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Abstract: The surfaces of real objects can visually appear to be glossy, matte, or anywhere in between,
but essentially, they display varying degrees of diffuse and specular reflectance. Diffuse and specular
reflectance provides different clues for light estimation. However, few methods simultaneously
consider the contributions of diffuse and specular reflectance for light estimation. To this end, we
propose ReDDLE-Net, which performs Reflectance Decomposition for Directional Light Estimation.
The primary idea is to take advantage of diffuse and specular clues and adaptively balance the
contributions of estimated diffuse and specular components for light estimation. Our method
achieves a superior performance advantage over state-of-the-art directional light estimation methods
on the DiLiGenT benchmark. Meanwhile, the proposed ReDDLE-Net can be combined with existing
calibrated photometric stereo methods to handle uncalibrated photometric stereo tasks and achieve
state-of-the-art performance.

Keywords: uncalibrated photometric stereo; diffuse reflectance; specular reflectance; convolutional
neural network

1. Introduction

Photometric stereo aims at estimating a surface through a series of images, which are
illuminated by different directional lights, with a fixed camera [1] (near-field photometric
stereo [2–4] is not considered in this paper). In practice, the application of calibrated photo-
metric stereo methods [5,6] is restricted by the tedious light source calibration procedure. In
contrast, uncalibrated photometric stereo (UPS) technology can estimate the surface normal
from the observed images without prior knowledge of light directions and intensities.
Hence, it has recently attracted increasing attention from both industrial and academic
research communities. The calibration of light directions is more laborious than that of the
light intensity. There are numerous semi-calibrated photometric stereo methods [3,7,8] that
can accurately estimate the light intensity with captured images and light directions. Thus,
this paper aims at the estimation of the light direction.

Without a priori knowledge of light information, there is a 3 × 3 linear ambigu-
ity [9] between the estimated normal and the normal ground truth. If the surface is inte-
grable, the ambiguity can be degraded to a three-parameter generalized bas-relief (GBR)
ambiguity [10,11]. Most of the existing traditional methods [12–14] for UPS are based on
the Lambertian assumption and focus on resolving the GBR ambiguity. Methods such as
those of [15], and [16] can handle surfaces with general bidirectional reflectances (BRDFs),
which only work under assumptions of uniformly distributed light sources.

Recently, deep-learning-based methods have been introduced to the UPS task.
Chen et al. [5] tried to directly learn the surface normals from observed images and

Photonics 2022, 9, 656. https://doi.org/10.3390/photonics9090656 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9090656
https://doi.org/10.3390/photonics9090656
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics9090656
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9090656?type=check_update&version=1


Photonics 2022, 9, 656 2 of 16

proposed a one-stage model called UPS-FCN. Later, Chen et al. [17] presented a two-stage
model called self-calibrating deep photometric stereo networks (SDPS-Net), which con-
sisted of a light calibration network (LCNet) and a normal estimation network (NENet).
Then, they extended the SDPS-Net by introducing shading as the supervision in the light
calibration task and presented a guided calibration network (GCNet), which performed
light calibration for spatially varying albedo objects [18]. Kaya et al. [19] proposed an
uncalibrated photometric stereo method without using the ground-truth surface normal.
They first trained a light estimation network, which was supervised by the ground truth,
and then estimated the surface normal through an inverse rendering network in an unsuper-
vised way. We found that the state-of-the-art UPS methods are generally based on two-stage
networks. They first estimated the light information from captured images. Acquired light
information was concatenated with image data and fed into a normal estimation network.
Following this strategy, there is a convenient but efficient way to provide a framework for
UPS tasks by combining the directional light estimation module with existing calibrated
photometric stereo methods. A number of calibrated photometric stereo methods have
been proposed to improve the performance of normal estimation for non-Lambertian sur-
faces [5,20–31], and they have achieved great performance on both real datasets [32–34]
and synthetic datasets [5,25]. As the light estimation error will accumulate in a normal
estimation network, improving the accuracy of light direction estimation is expected to
improve the performance of the overall UPS framework.

However, there are few methods focusing on the improvement of the directional
light estimation. The reflective component of real-world objects varies with their surface
characteristics. Diffuse and specular components have been experimentally proven to be
effective clues for learning-based light direction estimation methods [18], and these two
kinds of components show themselves differently. Specifically, diffuse reflectance exhibits
slow variations in its intensity and obeys Lambert’s cosine law, i.e., the illumination of
a surface is directly proportional to the cosine of the angle between the normal and the
direction of incident light. Specular reflectance is more concentrated and sharp, and it is
often described as a mirror-like reflectance of light from a surface. The normal vector of
an illuminating point in specular reflectance is on the angle bisector of the incident light
direction and viewing direction. Diffuse and specular reflectance provides different and
valid clues. However, existing learning-based methods implicitly process them together
in the network and focus on a single type of reflectance information during the feature
extraction phase, as shown in Figure 1.

To address this problem, we propose a reflectance decomposition (ReD) mechanism to
take full advantage of the reflectance information and adjust the attention of diffuse and
specular reflectance information for light direction estimation, as shown in Figure 1. We in-
corporate the ReD mechanism into a two-branch deep convolutional neural network, which
extracts diffuse and specular components through two sub-networks, and we present a Re
flEctance Decomposition Directional Light Estimation Network (ReDDLE-Net). ReDDLE-
Net can be seamlessly integrated into the existing photometric stereo methods for UPS
tasks. In summary, the contributions of this paper are as follows. (1) We propose the
ReDDLE-Net, which explicitly considers the reflectance property of an object for directional
light estimation. (2) We present a solution for building the training data with labels of
reflectance properties based on the retroreflective response. (3) We demonstrate that the
proposed ReDDLE-Net can adaptively adjust the attention for diffuse and specular compo-
nents according to the inputs and that it outperforms state-of-the-art methods regarding
light estimation and the follow-up tasks of uncalibrated photometric stereo.
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Figure 1. A comparison of the workflows of LCNet and ReDDLE-Net. LCNet uses a single-branch
structure to extract features, while our ReDDLE-Net uses two-branch feature extractors (diffuse sub-
network and specular sub-network). The number indicates the reflectance weight calculated by the
reflectance decomposition (ReD) mechanism of ReDDLE-Net, which represents the contributions of
the diffuse sub-network and specular sub-network. Top left: For a specular object, the LCNet focuses
only on the highlighted part. Bottom left: ReDDLE-Net extracts diffuse and specular information
using two separate sub-networks. The ReD mechanism gives a larger reward to the estimated light
from the specular branch than that from the diffuse branch. Top right: For a diffuse object, the LCNet
focuses on the diffuse part. Bottom right: When the object’s surface is diffuse, the ReD mechanism
pays more attention to the diffuse component and improves the contribution of the diffuse branch.

2. Method

Following the operation of SDPS-Net [17], the azimuth and elevation of the light
direction space are divided into 36 bins. Thus, light direction estimation can be converted
into a classification task. The azimuth and elevation of a light direction are estimated
separately. Figure 2 shows the proposed ReDDLE-Net framework.

2.1. Data Preparation

The dichromatic reflectance model describes how surface reflectance is composed of
diffuse and specular reflectance. Diffuse reflectance (e.g., shading) exhibits small variations
in its intensity. On the contrary, specular reflectance (e.g., highlighting) is more concentrated
and intense. Chen et al. [18] found that both highlights and shadings are useful clues in
deep-learned-based light estimation. Intending to provide a priori knowledge of reflectance
to ReDDLE-Net during the training phase, we classified the 100 MERL materials [35] into
three categories (i.e., diffuse, specular, and mixed samples).
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Figure 2. The proposed ReDDLE-Net framework. Our ReDDLE-Net consists of two integrated
processing modules, namely, the reflectance decomposition module (ReD module) and the directional
light estimation module (DLE module). The ReD module is used to obtain the local diffuse and
specular features from pairs of images and masks. Then, max-pooling is utilized to aggregate local
features and acquire global features for the diffuse and specular components, respectively (the details
of feature aggregation can be found in Figure 3). Taking the concatenation of local features and global
features as the input, the reflectance-aware network (RA-Net) produces the reflectance weights, which
indicate the proportions of diffuse and specular components. The DLE module fuses the outputs of
the ReD module, including the local features, global features, and reflectance weight, to generate the
final light direction estimation results.
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Figure 3. The proposed reflectance decomposition (ReD) module. Left: the network structure
of the diffuse feature extractor (DFE) and specular feature extractor (SFC). Middle: The network
structure of the reflectance-aware network (RA-Net). Right: Schematic diagram of the acquisition of
global features.

The retroreflective response f (θ) is defined as the value of the bidirectional reflection
distribution function (BRDF) when the view direction v coincides with the direction of
incident light l [36]. θ is the angle between the normal and the half-vector h, which is
defined as h = l+v

|l+v| . The peak near θ = 0 is called the specular peak f (0), which can be
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seen as an indicator of surface roughness. The roughness of the surface is a crucial factor
that affects the proportion of reflective components on the surface [36]. As the surface of
the object becomes smoother, the characteristics of the specular component will gradually
become apparent, and vice versa. According to [36], the materials were always divided into
two groups (smooth and rough) based on the specular peak (smooth : f (0) > 0.5, rough :
f (0) < 0.5). As shown in Figure 4, the specular peak values of different materials have a
broad range.

hematite/54.75 pink-felt/0.08alum-bronze/1.01 red-fabric2/0.02pvc/0.50steel/411.57

Specular materials Diffuse materials

Specular peak = 3

Specular peak = 0.155

Figure 4. The specular peaks [36] of 100 MERL materials [35]. The vertical coordinate represents the
value of the specular peak. We scaled the values through log10(specular peak) for a better display.
The horizontal coordinate represents the name of each material in the dataset of 100 MERL materials.
The spheres rendered by different materials are exhibited at the top of the pictures. Corresponding
names and specular peaks are shown at the bottom of the object images.

The curve is flat at the ends and steep in the middle, and the materials are mainly
clustered in two intervals. To draw a useful distinction of materials and ensure the same
number of samples in the diffuse and specular categories, we used a dual-threshold clas-
sification method, which was defined as specular samples: f (0) > 3, diffuse samples:
f (0) < 0.155. Thus, we divided the 100 MERL materials into 40 specular samples, 40
diffuse samples, and 20 mixed samples. The objects with diffuse and specular samples
were employed as the training set for more effective supervision, and the mixed samples
were used as the validation set.

2.2. Reflectance Decomposition Module (ReD Module)

As shown in Figure 3, the ReD module consisted of a diffuse feature extractor (DFE),
specular feature extractor (SFC), and reflectance-aware network (RA-Net).

DFE and SFC. Since an object mask can provide strong information for the occluding
contours of an object and effectively improve the performance of directional light esti-
mation [17,18], we concatenated the mask and captured image as the input and used a
two-branch structure as a feature extractor, as shown in Figure 3. Eight convolutional layers
with a kernel size of 3× 3 were employed to extract local features from the input, and each
layer was followed by leaky ReLU activation. The DFE and SFE extracted local features
from the pairs of images and masks, respectively, avoiding confusion between the two
types of reflectance information in the feature extraction process.
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RA-Net. Since the global feature contains implicit surface geometry and reflectance
information of an object [17], we concatenated two types of global features as the input
of the RA-Net to efficiently calculate the contributions of the two types of reflectance
information, as shown in Figure 3. We first used one convolutional layer with stride = 1
to fuse both the diffuse and specular global features and three convolutional layers with
stride = 2 to reduce the dimensions of the feature maps. All convolutional layers with
a kernel size of 3× 3 were followed by leaky ReLU activation. The processed features
were fed into the azimuth-weight-estimation block and elevation-weight-estimation block.
Each block contained a 1× 1 convolutional layer, a leaky ReLU activation, and one 1× 1
convolutional layer. A sigmoid was the final layer of the RA-Net for obtaining the output
wr and ws = 1− wr. To confirm to the light direction estimation results, the reflectance
weights were estimated separately for the azimuth and elevation.

2.3. Directional Light Estimation Module (DLE Module)

The DLE module consisted of a diffuse directional light estimator (DDLE) and specular
directional light estimator (SDLE). The DLE module was also designed based on a two-
steam structure and took the concatenation of local features and global features as input,
as illustrated in Figure 5. Local features were extracted from the input of each image, and
they only contained information relevant to each directional light. The global features
aggregated all of the local features and implicitly contained the reflectance information (i.e.,
free from light) of the surface. We used one convolutional layer with a kernel size of 3× 3 to
fuse the local and global features and three convolutional layers with a kernel size of 3× 3
to reduce the spatial dimension. Finally, azimuth classifiers and elevation classifiers, which
consisted of two convolutional layers with a kernel size of 1× 1, were used to acquire
the diffuse classification scores Predd−azi/ele and specular classification scores Preds−azi/ele.
The output of ReDDLE-Net could be expressed as the weighted sum of Predd−azi/ele and
Preds−azi/ele as

Predazi/ele = Predd−azi/ele×wdi f f use−azi/ele + Preds−azi/ele × wspecular−azi/ele

3 3 Conv S=1

3 3 Conv S=2

3 3 Conv S=2

3 3 Conv S=2

Specular

azimuth-Cls

Specular

elevation-Cls

C

3 3 Conv S=1

3 3 Conv S=2

3 3 Conv S=2

3 3 Conv S=2

Diffuse

azimuth-Cls

Diffuse

elevation-Cls

C

Diffuse

Local Feature n

Diffuse

Global Feature 

Specular

Global Feature

Specular

Local Feature n

DDLE SDLE

Figure 5. The proposed directional light estimation (DLE) module. Left: Diffuse directional light
estimator (DDLE). Right: Specular directional light estimator (SDLE).
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2.4. Loss Function

We adopted cross-entropy loss function for the light azimuth and elevation estimation,
which were Ldir−azi and Ldir−ele, respectively. Given N images, the light azimuth loss or
light elevation loss can be expressed as:

Ldir−azi/ele =
1
N ∑

n
(−

32

∑
i=1
{yn

i = 1} log(pn
i )) (1)

where {·} is a binary indicator (0 or 1) function, pn
i is the predicted probability for bin i of

the nth image, and yn
i = 1 is the ground label (0 or 1). The reflectance decomposition loss

item is defined as LReD

LReD = −ŵd · log(wd)− ŵs · log(ws) (2)

where wd and ws = 1− wd are the estimated reflectance weights for diffuse and specular
samples, and ŵr and ŵs are the ground truths of the reflectance weights. We set ŵd = 1
for the diffuse samples and ŵs = 1 for the specular samples. To perform directional light
estimation based on reflectance decomposition, we combined the loss terms (LReD and
Ldir), and our final network loss function became

L = Ldir−azi + Ldir−ele + λazi · LReD−azi

+ λele · LReD−ele (3)

where λazi and λele balanced LReD−azi and LReD−ele. We divided the dataset into pseudo-
diffuse and pseudo-specular groups according to the specular peak indicator. We set
λazi = λele = 0.05 during training.

3. Results

All experiments were tested on a GeForce RTX 2080Ti. The Adam optimizer was used
to optimize our networks during the training phase with the default parameters [37]. We
used the Blobby and Sculpture datasets provided by [5] as our training dataset. The training
process took around 27 h with 20 epochs. We applied the same data pre-processing tech-
nique as that suggested for LCNet [17], except for the addition of extra noise disturbances.
The proposed method had 8.82 million parameters and spent 7.28 s on processing the
DiLiGenT benchmark with an input of 96 images.

3.1. Evaluation of Light Direction Estimation

In this section, we systematically evaluate the performance of our ReDDLE-Net and
compare it with a state-of-the-art light direction estimation method on synthetic datasets
and real datasets. The mean angular error (MAE; in degrees) was used to measure the
accuracy of the predicted light direction.

3.1.1. Performance of Light Direction Estimation on Synthetic Datasets

The 100 MERL synthetic datasets was obtained by rendering Bunny and Dragon shapes
with 100 BRDFs from the MERL dataset. We compared our method with LCNet [17], which
has a better ability to estimate the light direction on a surface with isotropic materials than
traditional methods. As illustrated in Figure 6, the proposed method performed better
on most materials and reduced the average light direction error by 0.17◦ and 0.77◦ on the
Bunny and Dragon objects, respectively.
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In order to increase the interpretability of the proposed method and validate the
behavior of our method, which could adjust the attention according to the input, we
used class activation maps (CAMs) to visualize the predicted class scores on the diffuse
and specular sub-networks, respectively. In order to study the behavior of our method,
which could adjust the attention according to the input, we used Eigen-CAM [38] to
visualize the predicted class scores on the diffuse and specular sub-networks, respectively.
A CAM [39] visualizes the predicted scores by projecting them on the input and highlights
the discriminative features produced by the network. Eigen-CAM [38] improves CAMs
by using the principal components of the features from the network, which are robust to
adversarial noise. Figure 7 shows the class activations that were computed using Eigen-
CAM for LCNet and our method. We found that LCNet used less information than our
method and focused on a single type of reflectance information during feature extraction.
Most objects have both diffuse and specular reflections on their surfaces, and both types of
reflections provide useful clues for light direction estimation. Whereas LCNet focused on a
single type of information during feature extraction, our method improved performance
in light direction estimation by extracting both diffuse and specular information through
its diffuse and specular sub-networks. Smooth objects present both diffuse and specular
reflectance, such as with the blue metallic paint of the Bunny and green metallic paint of the
Dragon. The diffuse sub-network focused more on information in the diffuse area and
bypassed the specular area. The specular sub-network, on the contrary, focused more on
the information in the specular areas. The surfaces of rough materials exhibit Lambertian
properties, i.e, diffuse reflective properties without sharply highlighted areas, such as
with the blue rubber of the Bunny and blue fabric of the Dragon. For rough materials, the
diffuse sub-network focused more on areas with local diffuse maxima. Meanwhile, the
specular sub-network reduced diffuse materials’ contributions to the results. Based on
the experimental results, the ReDDLE-Net worked in line with our design: The two sub-
networks focused on different information, and the network could adjust the contributions
of the sub-networks to the final result according to the input of the surface characteristics.
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Figure 6. Quantitative comparison of LCNet and our ReDDLE-Net for the Bunny and Dragon objects
made of 100 MERL materials. The horizontal axis represents the names of the materials and the
vertical axis represents the MAE. The horizontal coordinate represents the names of the materials in
the 100 MERL dataset. The dashed line is the average error reference line for each method.
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Figure 7. Schematic representation of the feature activation for LCNet and our ReDDLE-Net. The
features in the red regions indicate more contributions, while blue regions indicate fewer contributions.
The different columns represent the results of objects with different materials. Rows 1 and 5: Input
images of eight Bunny and Dragon objects. The texts on the left indicate the names of the objects.
Rows 2 and 6: Feature maps of LCNet [17]. Rows 3 and 7: Feature maps of our diffuse sub-network.
The texts on the left indicate the name of our sub-network. Rows 4 and 8: Feature maps of our
specular sub-network. The texts on the left indicate the name of our sub-network.

3.1.2. Performance of Directional Light Estimation on the DiLiGenT Benchmark Dataset

We compared our proposed ReDDLE-Net with an optimization-based method (PF14 [40])
and a learning-based method (LCNet [17]). Quantitative evaluation results on the DiLiGenT
benchmark dataset are reported in Table 1. The proposed ReDDLE-Net achieved the lowest
average light direction error on eight real-world objects from the DiLiGenT dataset. Our
method performed worse than the others on POT1, POT2, and CAT. These three objects
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were mainly diffuse and had multiple colors, which made it more difficult to estimate the
light source. For diffuse objects, our ReD mechanism increased the contribution of the
diffuse sub-network to the results and reduced the contribution of the specular sub-network.
However, the highlights were not disturbed by color variations and were a valid clue for
estimating the light directions with multicolored objects [18]. This was the reason for why
our method performed poorly on diffuse multicolored objects (POT1, POT2, and CAT) and
well on specular multicolored objects (HARVEST, READING). Figure 8 shows the light
error distributions for objects in the DiLiGenT benchmark resulting from the two methods.
We found that our method was much more effective in calculating light directions that
were far from the viewing direction. This was because increasing the use of information by
adjusting the attention to diffuse and specular reflectance could maintain the performance
of the method. We also show the visual quality results for the Light Stage Data Gallery
dataset [34] in Figure 9.
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Figure 8. Quantitative light direction evaluation results on the DiLiGenT benchmark
dataset. Rows 1 and 4: Captured images of eight samples in the DiLiGenT benchmark dataset.
Rows 2–3 and 5–6: Light direction error distributions of corresponding samples for LCNet and
ReDDLE-Net, respectively. Following [17], we mapped the light source [x, y, z] to a point [x, y].
The color of the points corresponds to the magnitude of the error.
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450
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LCNet
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Figure 9. Quantitative light direction evaluation results on the Light Stage Data Gallery dataset.
Left: Captured image and light direction error distribution on KNIGHT KNEELING for LCNet and
ReDDLE-Net. Right: Captured image and light direction error distribution on KNIGHT STANDING
for LCNet and ReDDLE-Net. We mapped the light source [x, y, z] to a point [x, y]. The color of points
corresponds to the magnitude of the error.

Table 1. The average light direction error on the DiLiGenT dataset. The numbers represent the
MAE (◦).

BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST Avg.

PF14 [40] 4.90 5.31 2.43 5.24 13.52 9.76 33.22 21.77 16.34 24.99 13.75
LCNet [17] 3.35 4.15 5.68 3.64 2.77 4.47 10.34 4.69 4.69 6.32 5.01

Ours 2.56 6.54 3.47 2.93 4.15 4.23 6.93 4.16 4.30 4.27 4.35

3.1.3. Performance of Reflectance Decomposition (Red) Mechanism

To verify the generality of the ReD mechanism, we applied the proposed method to
cross-domain datasets (including synthetic and real datasets) and analyzed the relationship
between the output weights and the reflective properties of the object surface.

Since the training datasets were obtained by rendering based on the 100 MERL BRDF
dataset [35], we first applied the ReD mechanism on the CyclesPS dataset [25], which
was created with the Disney BSDF model [36], for cross-domain evaluation. As shown
in Figure 10, there was a significant difference in the reflective properties between the
diffuse and metallic categories in CyclesPS. The proportion of specular reflectance was
much greater in the metallic samples than in the diffuse samples. In contrast, the diffuse
reflectance was dominant in the diffuse samples. We thus used the results from both
categories for comparison, as shown in the right part of Figure 10. We found that the
RA-Net made an effective distinction between the metallic and diffuse categories. The
diffuse weights of diffuse objects were generally larger than those of metallic objects for the
same sample. To qualitatively analyze the performance of the RA-Net on real objects, we
show the output weights of the proposed method on the DiLiGenT dataset in Table 2. The
results of the weight estimation were consistent with our perception of the objects’ surfaces.
Objects (BEAR, POT1) that included a dominant Lambertian component had a large diffuse
weight. Objects with metallic paint (COW) or strong specular spikes (READING) had
a large specular weight. Since BALL and POT2 had sparse specular spikes and a large
area with a diffuse component, the ReD mechanism improved the contribution of diffuse
feature extractor.
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Figure 10. Left: Diffuse weight for diffuse and metallic samples in the CyclesPS dataset. The vertical
coordinate represents the value of the reflectance weight. The horizontal coordinate represents the
names of the objects in the CyclesPS dataset. The objects marked with ∗ are visualized in the diagram
on the right. Right: Six objects from the CyclesPS dataset. Each example consists of a normal map, an
image of a diffuse sample, and an image of a specular sample.

Table 2. The average weights ( wazi+wele
2 ) of 10 objects in the DiLiGenT dataset.

BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST

Diffuse weight 0.59 0.57 0.65 0.59 0.67 0.55 0.59 0.45 0.45 0.48

Specular weight 0.41 0.43 0.35 0.41 0.33 0.45 0.41 0.55 0.55 0.52

3.2. Evaluation of Normal Estimation

The light direction estimation network serves the uncalibrated photometric stereo
problem. We combined ReDDLE-Net (ReDDLE-Net utilizes the raw images as inputs and
acquires the light direction; then, we make use of the ground-truth light intensity in the
datasets to calibrate the images; the images calibrated for light direction and intensity are
employed as the inputs of the calibrated photometric stereo) with MT-PS-CNN [6] to deal
with the uncalibrated photometric stereo task. MT-PS-CNN constructs inter- and intra-
frame representations for accurate normal estimation of non-Lambertian objects, consisting
of an inter-frame feature extractor, intra-frame feature extractor, and normal map estimation. For
details, please refer to [6]. We compared the performance with that of traditional [16,17,40–44]
and learning-based [17] (for a fair comparison, we corrected the light intensity of the input
images before estimating the normal vector) uncalibrated photometric stereo methods on
objects in the DiLiGenT benchmark, as reported in Table 3. The proposed model with MT-
PS-CNN achieved the lowest average MAE (8.21°) on 10 real-world objects of DiLiGenT and
performed the best on eight objects. In Figure 11, we visualize the surface normal estimation
results from CH19 [17] and the proposed method. Due to the improved accuracy of light
direction estimation, our method kept the normal map error to a low level, regardless of
whether the surface was rough or smooth.
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Figure 11. The surface normal estimation results of CH19 [17] and the proposed self-calibrating
photometric stereo framework. Rows 1 and 3 are estimated normal maps. Rows 2 and 4 are error
maps with the ground truth. The images on the left of each object are the results of CH19 [17], and
those on the right are the results of the proposed method.

Table 3. The normal errors for 10 objects from the DiLiGenT dataset. The numbers represent the
MAE (◦).

BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST AVG.

AM07 [41] 7.27 31.45 18.37 16.81 49.16 32.81 46.54 53.65 54.72 61.70 37.25

SM10 [42] 8.90 19.84 16.68 11.98 50.68 15.54 48.79 26.93 22.73 73.86 29.59

WT13 [43] 4.39 36.55 9.39 6.42 14.52 13.19 20.57 58.96 19.75 55.51 23.93

LM13 [16] 22.43 25.01 32.82 15.44 20.57 25.76 29.16 48.16 22.53 34.45 27.63

PF14 [40] 4.77 9.54 9.51 9.07 15.90 14.92 29.93 24.18 19.53 29.21 16.66

LC17 [44] 9.30 12.60 12.40 10.90 15.70 19.00 18.30 22.30 15.00 28.00 16.35

CH19 [17] 4.00 7.94 9.00 8.26 7.11 8.25 10.71 14.05 6.97 16.88 9.32

Ours 2.65 8.76 7.82 6.04 7.99 7.28 8.42 12.28 6.80 14.03 8.21

4. Discussion

As demonstrated by the results shown in Section 3, ReDDLE-Net performed well on
both synthetic and real datasets. Existing learning-based methods [17–19] extract reflectance
features implicitly, and it is hard for them to make full use of both types of reflectance
clues, as we mentioned in Section 3.1.1. Our ReDDLE captured the diffuse and specular
reflections separately through a two-branch structure and adjusted the contributions of
different reflectances to the results through the RA-Net. We built the training data with
labels of reflectance properties and use them to guide the diffuse and specular sub-networks
to focus on the corresponding reflectance information.

Although our method achieved good performance on different datasets, there are
still some limitations. Since we used the specular peak as a single indicator to classify
the material datasets, the training datasets were actually divided into pseudo-diffuse and
pseudo-specular materials. However, those data were not purely diffuse or specular. To
address this problem, in future work, we will use more physical variables as indicators for
classification or adapt an unsupervised approach in order to adjust the contributions of
diffuse and specular information.
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5. Conclusions

In this paper, a novel reflectance decomposition (ReD) mechanism was developed to
adaptively adjust the attention of diffuse and specular reflectance with material changes.
We built a two-branch CNN architecture called ReDDLE-Net and achieved competitive
performance on synthetic and real datasets. We used the class activation mapping (CAM)
method to verify that the diffuse and specular sub-networks focused on diffuse and spec-
ular reflectance, respectively. The experimental results showed that the ReD mechanism
provided an effective stage for promoting light estimation. In addition, the proposed
ReDDLE-Net could be seamlessly integrated into learning-based photometric stereo meth-
ods to handle the uncalibrated photometric stereo task.
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