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Abstract: For optical beams transmitted by a right-angle prism, the Goos–Hänchen shift can never be
seen as a pure effect. Indeed, the lateral displacement, caused by the total internal reflection, will
always be accompanied by angular deviations generated by the transmission through the incoming
and outgoing interfaces. This combined effect can be analyzed by using the Taylor expansion of the
Fresnel coefficients. The analytic expression found for the transmitted beam allows us to determine
the beam parameters, the incidence angles, and the axial distance for which lateral displacements are
compensated by angular deviations. Proposals to optimize experimental implementations are also
briefly discussed.
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1. Introduction

The interaction between optical beams and dielectric blocks has always been the sub-
ject of great interest, leading, in the past, to formulate the well-known laws of geometric
optics [1–3]. In the last century, new phenomena such as the Goos–Hänchen shift [4–8] and
angular deviations [9] showed that the optical path predicted by geometric optics only rep-
resents an approximation to the real one. Theoretical studies have been undertaken in order
to understand which situations lateral displacements and angular deviations can be ampli-
fied and then observed in the laboratory. The omnipresence of these phenomena [10–14]
also stimulated their application in technology [15–17].

In 1947, Goos and Hänchen [4] were the first researchers to experimentally observe
the lateral displacement of optical beams transmitted, after many internal reflections, by a
dielectric block. The experimental result, today known as Goos–Hänchen shift, was, one
year later, explained by Artman [5]. Artmann’s observation was that multiple plane waves,
contributing to the final electromagnetic field, have rapidly varying phases that cancel each
other out. Total internal reflection is indeed characterized by a complex Fresnel coefficient.
The stationary condition gives the main term of the phase which is responsible for the
additional phase generating the lateral shift in the optical path [18]. The divergence in the
Artmann formula was later removed [6,7]. Recently, for incidence in the critical region, an
analytical formula, based on the modified Bessel functions, was proposed in [8] and, some
years later, experimentally confirmed [19].

In 1973, Ra, Bertoni, and Felsen [9] introduced the phenomenon of angular deviation.
This phenomenon appears both for transmission (in this case, we have deviations from the
refraction angle predicted by the Snell law) and partial reflection (in this case, we find devi-
ations from the reflected angle predicted by the reflection law). This phenomenon is due,
essentially, to the symmetry breaking of the Gaussian distribution caused by the Fresnel
coefficients modulating the Gaussian distribution in the integral form of the transmitted
and reflected beams.

Angular deviations and Goos–Hänchen shifts have been investigated in great detail in
different fields, not only in optics [10–12,15,17] but also in seismic data analysis [13,14]. In

Photonics 2022, 9, 643. https://doi.org/10.3390/photonics9090643 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9090643
https://doi.org/10.3390/photonics9090643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-6276-073X
https://doi.org/10.3390/photonics9090643
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9090643?type=check_update&version=3


Photonics 2022, 9, 643 2 of 14

the critical region, lateral displacements and angular deviations generate oscillatory phe-
nomena, theoretically predicted in [20] and, recently, experimentally confirmed in [21,22].

In this article, we analyze the combined effect of the angular deviations (caused by the
transmission through the incoming and outgoing triangular prism interfaces) and the Goos–
Hänchen shift (caused by the total internal reflection). The study is done outside the critical
region. This choice is justified because, outside the critical region, we have the possibility
to find an analytic expression for the transmitted beam by using the Taylor expansion of
the Fresnel coefficients and, consequently, determine the beam parameters, the incidence
angles, and the axial distance for which angular deviations compensate Goos–Hänchen
lateral displacements. The integral form of the beam transmitted through a dielectric prism,
see Figure 1a, is characterized by three Fresnel coefficients: the ones corresponding to the
transmission at the left (air/dielectric) and right (dielectric/air) interfaces and the one
corresponding to the total internal reflection at the lower (dielectric/air) interface. The
upper transmitted beam is, thus, the perfect candidate to study the combined effect of
angular deviations and Goos–Hänchen shifts. In the next section, we fix our notation,
introduce the Fresnel coefficients, and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically solved, so we use the Taylor
expansion of the Fresnel coefficients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we obtain a cubic equation which
allows us to determine the peak position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of pure angular deviations,
which implies an incidence angle below the critical one. In this paper, we analyze incidence
greater than the critical one. This allows us to investigate both angular deviations and
Goos–Hänchen displacements (only present in the case of total internal reflection). In this
incidence region, it is thus possible to study when these optical effects offset each other.
Discussions, conclusions, and proposals for experimental implementations appear in the
final sections.
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Figure 1. Geometrical layout of the dielectric prism. In (a), a laser beam moves, along the z-axis, from
the source,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and
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is the optical phase with |k| = 2π/λ. By using the paraxial
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the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam

E
[inc]

(r) = E0

∫
dk

x
dk

y
G(k

x
, k

y
) e ik · r , (1)

where

G
(
k

x
, k

y

)
=

w2
0

4π
exp

[
−
(
k

2

x
+ k

2

y

) w2
0

4

]

is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
2

x
+ k

2

y
) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam

E
[inc]

(r) =
E0 e

i |k| z

1 + i z/zR
exp

[
− x

2

+ y
2

w2
0 (1 + i z/zR)

]
, (2)

where z
R

= πw
2

0/λ is the Rayleigh axial range and w0 the
beam waist. The beam intensity is then given by

I
[inc]

(r) = I0
w

2

0

w2(z)
exp

[
− 2

x
2

+ y
2

w2(z)

]
, (3)

where I0 = E0

2 and w(z) = w0

√
1 + (z/z

R
)2 .

Σ δΛ PhotonicsPhotonics xx, xxxxxxx-x (2022). 2

, forming an angle ψ with the normal to the
first interface, z̃, and an angle ϕ with the normal to the second interface, z∗. These angles are related
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reflected by the second interface, the optical beam moves to the third (dielectric/air) interface,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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.
Due to the geometry of the prism, the upper transmitted beam forms an angle θ with respect to
the normal to the third interface, x̃. The upper transmitted beam is thus detected at the camera©.
In (b), we find the coordinates systems of the incident and upper transmitted beams and of the
prism interfaces.
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3. The Optical Phase

In the integral form of optical beams, an important role is played by the optical phase
responsible for the optical path of the beam. In order to calculate the optical phase of the
(upper) transmitted beam, it is useful to introduce the coordinate system corresponding to
the incident and transmitted beams and the ones corresponding to the left, right, and lower
interfaces, see Figure 1b,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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is the Gaussian wave number distribution, and
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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is the Gaussian wave number distribution, and
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approximation,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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The beam is then reflected back and moves between the lower and right interface with an
optical phase given by
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.
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E
[inc]

(r) = E0

∫
dk

x
dk

y
G(k

x
, k

y
) e ik · r , (1)

where

G
(
k

x
, k

y

)
=

w2
0

4π
exp

[
−
(
k

2

x
+ k

2

y

) w2
0

4

]

is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
2

x
+ k

2

y
) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam

E
[inc]

(r) =
E0 e

i |k| z

1 + i z/zR
exp

[
− x

2

+ y
2

w2
0 (1 + i z/zR)

]
, (2)

where z
R

= πw
2

0/λ is the Rayleigh axial range and w0 the
beam waist. The beam intensity is then given by

I
[inc]

(r) = I0
w

2

0

w2(z)
exp

[
− 2

x
2

+ y
2

w2(z)

]
, (3)

where I0 = E0

2 and w(z) = w0

√
1 + (z/z

R
)2 .

Σ δΛ PhotonicsPhotonics xx, xxxxxxx-x (2022). 2

→

bc bc
bc

bc

bc

(a)

d

l −
d

INCIDENT BEAM

REFLECTED BEAM

TRANSMITTED BEAM
UPPER

TRANSMITTED BEAM
LOWER

θ
θ

ψ

φ

ϕ ϕ

θ

ψπ
4

π
4

+

−
S C

1

2

3

bc1 bc1 bc1
θ

π/4 θ

x̃

z̃

x̃

z̃

x̃

z̃

x

z

x∗

z∗

ztra

xtra

(b)

Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and
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is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,
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) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam
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Finally, in the integral form of the (upper) transmitted beam appears, as expected, the
following optical phase
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
2

x
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) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam
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0/λ is the Rayleigh axial range and w0 the
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
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) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam
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: kx̃ z̃ + kz̃ x̃ = kx xtra + kz ztra .

4. The Upper Transmitted Beam

Once obtained the optical phase of the upper transmitted beam, we can write its
integral form:

E
[tra]

pol
(rtra) = E0

∫
dkx dky G

[tra]

pol
(kx , ky) e i k · rtra , (4)

where rtra = ( xtra , y, ztra ) and

G
[tra]

pol
(kx , ky) = Tpol(kx , ky) G(kx , ky) ,

with

Tpol(kx , ky) =
4 kz̃qz̃

(apol kz̃ + qz̃/apol)
2

qz∗/apol − apol kz̃

qz∗/apol + apol kz∗
×

exp{ i [ qz∗d
√

2 + ( qz̃ − kz̃ ) ( l − d ) ] } ,

(atm = n and ate = 1). The additional phase appearing in the Fresnel coefficients is due
to the fact that the discontinuities at the air/dielectric and dielectric/air interfaces are
located at different points. This phase is responsible for the optical path predicted by
geometric optics.

In order to integrate Equation (4), we use the first-order Taylor expansion of the
transmission coefficient, i.e.,

Tpol(kx , kx ) = Tpol(0, 0)
[

1 + βpol

kx

|k|

]
×

exp[− i kx xSnell ] , (5)

where

Tpol(0, 0) =
4 n cos θ cos ψ

(apol cos θ + n cos ψ/apol)
2 ×

n cos ϕ/apol − apol cos φ

n cos ϕ/apol + apol cos φ
×

exp{ i [ n cos ϕ d
√

2 + ( n cos ψ − cos θ )( l − d ) |k| ] }

and
xSnell = ( tan ψ cos θ − sin θ ) l + ( cos θ + sin θ ) d .

The βpol factor in (5) can be expressed in terms of three addends, respectively corresponding
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
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y
) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam
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, to the reflection by the
lower (dielectric/air) interface,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
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) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam
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0/λ is the Rayleigh axial range and w0 the
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, and, finally, to the transmission through the right
(dielectric/air) interface,
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Figure 1: Geometrical layout of the dielectric
prism. In (a), a laser beam moves, along the z-
axis, from the source, S , to the air/dielectric in-
terface, 1 , forming an incidence angle, θ, with the
normal to the first interface, z̃. The beam trans-
mitted through the first interface then moves in the
dielectric prism towards the second (dielectric/air)
interface, 2 , forming an angle ψ with the normal to
the first interface, z̃, and an angle ϕ with the normal
to the second interface, z∗. These angles are related
to the incidence one by the Snell law, sin θ = n sinψ
and n sinϕ = sinφ, where ϕ = ψ+π/4. Once reflec-
ted by the second interface, the optical beam moves
to the third (dielectric/air) interface, 3 . Due to
the geometry of the prism, the upper transmitted
beam forms an angle θ with respect to the normal
to the third interface, x̃. The upper transmitted
beam is thus detected at the camera C . In (b), we
find the coordinates systems of the incident and up-
per transmitted beams, and of the prism interfaces.

cidence angles, and the axial distance for which angular devi-
ations compensate Goos-Hänchen lateral displacements. The
integral form of the beam transmitted through a dielectric
prism, see Fig. 1(a), is characterised by three Fresnel coef-
ficients: the ones corresponding to the transmission at the
left (air/dielectric) and right (dielectric/air) interfaces and
the one corresponding to the total internal reflection at the
lower (dielectric/air) interface. The upper transmitted beam
is, thus, the perfect candidate to study the combined effect
of angular deviations and Goos-Hänchen shifts. In the next
section, we fix our notation, introduce the Fresnel coefficients,
and calculate the phase of the optical beams. The integral
form of the (upper) transmitted beam cannot be analytically
solved, so we use the Taylor expansion of the Fresnel coeffi-
cients and of the optical phase to obtain a closed form for the
transmitted beam. By using this analytic approximation, we
obtain a cubic equation which allows to determine the peak
position of the transmitted beam. In a previous paper [23],
based on this cubic equation, we studied the phenomenon of
pure angular deviations, this implies incidence angle below
the critical one. In this paper we analyse incidence greater
than the critical one. This allows to investigating both angular
deviations and Goss-Hänchen displacements (only present
in the case of total internal reflection). In this incidence re-
gion, it is thus possible to study when these optical effect
offset each other. Discussions, conclusions, and proposals for
experimental implementations appear in the final sections.

II. The incident beamII. The incident beam
Let us introduce the integral form of the incident beam
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is the Gaussian wave number distribution, and

k · r = kxx+ kyy + kzz

is the optical phase with |k| = 2π/λ. By using the paraxial
approximation,

kz ≈ |k| − ( k
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) / 2 |k| ,

the integral in Eq. (1) can analytically be solved leading to
the following closed expression for the incident Gaussian
beam

E
[inc]

(r) =
E0 e

i |k| z

1 + i z/zR
exp

[
− x

2

+ y
2

w2
0 (1 + i z/zR)

]
, (2)

where z
R

= πw
2

0/λ is the Rayleigh axial range and w0 the
beam waist. The beam intensity is then given by

I
[inc]

(r) = I0
w

2

0

w2(z)
exp

[
− 2

x
2

+ y
2

w2(z)

]
, (3)

where I0 = E0

2 and w(z) = w0

√
1 + (z/z

R
)2 .

Σ δΛ PhotonicsPhotonics xx, xxxxxxx-x (2022). 2

,
βpol = β

[1]

pol
+ β

[2]

pol
+ β

[3]

pol
,



Photonics 2022, 9, 643 6 of 14

with

β
[1]

te = tan ψ − tan θ ,

β
[2]

te = 2 tan φ ϕ′ ,

β
[3]

te = ( tan θ − tan ψ ) ψ′ ,

β
[1]

tm = ( tan ψ − tan θ/ n2 ) / ( sin2 ψ − cos2 θ ) ,

β
[2]

tm = 2 tan φ ϕ′ / ( sin2 φ − cos2 ϕ ) ,

β
[3]

tm = ( tan θ − n2 tan ψ ) ψ′ / ( sin2 θ − cos2 ψ ) ,

where the different angles which appear in the previous formulas are related to the inci-
dence angle θ by the Snell law, i.e., sin θ = n sin ψ and n sin ϕ = sin φ, the angle ϕ to ψ by
the geometry of the prism, i.e., ϕ = ψ + π/4. Finally, we have ϕ′ = ψ′ = cos θ/n cos ψ.

By using the Taylor expansion (5), we can analytically solve the integral of Equation (4).
The kx term in the exponential will be responsible for the shift in the xtra coordinate, i.e.,

x̃ tra = xtra − xSnell ,

centering the Gaussian beam in the optical path predicted by the Snell and reflection laws.
The constant term in (5), i.e., Tpol(0, 0), leads to the same integration done for the incident,
consequently, we obtain the following contribution

Tpol(0, 0) E
[inc]

( r̃tra) .

The linear term, i.e., Tpol(0, 0) βpol kx / |k|, is responsible for the breaking of the Gaus-
sian symmetry for incidence below the critical one and for the Goos–Hänchen shift in the
case of total internal reflection. Observing that kx in the integrand of (4) can be replaced by
− i ∂/∂x̃ tra , we obtain the following contribution

− i Tpol(0, 0)
βpol

|k|
∂ E

[inc]
( r̃tra)

∂x̃ tra

.

The analytical expression for the upper transmitted beam is then given by

E
[tra]

pol
( r̃tra ) =

[
1 + 2 i

βpol x̃ tra

|k|w2
0 ( 1 + i ztra /zR )

]
×

Tpol(0, 0) E
[inc]

( r̃tra) .

Finally, after algebraic manipulations, we find

E
[tra]

pol
( r̃tra ) =

(
1 + i

βpol x̃ tra + ztra

zR

)
×

Tpol(0, 0)

1 + i ztra /zR

E
[inc]

( r̃tra) . (6)

In order to check the validity of our analytical approximation, let us briefly analyze what
happens near the critical incidence region. The critical angle is found when n sin ϕc = 1, this
implies a critical incidence at

θc = arcsin
[ (

1 −
√

n2 − 1
)

/
√

2
]

. (7)
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In Figure 2, we plot the (upper) transmitted beam shift of the maxima with respect to
the path predicted by geometric optics. This is done by numerically integrating Equation (4).
The plots of the maxima, as a function of δ = (θ − θc)|k|w0, refer to a Gaussian laser with
w0 = 100µm, λ = 532 nm, and n = 1.5195 (BK7 prism). We can distinguish three regions.

x̃
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m

a
x

]
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a
/
w
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T
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Figure 2. Critical incidence region. Numerical lateral displacements of the maximum of the upper
transmitted beam plotted as a function of the incidence angle, δ = ( θ − θc) |k|w0 for different axial
positions both for magnetic (a) and electric (b) waves. The angular deviations and GH shifts refer
to an optical Gaussian beam with w0 = 100µm, λ = 532 nm, and the dielectric block to a BK7
prism, n = 1.5195. The black zone represents the critical incidence region in which our analytical
approximation fails due to the presence of an infinity in the Taylor expansion. In the incidence region
I, δ < 4, and III, δ > 4, our analytical approximations show an excellent agreement with the numerical
calculations. In region I, it is clear the axial dependence of the displacement is caused by angular
deviations, and in region III the lateral displacement is due to the GH shift. In region III, we do not
see any angular deviations because the dominant contribution comes from the Fresnel coefficients of
the internal reflection.
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Region I, before the critical region, shows an axial dependence of the shift and this is
caused by the modulation of the Gaussian wave number function generated by the real
Fresnel coefficients related to the transmission through the first and third interface and the
partial internal reflection. These phenomena represent angular deviations to the Snell and
reflection law of geometric optics. For a detailed discussion of pure angular deviations
and their amplifications near the Brewster incidence, we refer the reader to the article cited
in [23].

Region II determines the critical region, in such a region the infinity in β
[2]

pol
coefficients

required a more complicated technique of integration to obtain the analytical expression
for the upper transmitted beam [8], and new oscillatory phenomena appear [20,22].

In region III, for incidence greater than the critical one but near enough to amplify the
GH shift with respect to angular deviations, this axial depends breaks down. Region III
will be the region of interest for our discussion because in this region, far enough from the
critical region, angular deviations and GH shifts can offset each other. The analysis in this
region complements the one presented in Ref. [23]. In region III, we have

tan φ = n sin ϕ / i
√

n2 sin2 ϕ− 1 ,

and, consequently, the intensity of the upper transmitted beam can be written in the
following form

I
[tra]

pol
(r̃tra) =

w
2
0

w2 (ztra)
T

2

pol
(0 , 0) I

[inc]
(r̃tra)×





1 +

γ
[2]

pol
x̃ tra

zR




2

+


 ztra + β

[1+3]

pol
x̃ tra

zR




2 
 , (8)

where

γ
[2]

te = 2
n sin ϕ√

n2 sin2 ϕ− 1
cos θ / n cos ψ ,

γ
[2]

tm = 2
n sin ϕ√

n2 sin2 ϕ− 1
cos θ / n cos ψ

n2 sin2
ϕ − cos2

ϕ
.

and
β
[1+3]

pol
= β

[1]

pol
+ β

[3]

pol
.

5. GH Shifts and Angular Deviations

The analytical expression found for the intensity of the upper transmitted beam, see
Equation (8), allows us to calculate its maximum and consequently to obtain the lateral
displacement with respect to the path predicted by geometric optics due to the GH shifts
and angular deviations. The intensity x̃ tra derivative leads to the following cubic equation

(
x̃ tra

w0

)3

+ apol

(
x̃ tra

w0

)2

+ bpol

x̃ tra

w0

= cpol , (9)
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where

apol = 2
γ

[2]

pol
zR + β

[1+3]

pol
ztra(

γ
[2]

pol

2

+ β
[1+3]

pol

2
)

w0

,

bpol =
w

2
(z)

w2
0




z
2

R(
γ

[2]

pol

2

+ β
[1+3]

pol

2
)

w2
0

− 1
2


 ,

cpol =
w

2
(z)

w2
0

γ
[2]

pol
zR + β

[1+3]

pol
ztra

2
(

γ
[2]

pol

2

+ β
[1+3]

pol

2
)

w0

.

This equation allows us to calculate and compare the lateral displacements in region
III. When the GH shifts dominate, no axial dependence can be seen. When the angular
deviations become comparable with GH shifts an axial dependence is seen in the lateral
displacements.

Equation (9) can be reduced to a linear equation by observing that x̃ tra � w0 and that
bpol � apol for axial distance ztra � z

2

R
/ w0. The lateral displacement of the maximum is

then given by

x̃
[max]

tra = cpol w0 / bpol

≈
γ

[2]

pol
+ β

[1+3]

pol
ztra / zR

|k| , (10)

where the axial independent term, proportional to λ, represents the pure GH shift [4,5] and
the axial dependent the angular deviations due to the Fresnel transmission modulation of
the Gaussian wave number distribution.

Near the critical region,

θ = θc + δ / |k|w0 [ δ > 4 ],

we have
n2 sin2 ϕ − 1 ≈ 2 n cos ϕc ϕ′c δ / |k|w0 .

In the example analyzed in this paper, i.e., λ = 532 nm and w0 = 100µm, δ > 4
implies and incidence angle greater than θc + 0.2

◦
.

Observing that

β
[1+3]

pol
� γ

[2]

pol
∝
√
|k|w0 ,

and using the approximated expression for the γ factors, we obtain

x̃
[max]

tra =
σpol

n

√
2 cos θc

δ cos ϕc cos ψc

w0

|k| , (11)

with { σte , σtm } = { 1 , n2 }.
Clearly, the axial dependence has been removed and this agrees with the numerical

calculation shown in Figure 2, see region III at the right of the black zone. In this region,
Equation (11) also contains the well-known

√
|k|w0 amplification for the GH shift, for

details see Refs. [8,24]. The σ factor is, finally, responsible for a further amplification of n2

for the transverse magnetic wave, see the scale in Figure 2a,b.
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For transverse magnetic waves, the pure Goos–Hänchen shift is found for incidence at
the Brewster angle, i.e.,

β
[1+3]

tm = 0 ⇒ θ = θB = arctan n ,

see Figure 3a. For a given axial distance, from Equation (10), we can obtain the incidence
angle for which the GH shift is compensated by the angular deviation. For example, for a
camera positioned at an axial distance of

4, 8, 12, 16, 20 cm ,

for the optical beam considered in this paper, we find incidence angles of

69.86◦, 66.65◦, 64.89◦, 63.72◦, 62.87◦

for transverse magnetic waves, see Figure 3a, and of

68.36◦, 62.37◦, 58.37◦, 55.32◦, 52.82◦

for transverse electric waves, see Figure 3b. Equation (10) can be also used to find, for a
given incidence angle, the axial distance for which GH lateral displacements and angular
deviations offset each other,

ztra = −
γ

[2]

pol

β
[1+3]

pol

zR . (12)

For example, for incidence angles of

45◦, 50◦, 55◦, 60◦, 65◦, 70◦ ,

the compensation happens for transverse electric waves at the axial distances

38.10, 25.45, 16.47, 10.22, 5.99, 3.23 cm ,

see Figure 4b. For transverse magnetic waves, the compensation happens for incidence
angles greater than the Brewster angle, θB = 56.65◦. For incidence angles of

60◦, 65◦, 70◦ ,

angular deviations compensate for the GH shifts at the axial distances

50.68, 11.68, 3.88 cm ,

see Figure 4a.
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Figure 3. GH shift and angular deviations as functions of the incidence angle for different axial
distances. The displacement of the maximum of the upper transmitted beam is plotted for transverse
magnetic and electric waves, respectively in (a,b). In (a), at Brewster incidence, θB = 56.65◦, the axial
dependence is removed. In (b), for Brewster incidence, angular deviations compensate for the GH
shift at an axial distance of 14.14 cm (the white dashed line). The colored zones refer to different axial
distances. In (a,b), we also find the incidence angle for which these optical effects offset each other.
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Figure 4. GH shift and angular deviations as functions of the axial distance for different incidence
angles. In (a,b), the white dashed line refers to the Brewster incidence. For transverse magnetic
waves, no axial dependence is seen. For electric waves, angular deviations compensate the GH shift
at an axial distance of 14.14 cm. The colored zones refer to different incidence angles. In (a,b), we
also find the axial distance for which these optical effects offset each other.

6. Discussions

Lateral displacements of optical beams with respect to the path predicted by geometric
optics stimulated, in the last decades, both theoretical and experimental investigations.
Two types of displacements characterize the transmission through dielectric blocks. The
first, known as the GH shift, is due to the phase of the total internal reflection coefficient
and it is independent of the axial position of the detector. The second one is due to the
modulation of the transmission coefficients on the wave number distribution of the incident
beam and it is dependent on the axial position of the detector.

In region III, far enough from the critical region II, GH shifts are proportional to the
wavelength of the optical beam. When the axial distance also approaches the Rayleigh axial
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range, the angular deviations become proportional to the wavelength and this opens the
doors to the possibility to cancel the lateral displacements induced by the total reflection
coefficient. This phenomenon is also known as the composite GH effect [25,26]. In region I,
where the partial internal reflection implies the only presence of angular deviations [27]
an amplification effect happens near the internal Brewster angle, for details see Ref. [23].
Region II represents the region around the critical angle and an amplification by a factor√
|k|w0, see Equation (11), is found in proximity of the critical incidence [8,24]. Such a

region is also characterized by oscillatory phenomena [20–22] and the analytical formula,
obtained in this paper for the intensity of the upper transmitted beam, i.e Equation (8), fails
to reproduce the numerical data. It is important to observe here that region II represents a
very small region of the incidence spectrum covering a range of 8/|k|w0 around the critical
angle. This means, for a beam waist of 100 µm and a wavelength of 532 nm, a range of 0.4◦

around the critical angle. Consequently, the analytical formula presented in this paper is
in excellent agreement with the numerical data for all the incidence angles greater than
θc + 4 / |k|w0, or in the case of the beam parameters used in our simulations, for incidence
angles greater than θc + 0.4◦.

7. Conclusions And Outlooks

In this paper, by using the Taylor expansion of the Fresnel coefficients of the trans-
mission through the first and third interfaces and of the total reflection by the second
interface, we have given an analytical expression for the upper transmitted beam intensity,
see Equation (8). From this analytical approximation, it is immediate to obtain the cubic
equation to calculate the intensity maximum. The cubic equation (9) can then be further
reduced to a linear equation (10), from which we can obtain the incidence angles and axial
distances for which GH shifts and angular deviations offset each other. For transverse
magnetic waves, this compensation effect is only possible for incidence greater than the
Brewster incidence, θB = arctan[n].

The analytical expression of the upper transmitted beam given in this paper, see
Equation (6), is also useful in view of experimental implementations done by using the
weak measurements technique [25,28]. This technique is based on the interference between
transverse electric and magnetic waves [29–31]. Consequently, the analytical expression for
the upper transmitted beam is important to find the main maximum of the combined optical
beam, which is a function of the different lateral displacements and angular deviations of
transverse electric and magnetic waves. For the incidence angles and axial distances for
which these optical effects offset each other, the weak measurement breaks down because
the double peak phenomenon is no longer present. In a forthcoming paper, we shall revise
the weak measurements for transmission through dielectric blocks in view of the analytical
expression given in this article.
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