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Abstract: The action of linear media on incident polarized electromagnetic waves can produce two
kinds of thermodynamic irreversible effects, namely, loss of intensity, in general anisotropic, and
reduction of the degree of polarization. Even though both phenomena can be described through spe-
cific properties, the overall degree of reversibility of polarimetric interactions can be characterized by
means of a single parameter whose minimum and maximum values are achieved by fully irreversible
and reversible polarimetric transformations, respectively. Furthermore, the sources of irreversibility
associated to the entire family of Mueller matrices proportional to a given one are identified, leading
to the definition of the specific reversibility as the square average of the degree of polarimetric purity
and the polarimetric dimension index. The feasible values of the degree of reversibility with respect
to the mean intensity coefficient and the degree of polarimetric purity are analyzed graphically, and
the iso-reversibility branches are identified and analyzed. Furthermore, the behavior of the specific
reversibility with respect to the achievable values of the polarimetric dimension index and the degree
of polarizance is described by means of the purity figure, and it is compared to the iso-purity elliptical
branches in such figure.

Keywords: Mueller matrices; polarimetry; diattenuation; polarizance; depolarization

1. Introduction

The concept of thermodynamic irreversibility was formerly analyzed by Jones [1] in
the context of optical phenomena, including attenuation of the intensity and reduction of
the degree of polarization as two effects that are directly related to polarization.

In fact, the second-order description of the state of polarization of a plane wave is given
by the corresponding Stokes vector, which combines information on the intensity, average
polarization ellipse, and degree of polarization. Ideal processes where both intensity and
degree of polarization are preserved and only changes of the shape and orientation of
the average polarization ellipse occur can be reversed through the action of a transparent
retarder. All other kinds of polarimetric transformations involve necessarily changes on
either the intensity or the degree of polarization for certain incident totally polarized states
and therefore they can be considered irreversible. In this communication, the concepts of
polarimetric reversibility and irreversibility are revisited in the light of the recent advances
in polarization theory and Stokes–Mueller algebra.

Linear polarimetric interactions are characterized by means of the corresponding
Mueller matrices, which encompass all the measurable information regarding the changes
of the Stokes parameters of the polarized light probe for each given interaction conditions
(angle of incidence, spectral profile of light, angle of observation, spot-size of the sample,
measurement time, etc.) As indicated above, two kinds of irreversible effects may occur (ei-
ther combined or in an independent manner), namely, the loss of intensity of the interacting
light and the reduction of the degree of polarization.

In general, polarimetric interactions in nature are passive, that is, a part of the intensity
of the incident light beam is lost in the interaction, so that it cannot be recovered through a
subsequent natural linear interaction [2–7]. Thus, media exhibiting attenuation (isotropic)
or diattenuation (anisotropic) produce this kind of irreversible effects linked to the loss of
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intensity. An example of diattenuating interaction is the reflection of a plane wave on a
plane surface, for which the Fresnel equations provide the angle-dependent reflectance
and transmittance for both s and p components of the incident beam. This phenomenon
preserves the degree of polarization of totally polarized incident light, while producing
anisotropic loss of intensity, so that the process is reversible from the point of view of the
polarimetric purity and irreversible from the point of view of intensity.

On the other hand, at least from a theoretical point of view, certain polarimetric
interactions preserve the intensity while reducing the degree of polarization. An example
is a parallel composition of transparent retarders, whose Mueller matrix is given by the
convex sum of the Mueller matrices of the components and exhibits zero attenuation (and
consequently zero diattenuation), whereas it reduces the degree of polarization of the
incident light [8].

The above examples, together with other interesting physical situations, will be ana-
lyzed in further sections devoted to the main aim of this work, which consists of charac-
terizing the reversibility of polarimetric transformations and introducing appropriate and
physically significant descriptors.

The contents of this communication are organized as follows. Section 2 contains a
summary of the concepts and notations that are necessary for the required developments
in later sections. Section 3 is devoted to revisiting the concept of polarimetric reversibility,
which leads to the definition, in Section 4, of the degree of polarimetric reversibility, whose
analysis and graphical representation are also considered in the same section. Section 5
deals with the introduction of the concept of specific reversibility and the study of its
behavior as a function of the so-called components of purity [8,9]. Sections 6 and 7 are
devoted to the discussion and conclusions, respectively.

Since the Stokes–Mueller algebra applies to any kind of linear polarimetric transfor-
mations of electromagnetic waves, the results presented are not limited to the optical range
but apply to the entire electromagnetic spectrum.

2. Theoretical Background

Let us consider the transformation of polarized light by the action of a linear media
(under fixed interaction conditions). It can always be formulated as s’ = Ms where s
and s’ are the Stokes vectors that represent the states of polarization of the incident and
emerging light beams, respectively, while M is the Mueller matrix associated with this kind
of interaction and which can always be expressed as [10–12]

M = m00 M̂, M̂ ≡
(

1 DT

P m

)
,

m ≡ 1
m00

m11 m12 m13
m21 m22 m23
m31 m32 m33

,

D ≡ (m01,m02,m03)
T

m00
, P ≡ (m10,m20,m30)

T

m00
,

(1)

where mij (i, j = 0, 1, 2, 3) are the elements of M; the superscript T indicates transpose; m00
is the mean intensity coefficient (MIC), i.e., the ratio between the intensity of the emerging
light and the intensity of incident unpolarized light; D and P are the diattenuation and
polarizance vectors, with absolute values D (diattenuation) and P (polarizance); and m is
the normalized 3 × 3 submatrix associated with M.

The passivity constraints (natural linear polarimetric interactions do not amplify the
intensity of light) are completely characterized by the inequality m00(1 + Q) ≤ 1 [5,13],
where Q ≡ max (D, P). Thus, m00 ≤ 1/(1 + Q), which implies that media exhibiting
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nonzero polarizance or diattenuation necessarily feature m00 < 1, while the limit m00 = 1
corresponds to transparent Mueller matrices, which have the general form

M ≡
(

1 0T

0 m

)
. (2)

Some additional concepts and descriptors that will be useful for further developments
and discussions are briefly reviewed below.

Leaving aside systems exhibiting magneto-optic effects, given a Mueller matrix M,
the Mueller matrix that represents the same linear interaction as M, but with the incident
and emergent directions of propagation of the electromagnetic wave interchanged, is given
by [14–16]

Mr = diag(1, 1,−1, 1) MT diag(1, 1,−1, 1), (3)

and consequently, the diattenuation (polarizance) of Mr coincides with the polarizance
(diattenuation) of M, showing that D and P share a common essential nature related to
the ability of the medium to enpolarize (increase the degree of polarization) unpolarized
light incoming in either forward or reverse directions [16]. Since magneto-optic effects only
affect to the sign of certain elements of M, this does not alter D, P and other quantities
considered below (when applied to Mr), which are defined from square averages of some
Mueller matrix elements.

A useful combined measure of diattenuation–polarizance, is given by the degree of
polarizance PP, or enpolarizance, defined as [8]

PP ≡
√

D2 + P2

2
, (4)

Regarding the ability of M to preserve the degree of polarization (DOP) of totally
polarized incident light, a proper measure is given by the degree of polarimetric purity of M
(also called depolarization index) [17], P∆, which can be expressed as

P∆ =

√
D2 + P2 + 3P2

S
3

=

√
2P2

P
3

+ P2
S , (5)

where PS is the polarimetric dimension index (also called the degree of spherical purity), defined
as [9,16]

PS ≡
‖m‖2√

3

‖m‖2 ≡
1

m00

√√√√ 3

∑
k,l=1

m2
kl

, (6)

‖m‖2 being the Frobenius norm of m.
Because of the fundamental role that PS plays in subsequent analyses, it is worth

considering it in more detail by noting that the name degree of spherical purity originally
coined for PS [9,16] comes from the fact that both the I-image and the characteristic ellip-
soid [16,18] associated with M are spherical if and only if PS = 1. On the other hand, from
a statistical point of view, PS can be expressed as [16,19]

PS =

√√√√ 3
∑

k,l=0
k<l

(
σ2

k − σ2
l
)2

√
3

3
∑

k=0
σ2

k

(
3

∑
k=0

σ2
k = m00

)
, (7)

where σ2
k represent the variances of the coherency matrix (denoted by C) associated with

M, so that PS formally adopts the form of the Mueller-algebra version of the dimensionality
index defined originally for 3D polarization matrices [20] and then generalized for n-
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dimensional density matrices [21]. In contrast to the generic dimensionality index of a
density matrix ρ defined from the variances of the symmetric matrix constituting the real
part of ρ, PS is defined from the variances of C, which determine the diagonal elements of
M by means of simple linear relations [19]

m00 = σ2
0 + σ2

1 + σ2
2 + σ2

3 ,
m11 = σ2

0 + σ2
1 − σ2

2 − σ2
3 ,

m22 = σ2
0 − σ2

1 + σ2
2 − σ2

3 ,
m33 = σ2

0 − σ2
1 − σ2

2 + σ2
3 .

(8)

The depolarizance is defined as

D∆ =
√

1− P2
∆, (9)

giving a measure of the overall ability of the medium to depolarize light, which constitutes
the natural quadratic counterpart of P∆. The entropy-like version of D∆ is the polarization
entropy S∆, which increases monotonically as D∆ increases. The detailed description of S∆
and its relation to P∆ via the indices of polarimetric purity [22] can be found in [16].

The parameters m00, D, P, PP, P∆, D∆, and PS take their achievable values in the
interval [0, 1]. In particular, m00 = 1 for transparent media and m00 = 0 for opaque media
(zero Mueller matrix); PP = 1 corresponds to perfect polarizers (D = P = 1), while the
minimal value PP = 0 is taken by nonenpolarizing media (D = P = 0). Note that, from
the abovementioned passivity condition, m00 = 1 implies PP = 0, while PP = 1 implies
m00 ≤ 1/2. The maximal degree of polarimetric purity, P∆ = 1, is exhibited uniquely by
nondepolarizing (or pure) media (i.e., media that do not decrease de degree of polarization of
totally polarized incident light), while P∆ = 0 is characteristic of perfect depolarizers, which
are represented by Mueller matrices of the form M∆0 = m00 diag (1, 0, 0, 0). Moreover,
PS = 1 corresponds uniquely to retarders (regardless of the value of m00, i.e., regardless
of whether they are transparent or exhibit certain amount of isotropic attenuation), and
PS = 0 corresponds to media exhibiting m = 0.

3. The Concept of Polarimetric Reversibility

We will say that a linear polarimetric interaction, represented by a given Mueller
matrix M, is reversible when there are two transformations M’ and M” such that M M’ = I,
and M”M = I, where I is the identity matrix; that is, the corresponding serial combinations
of the medium with those represented by M’ and M” produce a completely neutral effect.
From Mueller–Stokes algebra, it is well known that the only media that behave as reversible
are the transparent retarders, whose Mueller matrices, hereafter denoted by MR, are proper
orthogonal in the sense that they satisfy MT

R = M−1
R , with detMR = +1 [16]. Thus, the

general form of the Mueller matrix of a transparent retarder is

MR =

(
1 0T

0 mR

)
, mT

R = m−1
R , detmR = +1. (10)

Consequently, the term reversible will be applied exclusively when M represents a
transparent retarder, viz. M = MR. Retarders exhibiting certain isotropic attenuation have
the general form m00MR, with m00 < 1.

It should be noted that the present work is focused on the thermodynamic reversibility
of polarimetric transformations and not to retroreflection properties [23] nor the interchange
of incident and emergent directions of the light probe, where, as seen above, the term reverse
is commonly used to refer to such change [14–17,23–26].

As mentioned in the introduction, the thermodynamic polarimetric reversibility–
irreversibility can be analyzed from two complementary points of view, namely, intensity
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and degree of polarization. Thus, for the sake of clarity, we will distinguish different kinds
of transformations.

Transformations corresponding to pure Mueller matrices (P∆ = 1), denoted as MJ ,
will be said to be DOP-reversible, because they preserve the degree of polarization of
totally polarized incident light (regardless of whether they present any kind of intensity
attenuation or not).

Transparent transformations, characterized by m00 = 1 (which implies PP = 0), will be
said to be intensity-reversible (denoted as I-reversible, when appropriate, for brevity) because
they do not alter the intensity of the light probe (regardless of whether they decrease the
degree of polarization or not). The intensity-irreversible polarimetric transformations
include the subclass of intensity-normalizable-reversible (denoted as IN-reversible), which are
represented by Mueller matrices satisfying PP = 0 and m00 < 1.

Since any given linear polarimetric transformation is fully characterized by its associ-
ated Mueller matrix, the above names are also applied to the Mueller matrices themselves.
Table 1 summarizes the definitions and links among the different classes of polarimetric
reversibility.

Table 1. Classification of Mueller matrices in terms of their reversibility-irreversibility properties.

DOP-reversible
P∆ = 1

DOP-irreversible
P∆ < 1

I-reversible
m00 = 1

M =

(
1 0T

0 m

) (Reversible)
m00 = 1, PS = P∆ = 1

(M = MR)
m00 = 1, PS = P∆ < 1

I-irreversible
m00 < 1

IN-reversible
m00 < 1, PS = P∆

M = m00

(
1 0T

0 m

) m00 < 1, PS = P∆ = 1(
M̂ = MR

) m00 < 1, PS = P∆ < 1

IN-irreversible
m00 < 1, PS < P∆

M = m00

(
1 DT

P m

) m00 < 1, PS < P∆ = 1(
M = MJ , PP > 0

) m00 < 1, PS < P∆ < 1

Even though certain serial combinations of DOP-irreversible transformations and
enpolarizing elements result to be DOP-reversible (consider for instance a perfect depo-
larizer sandwiched by perfect polarizers), this polarimetric behavior involves necessarily
anisotropic loss of intensity, showing that, in general, irreversibility arises from an intricate
combination of loss of intensity and changes of the degree of polarization. Consequently,
the classification in Table 1 has an academic character oriented to the interpretation of
different physical situations.

The specific physical behaviors represented by the respective cells of Table 1 are briefly
described below.

As indicated above, reversibility (shadowed cell in Table 1) implies both I-reversibility
and DOP-reversibility (m00 = 1, P∆ = 1). From passivity condition and Equation (5), it
follows that reversibility implies PS = P∆ = 1, and therefore, the conditions for reversibility
can also be expressed as m00 = 1, PS = 1. Obviously, since any physical linear transforma-
tion of polarized electromagnetic waves involves unavoidable loss of intensity (because of
absorption, reflection, etc.), polarimetric reversibility constitutes an ideal limiting situation.

I-reversibility (m00 = 1) may also be exhibited by DOP-irreversible processes (P∆ < 1),
in which case, P∆ = PS < 1 (because of the property m00 = 1⇒ PP = 0).

I-irreversible transformations (m00 < 1) can be split into IN-reversible (when PP = 0)
and IN-irreversible (when PP > 0). As shown in Table 1, IN-reversible behavior corre-
sponds to nonenpolarizing media, which can be either DOP-reversible or not depending
on whether PS = 1 or PS < 1, respectively. Moreover, IN-irreversible behavior corresponds
to enpolarizing media, which can be either DOP-reversible or not depending on whether
P∆ = 1 or P∆ < 1, respectively.
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DOP-reversible polarimetric processes (P∆ = 1) correspond to pure Mueller matrices,
denoted as MJ , and necessarily belong to one of the three following different categories

• Transparent retarders, denoted as MR, when m00 = 1, (reversible transformations).
• Attenuating retarders, whose Mueller matrix has the form m00MR (with m00 < 1),

when PP = 0 (i.e., P∆ = PS) and m00 < 1 (IN-reversible transformations).
• Enpolarizing pure media, when PP > 0 (IN-irreversible transformations).

DOP-irreversible polarimetric processes (P∆ < 1) correspond to depolarizing Mueller
matrices, which correspond to one of the following cases

• Depolarizing transparent media, when m00 = 1.
• Depolarizing-nonenpolarizing media (PP = 0 with m00 < 1).
• Depolarizing-enpolarizing media, when PP > 0.

4. The Degree of Polarimetric Reversibility

As shown in Table 1, the different types of polarimetric irreversibility can be described
completely through the nondimensional descriptors m00, PP, and P∆. Nevertheless, the
question arises whether it is possible to find a single parameter that provides a measure of
the degree of reversibility of a polarimetric transformation. The present section is devoted
to finding a positive answer to that question.

From the analyses preformed in the previous section, it turns out that the degree of
DOP-reversibility is well characterized by P∆. Moreover, Equation (5) can be expressed as

P∆ =

√
2
3

P2
P + P2

S , (11)

while the MIC, m00, which in virtue of the passivity condition is critically limited by the
enpolarizance of the medium, provides an overall measure of the degree of I-reversibility.
Therefore, leaving aside the trivial and limiting case of opaque media (m00 = 0), an overall
measure of the degree of polarimetric reversibility is given by

PR ≡
m00 + P∆

2
(m00 > 0). (12)

Thus, PR = 1 is satisfied, uniquely, by transparent retarders (m00 = 1, P∆ = 1), for
which necessarily PP = 0 and PS = 1. Moreover PR → 0 when m00 → 0 with P∆ = 0, as
expected for a natural and well-defined degree of reversibility. Intermediate values are
achieved depending on the values of m00 and P∆, as for instance, transparent perfect depo-
larizers, M = diag (1, 0, 0, 0) (which can be physically synthesized through appropriate
parallel compositions of transparent retarders) for which PR = 1/2.

Figure 1 shows the feasible region for the achievable values of the degree of reversibil-
ity with respect to the axes m00 and P∆. Iso-reversibility lines are given by the oblique
segments (dashed) determined by fixed values of the function (m00 + P∆)/2. Edge OG
corresponds to the limiting case m00 = 0, associated exclusively to the zero Mueller matrix,
for which P∆ is undetermined. Thus, edge OG is excluded from the feasible region OEFGO.
Point F (PR = 1) is associated biunivocally to transparent retarders. Line EG (vertex
G excluded) corresponds to PR = 1/2, which includes the central point of the squared
figure, 1/2 = m00 = P∆, while vertex E is associated with transparent perfect depolarizers,
M = diag (1, 0, 0, 0), (which can be physically synthesized through appropriate parallel
compositions of transparent retarders [27]).
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Figure 1. The feasible region for the degree of reversibility, PR, is determined by the regular square
OEFG, edge OG excluded. Edges OE (point O excluded), EF, and FG correspond, respectively,
to perfect depolarizers, transparent media, and nondepolarizing media. Point F corresponds to
transparent retarders, while point E corresponds to transparent perfect depolarizers. Iso-reversibility
lines are represented by the dashed segments.

Since each point of Figure 1 is determined by the coordinates m00 and P∆, and a Mueller
matrix depends up to sixteen independent elements, a given single point corresponds to
many different Mueller matrices for which the values of m00 and P∆ coincide. As shown in
Figure 1, the length of the iso-reversibility lines is maximum when PR = 1/2 and decreases
as PR decreases or increases from such an intermediate value.

5. The Specific Reversibility

To go deeper in the characterization of the reversibility properties associated with a
given Mueller matrix M, observe that the fact that the MIC, m00, plays the role of a scale
coefficient in the expression M = m00M̂, described in Equation (1), makes it common to
use descriptors that, like D, P, PP, PS, and P∆, are insensitive to the effective value of m00.

Thus, even though PR characterizes the degree of reversibility of a linear polarimetric
transformation, it is interesting to explore the way of defining a measure of the reversibility
features of M̂, that is, with independence of the specific value of m00 and thus being valid
for the entire family of Mueller matrices proportional to M.

To do so, let us observe that PP establishes critical limits for the degree of I-reversibility
(recall that IN-reversibility implies PP = 0). Furthermore, the bigger PS is, the closer M̂ is to
a transparent retarder. These considerations allow us to introduce the following definition
of the specific reversibility, RS, whose appropriateness will be illustrated below through
some examples and by means of its features in the purity figure [8,9]

RS ≡

√
P2

S + P2
∆

2
. (13)

Equivalently, from Equation (11)

RS =

√
P2

∆ −
P2

P
3

=

√
P2

S +
P2

P
3

. (14)

This new parameter is limited by 0 ≤ RS ≤ 1. Transformations featuring RS = 1
correspond uniquely to retarders (transparent or not), while the minimum, RS = 0, is
associated uniquely to perfect depolarizers. In the case of a pure Mueller matrix (P∆ = 1)
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exhibiting certain amount of diattenuation, i.e., D > 0 (recall that pure Mueller matrices
necessarily satisfy P = D = PP [28]), then

R2
S = 1− D2

3
. (15)

In particular, perfect polarizers (D = P = 1) feature R2
S = 2/3, showing that the

irreversibility produced by diattenuation of pure media is regulated by the effective value
of D in a simple manner and with a natural correspondence with the partitioned structure
of M shown in Equation (1); that is, for a perfect polarizer, D and P contribute, respectively,
1/3 and 1/3 to the value of R2

S, while the value P̂2
S = 1/3 is fixed directly from the condition

D = P = 1.
Moreover, nonenpolarizing media (PP = 0) are fully characterized by the property

P∆ = PS (see Equation (11)) and consequently satisfy, uniquely, RS = PS = P∆.
Obviously, parameters PR and RS hold information of different nature. Regarding PR,

it cannot be increased by the successive application of linear polarimetric transformations,
that is PR(M1M2) ≤ PR(M1)PR(M2), which agrees with its character of an overall measure
of reversibility. Nevertheless, RS constitutes an index of the lack of reversibility derived
from both enpolarizing and depolarizing properties of the medium.

The representation of linear of polarimetric transformations by means of the space
defined by the axes PS and PP constitutes the so-called purity figure [8], for which different
branches for values of P∆ and RS are shown in Figure 2. The feasible region for Mueller
matrices is limited by the positive branches of the coordinate axes themselves, together with
the elliptical edge 1 = 2P2

P/3 + P2
S (AC) and the hyperbolic edge 2P2

P = 1 + 3P2
S (DC) [9].
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positively to the purity ( PP  is a measure of the ability to increase the degree of polariza-
tion), it reduces the specific reversibility ( PP  can also be considered a measure of the 
overall diattenuation power of the medium, and therefore, it is linked to the decrease of 
the I-reversibility). 

It should be noted that alternative definitions for the specific reversibility could be 
formulated as 

( )2 2 2 2cos sin , 0 2 ,S SR P Pα α α πΔ≡ + ≤ ≤  (16) 

Or, equivalently, 

Figure 2. Purity figure, where the solid elliptical branches represent iso-purity Mueller matrices
(P∆ constant), and the dashed elliptical branches represent iso-specific-reversibility (RS constant)
Mueller matrices. Descriptors PS, P∆, and RS coincide along axis PS, while the difference RS − P∆

increases as PP increases. The feasible region is limited by points OACD. Points O, A, and C represent,
respectively, perfect depolarizers, retarders, and perfect polarizers. The maximal achievable value of
PP for media with PS = 0 corresponds to point D, while points over the line BD necessarily exhibit
PS > 0.

The iso-specific-reversibility (RS constant) Mueller matrices describe the elliptical
branches represented by the dashed lines in Figure 2, while the iso-purity ones (P∆ constant)
correspond to the elliptical branches represented by solid lines. The feasible region for
Mueller matrices is given by the area OABCDO [8]. Point O is achieved, uniquely, by
perfect depolarizers, which are the only media with zero specific reversibility. The elliptical
segment AC corresponds, in an exclusive manner, to nondepolarizing media whose limiting
points A and C represent retarders and perfect polarizers, respectively. Media exhibiting a
zero polarimetric dimension PS = 0 are represented by segment OD. Thus, descriptors PS,
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P∆, and RS coincide along axis PS, while the difference RS − P∆ increases as PP increases.
Media with RS = 1 (retarders, transparent or not) are represented by point A; perfect
polarizers (PP = 1) exhibit RS =

√
2/3 and P∆ = 1 (point C); point D corresponds to

Mueller matrices with RS =
√

1/6 and P∆ =
√

1/3. Branches for other values of RS and
P∆ are also represented in Figure 1 in order to illustrate the different behavior of them as
PP increases from PP = 0 to its achievable maximum values.

Note that, while nondepolarizing Mueller matrices cover the entire elliptical segment
AC, specific-reversible ones correspond exclusively to point A.

6. Discussion

Among the possible definitions for the degree of reversibility, the one introduced in
Equation (12), PR, is given simply by the arithmetic mean of the values of mean intensity
coefficient (MIC), m00, and the degree of polarimetric purity, P∆. PR is applicable to any
nonzero Mueller matrix, and its representation in the space determined by the coordinate
axes m00 and P∆ shows that PR satisfies the natural conditions to be hold by a well-defined
degree of polarimetric reversibility.

The partitioned structure of Mueller matrices, for which m00 plays the mathematical
role of a scale parameter (whose feasible values are submitted to the passivity condition),
makes it particularly useful for handling descriptors that are independent of m00, as
occurs with the degree of polarimetric purity, the depolarizance, the indices of polarimetric
purity [22], the polarizance, the diattenuation, the enpolarizance, and the polarimetric
dimension index. This supports the idea of defining a specific reversibility parameter, RS,
that takes a fixed value for all physical Mueller matrices that are proportional to a given M.

The definition introduced in Equation (13) for RS is formulated as a square average of
P∆ and PS, which are mutually independent and are linked via PP. From Equations (13)
and (14), given a fixed value of PS, the greater PP is, the greater P∆ is, while for a given
value of P∆, the greater PP is, the lower PS is. That is, whereas PP contributes positively to
the purity (PP is a measure of the ability to increase the degree of polarization), it reduces
the specific reversibility (PP can also be considered a measure of the overall diattenuation
power of the medium, and therefore, it is linked to the decrease of the I-reversibility).

It should be noted that alternative definitions for the specific reversibility could be
formulated as

RS ≡
√

cos2 α P2
S + sin2 α P2

∆, (0 ≤ α ≤ π/2), (16)

Or, equivalently,

RS ≡
√

P2
S +

2
3

sin2 αP2
P , (0 ≤ α ≤ π/2), (17)

all of them satisfying the natural exigency that RS = 0 if and only if conditions PP = 0
and PS = 0 are simultaneously hold. The analyses performed in the previous sections
support the simplest choice α = π/4 taken for the definition proposed in Equation (13).
In fact, the iso-specific-reversibility branches in the purity figure (see Figure 2) become
particularly simple and admit a straightforward interpretation and comparison to the
iso-purity branches.

7. Conclusions

A proper measure for the degree of thermodynamic reversibility of linear polarimetric
transformations (which are represented by respective Mueller matrices) has been intro-
duced in Equation (12) which accounts for the reversibility associated with the lack of
attenuation of the intensity of the light probe, together with the reversibility associated
with the preservation of the degree of polarization of incident totally polarized light. The
feasible values for the degree of reversibility, PR, have been discussed with the help of their
representation with respect to the coordinates determined by the mean intensity coefficient
(m00) and the degree of polarimetric purity (P∆).
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Moreover, since the analysis of specific properties of Mueller matrices that do not
depend on the particular value of m00 has proven to be very useful for the study and
classification of the possible physical behaviors represented by respective types of Mueller
matrices, a new quantity, the specific reversibility, denoted as RS, which is associated to the
entire family of Mueller matrices that are proportional to a given M, has been introduced
in Equation (13) as a square average of the degree of polarimetric purity, P∆, and the
polarimetric dimension index, PS.

It has been shown that the enpolarizance, PP, plays a critical and meaningful role
because it can be combined quadratically with either the degree of polarimetric purity or
the polarimetric dimension index to determine the value of RS. Some interesting features
of the specific reversibility have been analyzed through its representation, by means of
elliptical branches, in the purity figure built from the coordinate axes PS and PS.
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