). The ECSAs
of the bare GCE, MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE were 0.07, 0.078, 0.084,
and 0.097 cm2, respectively.

By recording the CVs of the GCE, MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE
in 50 µM 4-NP (scan rate = 50 mV/s), the electrochemical sensing activity of the GCE,
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MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE was assessed. Figure 4a shows the calcu-
lated CV curves for the GCE, MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE in 50 µM
4-NP. The CV findings indicated low electro-catalytic current response for GCE whereas
MnO2/rGO produced a somewhat better electro-catalytic current. However, rGO/GCE
exhibits a better current response compared to the GCE or MnO2/GCE. But the high-
est electro-catalytic current was observed for MnO2/rGO/GCE, which may be due to
the presence of synergistic effects between MnO2 and rGO. It can be clearly seen that
MnO2/rGO/GCE possesses the highest sensing property for the sensing of 50 µM 4-NP
compared to the GCE, MnO2/GCE or rGO/GCE (Figure 4a).
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The obtained CV results of the MnO2/rGO/GCE at various scan rates (50–500 mV/s) are
presented in Figure 5a. With regard to the scan rate, it can be seen that the MnO2/rGO/GCE’s
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current response grows (Figure 5a) with increasing concentration. According to the calibra-
tion plot between the current response and the scan rate’s square root, the current response
appears to grow linearly (Figure 5b).
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Recently, the LSV method has received enormous attention for electrochemical sens-
ing applications. In our study, we also adopted the LSV technique for the detection of
4-NP. In the presence of 50 µM 4-NP and a scan rate of 50 mV/s, the LSV graphs of the
GCE, MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE were obtained. Figure 6 shows the
obtained LSV curves of the GCE, MnO2/GCE, rGO/GCE, and MnO2/rGO/GCE. The
GCE has the lowest current response, while MnO2/GCE showed an improved current
response for the detection of 50 µM 4-NP (Figure 6). Further enhancement in the cur-
rent response of the rGO/GCE was also observed, which may be due to the conductive
nature of rGO. The MnO2/rGO/GCE exhibited the highest current response compared
to the GCE, MnO2/GCE or rGO/GCE (Figure 6). The presence of a synergistic inter-
action between MnO2 and rGO may be responsible for this increased current response
(Figure 6). Further LSV research was conducted using the MnO2/rGO/GCE. We have
also prepared MnO2/rGO composite using different amounts of GO (5 mg, 15 mg, and
35 mg). Further, GCE was modified with prepared different MnO2/rGO composites, and
their electro-catalytic properties were examined using LSV. The obtained results are pre-
sented in Figure S5. The observations showed that MnO2/rGO composite prepared with
35 mg GO has good electrocatalytic activity but is still lower than that of the MnO2/rGO
composite prepared with 50 mg GO. Furthermore, we have also physically mixed 50 mg
of GO with 100 mg MnO2 using mortar and pestle. The GCE was also modified with
physically mixed MnO2/rGO, and its electrocatalytic properties were also checked under
similar conditions via the LSV method. The obtained LSV result is presented in Figure S6.
The observations showed that physically mixed MnO2/rGO has decent performance but is
still lower than that of the hydrothermally prepared MnO2/rGO composite.

The concentration of 4-NP can influence the current response of the MnO2/rGO/GCE.
In this regard, we have obtained LSV graphs of the MnO2/rGO/GCE at various concentra-
tions of 4-NP (0, 0.3 µM, 2.5 µM, 6.5 µM, 11.5 µM, 17.5 µM, 25.5 µM, 32.5 µM, 41.5 µM, and
50 µM (scan rate = 50 mV/s).

The obtained LSV results of the MnO2/rGO/GCE at various concentrations of
4-NP are depicted in Figure 7a. The observations indicated that the electro-current of
the MnO2/rGO/GCE increases with respect to the concentration of the 4-NP. Figure 7b is
a calibration curve showing the relationship between the peak current density response
and 4-NP concentration. The LSV findings indicated that the current response rises linearly
with rising 4-NP concentration.
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Figure 7. LSV (a) of MnO2/rGO/GCE in various concentrations (0, 0.3 µM, 2.5 µM, 6.5 µM, 11.5 µM,
17.5 µM, 25.5 µM, 32.5 µM, 41.5 µM and 50 µM) of 4-NP (scan rate = 50 mV/s). The calibration curve
(b) of the peak current density versus the concentration of 4-NP.

The selectivity of the sensor is an important consideration when evaluating how
well an active material can detect toxic materials. In this context, the MnO2/rGO/GCE
selectivity test toward the sensing of 4-NP in the presence of several interfering species was
conducted using the LSV approach. Figure 8 shows the LSV graphs of the MnO2/rGO/GCE
recorded at a scan rate of 50 mV/s in the presence of 50 µM 4-NP and 50 µM 4-NP +
200 µM interfering species (urea, uric acid, glucose, dopamine, catechol, ascorbic acid,
hydroquinone, hydrazine, and H2O2).

The LSV results showed that the presence of interfering species could not alter the cur-
rent response or potential, which suggested the good selective nature of MnO2/rGO/GCE
for the sensing of 4-NP in the presence of various interfering species (Figure 8). The repeata-
bility and stability of the MnO2/rGO/GCE were also evaluated using the LSV method.
Fifty consecutive LSV graphs of the MnO2/rGO/GCE were recorded in the presence of
50 µM 4-NP at a scan rate of 50 mV/s. The obtained LSV graphs are presented in Figure 9.
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Figure 9. Fifty consecutive LSV curves of MnO2/rGO/GCE in 50 µM 4-NP (scan rate = 50 mV/s).

The acquired findings demonstrated that little fluctuations in current responsiveness
were seen, indicating strong cyclic stability and repeatability up to 50 cycles. Under
comparable circumstances, the repeatability of the MnO2/rGO/GCE was also investigated.
Four freshly prepared MnO2/rGO/GCEs were used to investigate the reproducibility
studies. The observations showed decent results, which suggested good reproducibility.

The probable sensing mechanism for the detection of 4-NP using MnO2/rGO/GCE
can be explained according to the reported literature [31]. In Scheme 2, the likely detection
process for 4-NP is depicted. The oxidation and reduction reactions of the 4-NP are
indicated in Scheme 2 by O1 and R1, R2. Firstly, reduction (R1) is responsible for the
transformation of 4-NP into p-hydroxyl-amino-phenol (R1).

In a subsequent redox reaction, the p-hydroxyl-amino-phenol is oxidized (O1) and
transformed into the p-nitroso-phenol, and reversible reduction (R2) completes the redox
reaction (Scheme 2). The performance of MnO2/rGO/GCE was then evaluated in terms of
stability, repeatability, and selectivity for sensing 4-NP. Additional calculations of crucial
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parameters, such as the sensitivity and the detection limit (LOD), were made in order to
assess the performance, accuracy, and application of the results.

As shown below, the detection limit (LoD) and Sensitivity were determined using the
modified electrode’s Equations (2) and (3).

LoD = 3.3 (σ/S) (2)

Sensitivity = slope/area (3)
(σ is the standard deviation or error; S is the slope, and the area of the electrode is

0.07 cm2).
The calculated LoD and sensitivity of the MnO2/rGO/GCE are summarized in Table 1.
In the past years, various 4-NP sensors have been reported. In this connection,

Gao et al. [39] prepared MnO2 nanotubes and investigated the role of MnO2 nanotubes
as an electrochemical sensor for the detection of 4-NP. The developed sensor showed an
LoD of 0.1 mM. In another report, Zhang et al. [40] also developed a 4-NP sensor using
Mg(Ni)FeO as electrode material which demonstrated LoD of 0.2 µM. A flower-shaped
zinc oxide-based nanomaterial was also synthesized by Yu et al. [41] and fabricated a 4-NP
sensor. This 4-NP sensor displayed an LoD of 13 µM. Chu et al. [42] also coated nano-gold
particles on GCE for electrochemical sensing of 4-NP and reported an LoD of 8 µM. Yang
et al. [43] also reported a good LoD of 0.4 µM for multi-walled carbon nanotube-modified
GCEs. A subsequent study of silver particle-modified GCE showed an LoD of 0.5 µM [44].
In other reports, palladium-graphene composite/poly(N-isopropylacrylamide) based sen-
sor exhibited good LoD of 0.1 µM [45] whereas SnO2@ZIF-8/gC3N4 nanohybrids based
sensor showed LoD of 0.565 µM [46]. In another recent report, MWCNTs/MnO2-based sen-
sors also showed LoDs of 0.64 µM [47]. The interesting LoD of 0.16 µM was also reported
for the sensing of 4-NP using Ti3C2TX/GR/GCE [48]. P-doped Fe/Fe3O4@C based 4-NP
sensor showed LoD of 0.462 µM [49] while Ti3C2Tx MXene-based sensor showed LoD of
0.11 µM [50]. Dighole et al. [51] also explored the potential role of bismuth oxide/MWCNTs
as 4-NP sensing material and obtained a good LoD of 0.1 µM. Our obtained LoD is compara-
ble with previous reports, as listed in Table 1. In the present work, the better electro-catalytic
properties of MnO2 and the high surface area of rGO with good conductivity improved the
detection of 4-NP.

Table 1. Comparison of reported 4-NP sensors with MnO2/rGO/ GCE’s performance [39–44].

Material LoD (µM) Sensitivity (µA/µMcm2) References

α-MnO2 nanotube/GCE 100 0.19 [39]

Mg(Ni)FeO/CPE 0.2 0.81 [40]

ZnO/GCE 13 0.404 [41]

Nanogold/GCE 8 - [42]

MWCNT/GCE 0.4 - [43]

Silver particles/GCE 0.5 - [44]

palladium-graphene
composite/poly(N-isopropylacrylamide) 0.1 - [45]

SnO2@ZIF-8/gC3N4 nanohybrids 0.565 2.63 [46]

MWCNTs/MnO2 0.64 0.186 [47]

Ti3C2TX/GR/GCE 0.16 - [48]

P-doped Fe/Fe3O4@C 0.462 - [49]

Ti3C2Tx MXene 0.11 1.22 [50]

Bi2O3@MWCNTs 0.1 - [51]

MnO2/rGO/GCE 0.09 0.657 Praveen et al.
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4. Conclusions

It can be summarized that MnO2/rGO composite has been obtained using a hy-
drothermal approach. Further, the physiochemical properties of the prepared MnO2/rGO
composite were checked by various advanced techniques, including scanning electron
microscopy and X-ray diffraction techniques. The para-nitrophenol (4-NP) sensor was
constructed by modifying the surface of the glassy carbon electrode with the prepared
MnO2/rGO composite as an electrode modifier. Due to the beneficial interactions (syner-
gistic) between MnO2 and rGO, the fabricated 4-NP sensor had an excellent detection limit.
The 4-NP sensor that was built demonstrated high stability and selectivity when it came to
sensing 4-NP.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics10120219/s1, Figure S1: XRD of rGO; Figure S2: Raman
of MnO2, rGO and MnO2/rGO; Figure S3: TEM of MnO2/rGO; Figure S4: CV responses; Figure S5:
LSV responses; Figure S6: LSV responses.
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