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Abstract: Removing space-time varying blur and geometric distortions simultaneously from an image
is a challenging task. Recent methods (including physical-based methods or learning-based methods)
commonly default the turbulence-degraded operator as a fixed convolution operator. Obviously, the
assumption does not hold in practice. According to the situation that the real turbulence distorted
operator has double uncertainty in space and time dimensions, this paper reports a novel deep
transfer learning (DTL) network framework to address this problem. Concretely, the training process
of the proposed approach contains two stages. In the first stage, the GoPro Dataset was used to
pre-train the Network D1 and freeze the bottom weight parameters of the model; in the second
stage, a small amount of the Hot-Air Dataset was employed for finetuning the last two layers of
the network. Furthermore, residual fast Fourier transform with convolution block (Res FFT-Conv
Block) was introduced to integrate both low-frequency and high-frequency residual information.
Subsequently, extensive experiments were carried out with multiple real-world degraded datasets
by implementing the proposed method and four existing state-of-the-art methods. In contrast, the
proposed method demonstrates a significant improvement over the four reported methods in terms
of alleviating the blur and distortions, as well as improving the visual quality.

Keywords: blind restoration; images distorted by atmospheric turbulence; deep transfer learning;
Res FFT-Conv Block; high-quality images

1. Introduction

Atmospheric turbulence generally refers to the random fluctuation of the refractive
index of the atmosphere, which significantly impacts the performance of remote imaging
systems (including visual surveillance, astronomical observation, etc.) [1,2]. Specifically,
this phenomenon means atmospheric turbulence that can change the path and direction
of light during imaging through the random motion of the turbulent medium. When the
exposure time is not short enough, the refractive index along the optical transmission path
can seriously affect the image resolution, resulting in geometric distortion, defocus blur,
and motion blur [3]. Essentially, this result is mainly due to the non-uniform distribution
of temperature that yields random atmosphere refractive-index fluctuations, resulting
in optical turbulence that distorts the wave front. Meanwhile, under the effects of the
turbulent flow of air and changes in the density of air particles, humidity, and carbon
dioxide levels, the refractive index also changes accordingly, which leads to space-time
geometric distortion and a non-uniform blurring effect. Therefore, the real turbulence
degradation process is extremely complex [4–6].

However, in some turbulent image restoration literature, it is considered that the point
spread function (PSF) of atmospheric turbulence is time- and space-invariant. Based on
this view, the degradation process of atmospheric turbulence can be regarded as a spatially
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linearly invariant system. As a result, the atmospheric turbulence degradation model can
be expressed as follows [7–10]:

fi = Hi ⊗ g + n, or fi = Mi ⊗Hi ⊗ g + n, (1)

fi = ki ⊗ g + n, ki = Hi or Mi ⊗Hi, (2)

where ⊗ represents convolution processing; g is the latent clear image; Mi and Hi are the
PSFs of geometric deformation and atmospheric turbulence, respectively; n represents
additive noise, which is generally represented by Gaussian noise; and fi is the ith observed
image frame. Therefore, according to Equation (2), ki denotes the turbulence-degraded
operator. Generally, the task of restoring a degraded image is to obtain a clear image
and turbulence degraded operator based on a given observed image frame. To counter
this, a popular approach to recover the sharp image is to use the Maximize A Poste-
rior (MAP) [11–14], which is used to find g and ki to maximize the posterior probability
P(g, ki|fi). This expression can be seen as an optimization of the following:

g, ki = argmax
g,ki

P(fi|g, ki)P(g)P(ki), (3)

In fact, this is an ill-posed problem. There are an infinite amount of pairs of (ki, g)
leading to the same probability P(fi|g, ki), thus the key aspect of the above MAP approach
is to define proper models for the prior distributions P(g) and P(ki). Currently, many
restoration methods focus on designing manual priors for x and k or deep learning images
prior. Notably, the premise of the above-mentioned work is to assume that the turbulence
degraded operator (ki) is a convolution operator. Obviously, these existing image processing
methods use over-simplified models that are not justified and explainable by physics. As
the geometric distortion and blur induced by turbulence is randomly spatially and time-
varying [3], its more likely performance on degraded images is non-uniform blur and the
geometric deformation effect. Therefore, these turbulence degradation models based on
a fixed convolution operator are different from real-world data, and their corresponding
restoration methods will have artifacts or even lose their effect on the restoration of real
turbulence-degraded images. Essentially, a more accurate degradation model can be written
as follows [15]:

fi = Mi(H(g)) + n = ki(g) + n ≈ ki(g), (4)

where Hi denotes the PSF that changes over time and space, Mi represents turbulence-
induced deformations matrix, and their effect on the latent clear image g is embodied in
the form of mapping; furthermore, ki is the fusion of Hi and Mi.

Another commonly used method is to directly learn a function from the turbulence
degraded image to the corresponding clear image. Presently, this function is usually a
deep convolutional network, and the specific parameters of the network can be obtained
by training on pairs of degraded-sharp images. Moreover, different from the MAP-based
method, these networks directly learn the inverse function of the turbulence degradation
operator without explicitly inferring the kernel distribution of the turbulence degradation
operator and the point spread function. However, such methods often rely on a large
number of paired datasets for training. For the image restoration tasks in atmospheric
turbulence it is difficult to obtain a massive open dataset for training and testing. Thus,
these networks rely on simulated datasets in the fixed convolutional form [8,9,16], which
present the same problem as the MAP-based methods.

In this article, a network framework combined with a residual block and autoencoder
is presented to restore real turbulence-degraded images. Even in situations with a strong
level of turbulence-induced degradation, the restoration quality is acceptable. The main
contributions of this paper are as follows:

(1) We propose a new deep transfer learning (DTL) framework to remove the turbulence
effect from real-world data. Considering that the real degraded image contains non-
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uniform blur, geometric deformation, and no large of paired data, we trained the
proposed network by using the GoPro Dataset and a small amount of the Hot-Air
Dataset, respectively.

(2) As the conventional residual block tends to overlook the low-frequency information
when reconstructing a sharp image, Res FFT-Conv Block was introduced so that the
proposed framework integrated both low-frequency and high-frequency components.

(3) We conducted extensive experiments by incorporating the proposed approach, and
the experimental results show the performance when removing geometric distortions
and blur effects can be significantly improved.

The remainder of this paper is organized as follows. Section 2 provides a brief survey
of related work. Section 3 mainly introduces the training dataset, the development and
advantages of transfer learning, the overall framework of the model, and implementation
details. In Section 4, four existing methods for mitigating the turbulence effect, comparative
experimental datasets, and the evaluation indicators are described in detail. Section 5
presents the results and discussion. Finally, the research is concluded in Section 6.

2. Related Work

The problems regarding restoring a clear image from a sequence of turbulence-
degraded frames are of high research interest. Usually, the mitigation of the effects of
atmospheric turbulence is based on physical-based methods or learning-based methods.
Physical-based methods mainly rely on optical flow [5,17,18], lucky region fusion [19–22],
and blind deconvolution [23–25]. Notably, many of these methods have artifacts when
reconstructing dynamic scenes with large amounts of motion. Additionally, scholars also
have recently integrated neural network methodologies with the advancement of machine
learning. Most of the existing networks are built based on the convolutional neural network
(CNN) [8,9,16,26], as the convolution block has a powerful feature extraction capability. For
example, Chen et al. employed an end-to-end deep convolutional autoencoder combined
with the U-Net model to mitigate the turbulence effect [16]. Su et al. proposed a modified
dilated convolutional network to restore turbulence-degraded images [26]. Subsequently,
because the data generated by the Generative Adversarial Network (GAN) network have
similar characteristics as the real data, more researchers have started trying to alleviate
turbulence effects using GAN networks [27–29]. Table 1 compares the advantages and
limitations of these approaches in detail.

Table 1. The major findings and limitations of the existing restoration approaches.

Categories Approaches Major Findings Limitations

Physical-based approaches

Optical flow [5,17,18] Better registration of degraded
image sequence

Input multiple frames of
degraded images

Lucky region fusion [19–22] High quality for celestial image
restoration Lucky frame must be found

Blind deconvolution [23–25] Does not depend on PSF Large amount of calculation

Learning-based approaches
CNN [8,9,16,26] Powerful feature extraction

capability Large number of paired
datasets for training

GAN [27–29] More similar to the
characteristics of the real data

3. Proposed Method
3.1. Training Dataset

In Section 1, the fixed convolution method used to construct the simulated training set
resulted in a large difference from the natural turbulence degraded image. Air turbulence
distortion is generally caused by the constantly changing refractive index field of the
airflow. It typically occurs when imaging through long-range atmospheric turbulence
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or short-range hot air turbulence (e.g., fire flames and vapor streams). Empirically, the
long-range atmospheric turbulence degraded images lack clear images as the ground truth,
while short-range hot air turbulence can obtain approximate degraded-sharp image pairs
by switching the gas stove on and off, but the blur effect is not significant. Therefore, this
paper uses a blur dataset (GoPro Dataset) and a small amount of the Hot-Air Dataset to
train the proposed model [30,31]. The GoPro Dataset was proposed by Nah et al. [32], and
is a non-uniform blur dataset, which is more similar to real-world blur images. Using hot
air to obtain turbulent flow effects was first proposed by [33]. Subsequently, Anantrasirichai
et al. generated a number of image sequences containing objects distorted by using eight
gas hobs. The flow of gas created temperature gradients that caused distortions in the
scene. Thus, a certain number of clear-degraded image pairs could be obtained. The GoPro
Dataset and the Hot-Air Dataset adopted by the paper are constituted as Table 2.

Table 2. The training datasets used in the article.

Dataset Authors Number Size

GoPro Dataset Nah et al. 2103 pairs 1280 × 720
Hot-Air Dataset Anantrasirichai et al. 300 pairs 512 × 512

3.2. Transfer Learning

Generally, transfer learning is an important tool to solve the basic problem of insuf-
ficient training data, and it was first proposed by [34]. In 1993, Pratt et al. formulated
the identifiability-based transfer (DBT) algorithm. Afterwards, Yang et al. provided a
specific and comprehensive introduction to transfer learning [35]. In 2018, Tan et al. put
forward the viewpoint of deep transfer learning [36], and divided deep transfer learning
into (I) instance-based deep transfer learning [37,38], (II) mapping-based deep transfer
learning [39,40], (III) network-based deep transfer learning [41,42], and (IV) adversarial-
based deep transfer learning [43,44], which resulted in a significantly positive effect on
many domains that are difficult to improve because of insufficient training data. In this
research, as it was difficult to obtain massive real turbulent images with ground truth
sharp references, the deep transfer learning framework was the focus of our attention. The
transfer learning framework used in this paper is shown in Figure 1.
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In this article, we adopted a network-based deep transfer learning framework. As
shown in Figure 1, the learner learns two different tasks [45], and the fields of the two
different tasks have certain similarities. Specifically, the two tasks are divided into the
source domain and target domain. Generally, the source domain contains a large number
of training datasets, while the target domain contains fewer available data. Our goal is to
transfer the experience learned in the source domain to the target domain to help complete
the specific task. According to the view put forward by [46], when deep learning is used to
perform image processing, the first layers of the designed network are usually not mainly
related to the specific image dataset, but the last layers of the network are closely related to
the selected dataset and its mission objectives. Based on this idea, in the transfer learning
framework, the first layers are generally exploited to learn general features, and the last
layers are used to learn specific features. Hence, considering that the real turbulence
distorted image contains both geometric deformation and space-time varying blurs, it
is necessary for our model to effectively learn the two mentioned features in order to
better mitigate the turbulence effects. This paper uses the GoPro Dataset [32] to pre-train
the overall network to learn the non-uniform blur effect, and the Hot-Air Dataset is then
employed to fine-tune the last two layers of the proposed network so as to understand
geometric deformation.

3.3. DIP Framework

In 2018, Ulyanov et al. first proposed the deep image prior (DIP) framework for image
restoration tasks [47], which adopts the structure of a DIP generator network to capture low-
level image statistics and shows a powerful ability for image denoising, super-resolution,
inpainting, etc. Subsequently, Zhu et al. proposed a combined DIP framework denoising
network to obtain high-quality magnetic resonance imaging (MRI) [48]. However, there are
also some drawbacks with the DIP framework. For example, the designed DIP network is
limited to capturing prior blur kernels. Hence, we employed an effective network-based
deep transfer learning framework to capture the turbulence-induced kernels and combined
the DIP framework to alleviate the real turbulence effect.

3.4. Proposed Network Framework

The overall structure of the inference processing is illustrated in Figure 2, which mainly
includes multiple sub-networks—ImageDIP, KernelDIP, and Network D2. Concretely,
(1) ImageDIP was used for generating a latent clear image, and the input Zg is a normal-
distributed random tensor with size of 1 × 64 × 64. ImageDIP is mainly composed of the
same encoder-decoder network with five layers. Its network composition and parameter
settings are the same as in [47]. (2) The KernelDIP network was employed to output the
degraded kernel ki, and its structure is equal to Network D1; the input Zk is also a normal-
distributed random tensor. (3) In inference processing, Network D2 uses the latent clear
image g and the turbulence degradation operator ki to reconstruct the estimated degraded
image f ′i , and thereafter it is combined with the input degraded image ( fi) to minimize
loss [49]. The loss function can be specifically expressed as follows:

loss = min( fi, D2(g, ki)) =
n

∑
i=1

ρ( fi, D2(g, ki)) =
n

∑
i=1

ρ( fi, D2(ImageDIP(Zx), KernelDIP(Zk))), (5)

where ρ denotes the Charbonnier loss measuring the distance between the estimated de-
graded image D2(ImageDIP(Zx), kernelDIP(Zk)) and real degraded image fi. Meanwhile,
Network D2 is a part of Network D. In order to fully extract the real turbulent degrada-
tion operator, ki, we used the transfer learning framework to construct Network D. The
composition and training of Network D are shown in Figures 3–5.
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In the above image processing network structure diagram, the Res FFT-Conv Block
is equivalent to the composition I; this idea is inspired by the work of Mao et al. [50].
Because of the traditional residual module only capturing the high-frequency information
of the image, the low-frequency features of the image could not effectively be obtained,
which would have a great impact on the restoration of the real turbulence-degraded images.
Therefore, the paper adopted the novel Res FFT-Conv Block to build the feature extraction
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block (FEB) and feature combination block (FCB). The FEB block down-sampled the input
image twice and converted it to a feature map, and the FCB block converted the output
feature map to the image domain. Additionally, these blocks are also important parts of
Network D.

Step 2: Training Network D
Network D1
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The Step 2 modules reflect the Network D training processing. Specifically, Network D
consists of Network D1 and Network D2. The turbulence degraded operator ki is extracted
by the proposed deep transfer learning framework (Network D1). Furthermore, Network
D1 was trained by using two datasets. First, 2103 image pairs were input to learn the
non-uniformly blur as the general features of the image, then the module 1 part of the
network was frozen, and a total of 300 hot-air image pairs were adopted to fine tune
module 2. Notably, the Hot-Air Dataset and the GoPro Dataset were both input from the
left of Network D1; as module 1 has been frozen, the actual input was equivalent to the
dashed import before module 2 (see Figure 4). Moreover, Network D2 is a degraded image
generator that generates the estimated fi, and ki can be continuously sent to Network D2
from Network D1. Meanwhile, in training processing, g is a sharp image from trained
datasets rather than from ImageDIP. Therefore, the estimated fi can be generated by
inputting g and ki. Similarly, Network D2 is trained by minimizing the Charbonnier loss of
the estimated degraded image f ′i and the corresponding input real degraded image fi from
the trained datasets.
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3.5. Implementation and Training Details

We collected a total of 2403 image pairs (as shown in Table 1), and all the training
images were cropped into patches with a size of 256 × 256. The proposed algorithm is
was using the PyTorch1.5 deep learning framework and was trained on a single NVIDIA
GTX 1080Ti GPU under the Ubuntu18.04 system. Unless specially stated, Network D2
was trained synchronously with Network D1. The training process of Network D1 is
divided into two stages: (1) The GoPro Dataset is sent to the network for training, and
600,000 iterations in total are performed, so that the network can fully learn from the
non-uniform blur characteristics of the image, then the weight parameters of module 1 are
frozen. (2) The Hot-Air Dataset input fine-tuning module 2 parts (as shown in Figure 4),
was iterated 300 times, the initial learning rate was 5 × 10−4 employing a cosine annealing
scheduler [51], and Adam was used to optimize the model training [52]. Ultimately, we
obtained an excellent Network D model file.

4. Comparative Experiment Setup
4.1. Existing Restoration Methods

To better analyze the performance of the proposed algorithm, we compared the
proposed model with several state-of-the-art restoration methods, including three methods
based on the physics model (CLEAR [31], SGL [53], and IBD [23]) and one based on the
supervised learning method (Gao et al. [9]). For a fair comparison, all of the compared
methods were generated using the authors’ codes, with the related parameters remaining
unchanged. Meanwhile, all learning-based methods in this paper were trained on the same
dataset.

4.2. Experimental Datasets

Here, the performance of our proposed network was evaluated on real degraded im-
ages using turbulence in different states. These real-world data include Hirsch’s Dataset [30],
Open Turbulent Image Set (OTIS) [54], YouTube Dataset, and our dataset, respectively.
These datasets are introduced as follows.

Hirsch’s Dataset: Hirsch’s Dataset was used for testing the efficient filter flow (EFF)
framework. The dataset was taken using the Canon EOS 5D Mark II camera, equipped
with a 200 mm zoom lens. By capturing a static scene of the hot air discharged from the
vents of the building, the image sequences, which were a video stream of 100 frames (the
exposure time of each frame is 1/250 s), were degraded due to spatial changes and blurring.
Furthermore, the image sequences mainly included chimneys, buildings, water tanks, etc.

OTIS: OTIS was put forward by Jérôme Gilles et al. to make the comparison between
algorithms. All image sequences were natural turbulence degraded images acquired in
the hot summer. The dataset included 4628 static sequences and 567 dynamic sequences.
The turbulence impact was also divided into three levels: strong, medium, and weak.
Additionally, all sequences were captured with GoPro Hero 4 Black cameras, and the
camera equipment was modified with Ribcage Air chassis in order to adapt to different
lens types.

YouTube Dataset: As there is no publicly available astronomical object turbulence
degradation image dataset, we downloaded some astronomical object images from YouTube.
The images included several moon surface images taken by foreign astronomy enthusiasts.
This part of the data capture device in particular was quite different, which added more
tests for the restoration effect of the proposed algorithm.

Our Dataset: We separately photographed near-ground long-distance targets and the
moon with the Cassegrain-type optical telescope equipped in the laboratory. Namely, our
observation system (see Figure 6), listed in Table 3, mainly included an optical system,
automatic tracking system, imaging camera, and PC system.
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Table 3. Main technical specifications of the observation system.

Instrument Hardware System Parameters

Optical System RC 12 Telescope Tube
Automatic Tracking System CELESTRON CGX-L German Equatorial Mount

Imaging Camera ASI071MC Pro Frozen Camera
PC System CPU: I7-9750H; RAM:16G; GPU: NVIDIA RTX 2070

The shooting time was selected in the afternoon and the night of 23 June 2021, and the
outdoor temperature was 28–32 ◦C. The distance between the photographed near-ground
target and the telescope was further than 5 km. Meanwhile, before the moon was observed
at night, Astro Panel software was first used to monitor the cloud cover to ensure that the
observing object remained unblocked as much as possible. The cloud cover monitoring
diagram is shown in the left figure below (Figure 7a); the higher the blue ratio, the fewer
clouds at the observation time. Therefore, the time we chose to observe the astronomical
object is shown in the red box of Figure 7a, and the meteorological condition was pretty
good at that time. For instance, the moon image obtained by observing at 21:00 p.m. is
shown in the below right picture (Figure 7b).
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4.3. Image Quality Metrics

Generally, image quality is an important measure to evaluate the perceptual and struc-
tural information present in an image. Because the comparative experiments in this article
were mainly aimed at real turbulence distorted images, the performance of the proposed
network and comparison methods were evaluated using multiple non-reference evaluation
indexes. For instance, the indexes used included entropy, natural image quality evaluator
(NIQE) [55], blind image spatial quality evaluator (BRISQUE) [56], and blind image quality
indices (BIQI) [57]. Subsequently, these indicators were computed to objectively assess the
quality of the restored images.

5. Results and Discussion
5.1. Results on the Near-Ground Turbulence Degraded Image

First of all, several images were selected from the OTIS [54] and Hirsch’s Dataset [30]
for comparative experimental analysis. After taking into account the length of the article,
four images were randomly selected for comparison of the restoration effects, and the
above-mentioned no-reference indicators were used for objective evaluation. Concretely,
“↑” indicates that the larger the index value, the better the image restoration effect; “↓”
represents the opposite result. Thus, the test image restoration results are shown in Table 4
below.

Table 4. Objective assessment of the above restoration methods.

Entropy ↑ NIQE ↓ BRISQUE ↓ BIQI ↓
Degraded Image 6.4193 7.9276 42.8864 50.5454

CLEAR [31] 6.8844 8.6656 43.3481 54.6824
SGL [53] 6.4369 7.8228 42.8543 48.9341
IBD [23] 6.5116 11.3887 53.5077 43.5596

Gao et al. [9] 6.2806 9.6778 54.5817 47.6033
DTL (ours) 6.7793 6.0192 35.8791 35.4763

As shown in Figure 8, the first and second rows are from OTIS, and the last rows
are from Hirsch’s Dataset. It can be seen that all comparison methods and proposed ap-
proaches had a certain restoration effect on the degraded images. Through the analysis of
specific indicators, whether they relied on the traditional physics model approaches or the
previous supervised learning method that only depended on the training set, there were
certain limitations when restoring natural turbulence-degraded images in different scenar-
ios. Specifically, the SGL algorithm did not mitigate the turbulence effect from raw images
near the ground significantly, and there was only a slight effect. This could be—because the
algorithm relies on multi-frame degraded images as the input, and the information of the
input single-frame turbulence degraded images was too poor. Furthermore, the CLEAR
algorithm significantly improved the image information entropy and increased the image
contrast, but its other indicators were terrible. Based on end-to-end, the algorithm used
by Gao et al. exposed its weak generalization ability on cross-domain images, indicating
that the data-driven deep learning method was less effective for data that do not meet
the training requirements. In contrast, the proposed network fully considered the turbu-
lence degraded characteristics in the natural state, learning non-uniform and geometric
deformation features simultaneously; therefore, our approach finally obtained a superior
performance in the test data.
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5.2. Results on Turbulence Degraded Astronomical Object

The selected astronomical (the moon surface) data mainly came from image frames
extracted from distorted videos downloaded from YouTube. Because these data were
captured with different times, locations, and telescope system parameters, we could more
thoroughly test the robustness and generalization ability of all of the mentioned methods.
The specific restoration effect and index evaluation were as shown in Table 5.

Table 5. Objective assessment of the above restoration methods.

Entropy ↑ NIQE ↓ BRISQUE ↓ BIQI ↓
Degraded Image 5.3926 12.4475 66.0496 38.4312

CLEAR [31] 5.9317 10.1226 65.9663 29.1219
SGL [53] 5.3501 11.9364 66.5905 37.0627
IBD [23] 5.3546 9.7114 64.8477 43.9363

Gao et al. [9] 5.6238 9.8788 54.1042 33.3903
DTL (ours) 5.9512 9.2882 46.0878 25.5453

Figure 9 shows the performance of the compared algorithms and our network on
the various natural astronomical images. Specifically, because the distorted images of the
astronomical object contained the turbulence effect and were accompanied by multiple
noises and the influence of cosmic rays, which are a great challenge for all of the mentioned
restoration methods. We concluded from further analysis of the above evaluation indicators
that the proposed algorithm achieved superior results for information entropy, NIQE,
BRISQUE, and BIQI.
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5.3. Results on Our Dataset

Considering that the number of natural turbulence corrupted images acquired only
from the open dataset was still few, the atmospheric turbulence parameters of the shooting
environment were not accurate enough, which would affect the subsequent atmospheric
turbulence characteristic analysis. Therefore, this paper used the Cassegrain-type optical
telescope system equipped in the laboratory captured the near ground (about 5–10 km
away from the lens) buildings, and observed the moon image at night as the test data. The
corresponding restoration results and evaluation metrics are shown in Table 6 below.

Table 6. Objective assessment of the above-mentioned restoration methods.

Entropy ↑ NIQE ↓ BRISQUE ↓ BIQI ↓
Degraded Image 6.7552 8.6912 37.8321 34.1193

CLEAR [31] 7.2909 7.5729 37.8216 38.0817
SGL [53] 6.7762 8.4834 37.5563 33.9916
IBD [23] 7.1997 7.6028 30.3502 28.9854

Gao et al. [9] 7.2070 9.9093 42.2126 33.7443
DTL (Ours) 6.9850 6.6927 18.8260 20.4367

Our dataset consisted of shopping mall facades, a residential building, an iron tower,
and a natural moon image. As these data were all captured in the hot summer, and the
shooting distance was more than 5 km, the turbulence effect of the images was significant.
From the human eye visual perception analysis, the output results of the Gao et al. network
appeared distorted (see the first to third rows of Figure 10e), and this phenomenon could
also be found for the indexes NIQE and BRISQUE. Moreover, the SGL algorithm and
CLEAR algorithm could not thoroughly remove the turbulence effect from the test data.
Not surprisingly, the proposed method still had the best performance for all comparison
methods, whether the target was near the ground or the object in space.



Photonics 2022, 9, 582 13 of 17

Photonics 2022, 9, x FOR PEER REVIEW 13 of 17 
 

 

SGL [53] 6.7762 8.4834 37.5563 33.9916 
IBD [23] 7.1997 7.6028 30.3502 28.9854 

Gao et al. [9] 7.2070 9.9093 42.2126 33.7443 
DTL (Ours) 6.9850 6.6927 18.8260 20.4367 

Our dataset consisted of shopping mall facades, a residential building, an iron tower, 
and a natural moon image. As these data were all captured in the hot summer, and the 
shooting distance was more than 5 km, the turbulence effect of the images was significant. 
From the human eye visual perception analysis, the output results of the Gao et al. net-
work appeared distorted (see the first to third rows of Figure 10e), and this phenomenon 
could also be found for the indexes NIQE and BRISQUE. Moreover, the SGL algorithm 
and CLEAR algorithm could not thoroughly remove the turbulence effect from the test 
data. Not surprisingly, the proposed method still had the best performance for all com-
parison methods, whether the target was near the ground or the object in space. 

 
(a) (b) (c) (d) (e) (f) 

Figure 10. Restored results of turbulence distorted images taken by the Cassegrain optical observa-
tion system. (a) Degraded image; (b) CLEAR; (c) SGL; (d) IBD; (e) Gao et al.; (f) DTL (ours). 

5.4. Ablation Study 
In this section, as Network D was the only part that required pre-training in the pro-

posed DTL framework. Moreover, the estimation of the turbulence degradation operator
ki  was crucial for the final output. Therefore, we organized ablation experiments to test 
the different components of Network D1 when removing the performance of the turbu-
lence affects. Namely, the proposed Network D1 contained two parts: a pre-trained net-
work using the GoPro Dataset and a fine-tuned trained network on the Hot-Air Dataset, 
both of which could be disassembled separately to consider the degraded operator ki . 
Thus, the three networks for the comparison experiment were only pretrained GoPro Da-
taset (called _ Pr1 Go oD ), only pretrained Hot-Air Dataset (called _H ot ir1 AD  ), and transfer 

Figure 10. Restored results of turbulence distorted images taken by the Cassegrain optical observation
system. (a) Degraded image; (b) CLEAR; (c) SGL; (d) IBD; (e) Gao et al.; (f) DTL (ours).

5.4. Ablation Study

In this section, as Network D was the only part that required pre-training in the
proposed DTL framework. Moreover, the estimation of the turbulence degradation operator
ki was crucial for the final output. Therefore, we organized ablation experiments to test the
different components of Network D1 when removing the performance of the turbulence
affects. Namely, the proposed Network D1 contained two parts: a pre-trained network
using the GoPro Dataset and a fine-tuned trained network on the Hot-Air Dataset, both of
which could be disassembled separately to consider the degraded operator ki. Thus, the
three networks for the comparison experiment were only pretrained GoPro Dataset (called
D1_GoPro), only pretrained Hot-Air Dataset (called D1_H ot−Air), and transfer learning
framework (D1). Additionally, other parts of Network D had the same default. Thereafter,
we use the mentioned no-reference evaluation indicators to evaluate different component
functions of Network D1. The experiment results are shown in the following histogram.

As shown in Figure 11, three different Network D1s constituted the DTL frame-
work, and multiple natural turbulence-degraded images were used to test the mentioned
networks. The abscissa of histograms (a–d) indicated the names of the natural degraded im-
ages., the ordinate represents the no-reference evaluation index (Entropy, NIQE, BRISQUE,
and BIQI), respectively. Obviously, it was found that a small amount of the Hot-Air Dataset
was not enough to make the model achieve the best performance. Moreover, the GoPro
Dataset only contained non-uniform blur features and no geometrical distortion features,
and the trained network had a poor restoration effect on the real turbulence-distorted
images. In this case, we used a few Hot-Air Dataset images to fine tune the model trained
on the GoPro Dataset, and a robust and adaptable DTL framework was finally achieved.
Indeed, this also verified that all components of the Network D1 were essential using the
above-mentioned comparative experiments.
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6. Conclusions

In this work, firstly, we propose a novel neural network framework to reconstruct
a high-quality output from a single real turbulence-distorted image. Specifically, the
research does not assume that the real distorted image was caused by a convolution
operator (uniform blur and uniform geometric distortion); instead, it uses the implicit
map to represent the turbulence degradation operator, which is more consistent with the
characteristics of real turbulence-degraded images. Based on this view, the GoPro Dataset
was used to learn non-uniform blur as the general features; then, freezing the network
parameters, the last two layers of the network were fine-tuned by taking a limited number
of images from the Hot-Air Dataset. Therefore, the proposed network can fully extract the
degradation operator of real turbulence from a small amount of natural turbulence data,
which has great significance for building the image restoration model in this paper.

Secondly, due to the traditional residual block that ignores the low-frequency informa-
tion of the picture, a kind of plug-and-play Res FFT-Conv Block has been introduced into
this framework, which can fully integrate the low-frequency and high-frequency residual
information of the image.

Finally, the network proposed is fully compared with the four existing restoration
methods. The objective indicators show that the proposed model has a better fusion
performance and adaptability for various real turbulence-distorted images. Meanwhile, the
ablation study is carried out to verify the significance of the transfer learning framework.

In the future, we plan to use a mathematical model to guide the training of our deep
network to discard some unnatural artifacts and ringing effects (Figure 8f). On the other
hand, more natural turbulence distorted images will be captured by our telescope system
to verify the robustness and generalization ability of the network. Furthermore, we will
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investigate the restoration of real turbulent videos and consider embedding the model on a
mobile electronic imaging platform to remove real-time turbulence.
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