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Abstract: This paper carries out a numerical simulation investigating three different modulation
formats: carrier suppressed return to zero (CSRZ), modified duobinary return to zero (MDRZ) and
return to zero (RZ). The purpose of this investigation is to find the optimum modulation format for
the hybrid optical code division multiple accesses–dense wavelength division multiplexing (optical
CDMA/DWDM) system with the implementation of an electro-optic phase modulator (EOPM) at
a data rate of 40 Gbps per channel, with a transmitted power of 22 dBm and transmission distance
of 105.075 km. The results revealed that CSRZ was superior to MDRZ and RZ and was more
tolerant to optical fiber nonlinearity. Furthermore, unlike the DWDM systems, the performance of
the proposed hybrid system based RZ format was better than the performance of MDRZ. Hence, the
CSRZ modulation format is the best candidate for the optical CDMA/DWDM with EOPM module
due to its high performance.

Keywords: optical CDMA; DWDM; RZ; MDRZ; CSRZ; FWM; ISI; EOPM

1. Introduction

A recent Cisco’s forecast report stated that the number of devices connected to the
internet will be more than three times the worldwide population by 2023 [1]. Therefore, the
increase in demand for unlimited bandwidth has led to the evolution of high-capacity and
high-speed optical transmission systems to satisfy the ever-growing capacity requirements.
A variety of multiplexing techniques have been used to provide the required high-speed
transmission. For instance, speed is an advantage obtained from using the time division
multiplexing (TDM) system. However, TDM uses one wavelength for downstream and
another wavelength for upstream, limiting the optimum bandwidth for a given user. There-
fore, the bandwidth of the single fiber is not fully utilized. To compensate for this, the
wavelength division multiplexing (WDM) system, which is considered the most successful
technique in optical networks [2,3], assigns a specific wavelength for a given subscriber.
Despite this advantage in increasing capacity, WDM lacks wavelength sharing and suffers
from nonlinear effects. On the other hand, optical code division multiple accesses (optical
CDMA) have several key features, most notably, their highly flexible and efficient asyn-
chronous access for multiple users in a busy network, fast scheduling without buffering
time, and easier expansion in network implementation. However, optical CDMA suffer
from various types of noise, one of which is multiple access interference (MAI), the main
source of bit error. To deal with the limitations and inefficiency that arises from each
system mentioned above, hybrid systems have been proposed. The hybrid system of opti-
cal CDMA-dense wavelength division multiplexing (optical CDMA/DWDM) combines
the advantages and strengths of both multiplexing schemes [2,4–7] but still suffers from
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limitations such as chromatic dispersion (CD), laser phase noise (LPN) and nonlinear effects
as do all the previous systems. These limitations have a huge impact on the signal quality
and degrade system performance.

A variety of methods have been proposed to compensate for chromatic dispersion,
such as using digital filters including the time-domain least mean square adaptive filter, a
time-domain fiber dispersion finite impulse response filter, and a frequency-domain blind
look-up filter [7] and by controlling the grating length of the fiber Bragg grating (FBG) [8,9].

The phase noise, which occurs due to transmit and receive lasers, has a huge impact on
coherent systems employing high order modulation formats. The appearance of transmit
and receive phase noises make it very difficult to discriminate between them. Giulio et al.
proposed a digital coherence enhancement (DCE) technique using an interferometric device
along with a very simple electronic processing, which significantly reduced the phase noise
of transmit or receive lasers [10].

However, when the interactions between the chromatic dispersion and the laser
phase noise occurred, they produced a new issue that was very difficult to compensate
for. The interaction is called equalization enhanced phase noise (EEPN) [11]. A deep
investigation on the impact of EEPN on nonlinear optical fibers through split-step Fourier
simulations has been conducted and analytical model predictions have been proposed
for single and multiple channels of a dual-polarization DP-16QAM system over the long
haul. The investigation proved that the reducing the EEPN had a huge impact on improving
the system performance [12].

In addition, nonlinear effects such as inter- and intra-channel Four Wave Mixing
(FWM) are considered a major source of impairments in high data rate and high-capacity
optical networks [12,13]. In fact, inter- and intra-channel FWM effects have been widely
investigated in pure WDM systems and are considered one of the foremost application
issues in optical fiber networks [14–18]. On the other hand, the effects of inter- and intra-
channel FWM in the hybrid optical CDMA/DWDM system have not been addressed.

Recently, a hybrid optical CDMA/DWDM system considering the effects of inter- and
intra-channel FWM and inter-symbol interference (ISI) was proposed [19]. The analysis
revealed that the generated inter-channel FWM effect contributes not only as an additional
crosstalk component, but also produces other noise terms, namely, signal-FWM, Multiple
Access Interference (MAI-FWM), and FWM–FWM noise. It has been shown that the
CDMA technology, where the bit’s energy is spread over the identification code sequence,
could minimize the effect of inter-channel FWM. In addition, the electro-optic phase
modulator (EOPM) is used to suppress the intra-channel FWM effect in the hybrid optical
CDMA/DWDM system [19].

To implement systems that can support a high data rate, the focus should be more on
the modulation formats and line coding, which are used to mitigate the linear and nonlinear
impairments of fiber optic transmission [20]. DWDM has been analyzed under the influence
of the FWM effect using different modulation formats such as carrier suppressed return to
zero (CSRZ) [21], modified duobinary return to zero (MDRZ) [22], differential phase shift
keying (DPSK) [23,24], and differential quadrature phase shift keying (DQPSK) [25]. All
the modulation formats were proposed as alternative formats to return to zero (RZ) and
non-return to zero (NRZ) [26–28].

By extending the work in [18], the target of this paper is to examine the impact of
different types of modulation formats (namely return to zero (RZ), carrier suppressed RZ
(CSRZ) and the modified duobinary RZ (MD-RZ) formats-based OOK signaling) on the bit
error rate (BER) as a key figure of merit performance of the hybrid optical CDMA/DWDM
system. The influence of inter- and intra-channel FWM, ISI, and MAI have been considered.

2. Signal Generators and System Description

The proposed hybrid optical CDMA/DWDM system’s operational diagram is shown
in Figure 1, which consists of K number of channels (i.e., channels) spaced by 0.2 nm at
a data rate of 40 Gbps per channel, where each is split into M branches, and each branch
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represents one user’s data. The user’s data are modulated to generate an RZ/CSRZ and
MD-RZ optical signal, which then moves to optical CDMA encoding using a multi-diagonal
(MD) sequence code. Interested readers may refer to [26–28] for more information about
the generation of RZ, MDRZ, and CSRZ. The M optical CDMA users’ data are combined
by an optical combiner. Then the K channels are multiplexed by the WDM multiplexer
followed by EOPM to modulate simultaneously the signal’s phase at frequency equal to
a single channel’s data rate. Further details about the function of EOPM are reported in
ref. [19]. The output of the EOPM is then launched into single mode fiber + dispersion
compensating fiber (SMF + DCF) followed by a preamplifier to compensate the loss. Noting
that each channel could support M number of optical CDMA users, the total number of
users that the proposed hybrid system can accommodate is K ×M users.
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Figure 1. Hybrid Optical CDMA–DWDM system’s operational diagram. Single mode fiber (SMF)
and dispersion compensating fiber (DCF).

3. Performance Analysis

This section comprises a theoretical analysis of the hybrid optical CDMA/DWDM
system performance under the influence of inter- and intra-channel FWM, receiver noise,
and MAI. Considering the intensity modulation/direct detection (IM/DD) transmission
based on CSRZ signaling, the hybrid system accommodates K channels; each channel
carries M optical CDMA users; hence, the data corresponding to the mth user in kth
channel are

dm
k (t) =

√
Ptbm

k (t) cos2
[π

2
(sin(πBt) + 1)

]
where, 0 < t ≤ T (1)

where bm
k (t) is the data of the mth user in the kth DWDM channel.

For optical CDMA user’s signatures, several address codes can be used, including m
sequence, double padded-modified prime code (DPMPC), modified quadratic congruence
(MQC), extended grouped new modified prime code (EG-nMPC) and multi-diagonal
(MD) code [29,30]. Among all these codes, MD offers the best performance when MAI is
considered due to the zero cross-correlation property of MD, where the length of the MD
sequences is F = M× w, [31].

Hence, the signature code of the mth user in kth channel is

Ckm(t) =
M×w

∑
f=1

Ckm
f P(t− f Tc) (2)

where Ckm ∈ {0, 1} and P(t) refers to the unit rectangular pulse with Tc duration.
All M encoded users’ data are combined, where the encoded optical CDMA signals

corresponding to kth channel are mathematically expressed as:
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Sk(t) =
M

∑
m=1

M×w

∑
f=1

√
Ptbm

k (t)C
km
f P(t− f Tc) cos2

[π

2
(sin(πBt) + 1)

]
(3)

Finally, all the K channels are multiplexed, where each channel consisting of M optical
CDMA users is

S(t) =
K

∑
k=1

Sk(t) (4)

Then, the output of the DWDM multiplexer is sent over to an EOPM to modulate
simultaneously the signal’s phase at frequency equal to a single channel’s data rate, where
such a process helps to suppress the effect of intra-channel FWM. Therefore, the phase of
each channel is modulated as:

ϕ(t) = ϕEOPM sin(2π fSCSt) (5)

where ϕEOPM and fSCS are the phase deviation and the frequency of the sinusoidal clock
signal, respectively. The output of the EOPM is then transmitted over the SMF as

S(t) =

[
K

∑
k=1

Sk(t)

]
ejϕ(t) (6)

where, the qth channel signal of the mth user at the DWDM de-multiplexer’s output is

ri(t) =
M

∑
m=1

M×w

∑
f

√
Ps,qmbm

q (t)C
qm
f (t) cos(θq) +

√
PFWM

q (t) cos(θq − θFWM) (7)

where Ps =
Pr

M×w , Pr, bm
q , and PFWM

q = ∑
abc

Pabc
OCDMA−DWDM are the received power, the data

bit of the mth user in the qth channel, and the total power of generated FWM products at
fq, respectively.

The generated FWM power at frequencies fa, fb, and fc is [32]

Pabc
OCDMA−DWDM =

η

9
(dy)2(

Pa

N
)(

Pb
N
)(

Pc

N
) exp[−αL][

(1− e−αL)
2

α2 ] (8)

where η is the FWM efficiency and can be expressed as [33].

η =
α2

α2 + (∆β)2

1 +
4e−αLsin2

(
∆β.L

2

)
(1− e−αL)

2

 (9)

∆β is the phase mismatch [32]

∆β =
2πλ2

c
(∆ fac)(∆ fbc)

[
DC + (

λ2

2c
)(SD)(∆ fac + ∆ fbc)

]
(10)

where d, L, γ, α, Pp, Pq, Pr, α, Dc, and SD are the degeneracy factor; the transmission length;
the nonlinearity coefficient; the attenuation of the fiber; the transmitted power per channel;
and the chromatic and slope dispersion, respectively.

Considering that the desired user is the first user in the qth DWDM channel, then the
received optical field at the photodetector of the first user in the qth DWDM channel after
the decoding process is

E(t) = Eq1(t) + Eq,MAI(t) + Eq,FWM(t) (11)

The first, second, third, fourth, and fifth terms in Equation (11) are the electric field of
the first user in the qth channel; the electric field of the MAI, and the total electric field of
FWM at fq, respectively.
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The total signal current can be derived as

ib(t) =
<wPr,qb

M× w
+

<
M× w

M

∑
m=j+1

Pr,qmbm
q Iqm,j(tqm,j) + iFWM(t) + ish(t) + ith(t) (12)

The first term in Equation (12) is the desired signal, the MAI component is represented
in the second term; while the third, fourth, and fifth terms are due to the FWM, shot, and
thermal noises, respectively. Then,

iFWM(t) = 2<PFWM
q (t) cos2(θq − θFWM) + 2<

√
Pr,q1

M×w (t)PFWM
q (t) cos(θq) cos(θq − θFWM)

+2<
M
∑

m=j+1

√
Pr,qm
M×w Iqm,j(tqm,j)PFWM

q (t) cos(θq) cos(θq − θFWM)
(13)

where the first, second, and third terms represent the mean current of FWM, the signal-
FWM, and MAI-FWM, respectively.

The signal current for bit ‘1’ is

i(1) =
<wPr,q1
M×w + <

M×w

M
∑

m=j+1
Pr,qm Iqm,j(tqm,j) + 2<PFWM

q (1) cos2(θq − θFWM)

+2<
√

Pr,q1
M×w PFWM

q (1) cos(θq) cos(θq − θFWM)

+2<
M
∑

m=j+1

√
Pr,qm
M×w Iqm,j(tqm,j)PFWM

q (1) cos(θq) cos(θq − θFWM) + ish(1) + ith(t)

(14)

The mean and variances for bit ‘1’ are

〈i(1)〉 = <wPr,q1 +<
〈

PFWM
q

〉
(15)

σ2(1) =
<2

(M× w)3

M

∑
m=j+1

P2
r,qm + σ2

signal−FWM(1) + σ2
MAI−FWM(1) + σ2

sh(1) + σ2
th(1) (16)

where

σ2
signal−FWM(1) =

2<2Pr,q1

M× w

{
1
8 ∑

a 6=b 6=c
PFWM

q +
1
4 ∑

a=b 6=c
PFWM

q +
1
4 ∑

a 6=b 6=c=q
PFWM

q

}
(17)

and

σ2
MAI−FWM(1) =

2<2

(M× w)2

M

∑
m=j+1

Pr,qm

{
1
8 ∑

a 6=b 6=c
PFWM

q +
1
4 ∑

a=b 6=c
PFWM

q +
1
4 ∑

a 6=b 6=c=q
PFWM

q

}
(18)

The mean and variance values for bit “0” are

〈i(0)〉 = <
〈

PFWM
q (0)

〉
(19)

σ2(0) = σ2
MAI−FWM(0) + σ2

FWM−FWM(0) + σ2
sh(0) + σ2

th(1) (20)

where

σ2
MAI−FWM(0) =

2<2

(M× w)2

M

∑
m=j+1

Pr,qm

{
1
8 ∑

a 6=b 6=c
PFWM

q +
1
4 ∑

a=b 6=c
PFWM

q

}
(21)

Then, the bit error rate (BER), following [34,35] is

BER = Q
(
〈i(1)〉 − 〈i(0)〉

σ(1) + σ(0)

)
(22)
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4. Results and Discussion

In total, 15 DWDM channels with a spacing of 0.2 nm operating at the c-band, where
each channel carries eight users, can be accommodated by the proposed hybrid system, a
data rate of 40 Gbps and transmission power of 22 dBm transmitted over 105.075 km. The
SMF with the following properties: cross effective area of 80 µm2 and chromatic and slope
dispersion of 16.75 ps/nm·km and 0.075 ps/nm2·km was used to evaluate the performance
of the hybrid system along with the DCF.

The EOPM module is used to simultaneously modulate the signals’ phase, which are
carried by the DWDM channels to eradicate the intra-channel FWM effect. The eradication
of intra-channel FWM occurs because its contributions coming from different pulses acquire
a relative phase shift. By optimizing this phase shift, destructive interference can be
obtained between different intra-channel FWM contributions. The key EOPM parameter is
the phase deviation, which determines the relative phase shift of the intra-channel FWM
contributions. In Ref. [19], the optimum phase deviation of the EOPM module was set
at 2π/3.

To guarantee the avoidance of ISI, the authors in [19] proposed the squeezing method,
where its principle is to squeeze the identification sequence code interval into less than
a bit duration; therefore, in this paper we implemented the squeezing method where the
code sequence interval was squeezed into 25% of bit duration to guarantee the avoidance
of the ISI.

In this paper, the simulation was conducted using co-simulation of OptSim and
MATLAB software utilizing SMF and DCF with the properties stated in Table 1.

Table 1. Hybrid System Properties.

Parameter Value Parameter Value

Number of channels N = 15 Dispersion slope for SMF 0.075 ps/nm2·km
Number of users per channel K = 8 Cross effective area for SMF 80 µm2

Channel spacing 0.2 nm Length of DCF 15.075 km
Data rate per channel 40 Gbps Attenuation for DCF 0.5 dB/km

Data rate per user 5 Gbps Dispersion for DCF −100 ps/nm·km
CW DFB Laser launch power 9.8 dBm Dispersion slope for DCF −0.45 ps/nm2·km

Total insertion losses 30.8 dBm Cross effective area for DCF 22 µm2

Preamplifier gain 30 dB Nonlinear refractive index 2.6 × 10−20 m2/W
Total transmitted power to the fiber 22 dBm Max nonlinear phase shift 3.14 mrad

Length of SMF 90 km Phase deviation of EOPM ϕEOPM= 2π
3

Attenuation for SMF 0.2 dB/km Length and weight of the
sequence code F = 24, w = 3

Dispersion for SMF 16.75 ps/nm·km

Based on the mathematical model presented in Section 3, the strength of the FWM
depends not only on the fiber characteristics but also on the optical sequence code proper-
ties, such as code length, weight, and auto/cross correlation, where longer sequence code
lengths are recommended for achieving better performance. Therefore, the identification
sequence code not only has a positive/negative impact on MAI but also has an impact on
the effect of FWM. Whether it impacts positively or negatively depends on the properties
of the optical sequence code. The MD code is one of the best candidates to use as a sig-
nature sequence code for the optical CDMA users in our proposed hybrid system. The
performance of the proposed hybrid system for CSRZ, MDRZ, and RZ modulation formats
in terms of the BER as a function of transmitted power at w = 3 and F = 24 for the MD
sequence code are shown in Figure 2, Figure 3, and Figure 4, respectively.
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The CSRZ achieved a significant improvement over RZ and MDRZ with the imple-
mentation of EOPM as shown in Figure 5. This is because the optical phase in a CSRZ
signal is periodic at half the data rate and the interaction between the neighboring pulses is
suppressed [20]. In other words, its carrier suppression and the π phase change between
alternative pulses help to suppress the interference between the pulses [14]. This was previ-
ously observed and has been attributed to the fact that CSRZ is more tolerant to optical
fiber nonlinearity [20,22,36].
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On the other hand, it was reported in the literature that the performance of MDRZ
in purely WDM systems outperformed the RZ modulation format [37]; however, in the
proposed hybrid system using the EOPM module, the performance of the system based on
the RZ format had better performance than the one based on the MDRZ format, as shown
in Figures 3 and 4. The average BERs of channels 2, 8, and 13 at a transmitted power of
22 dBm for MDRZ were 5.93 × 10−12, 4.8 × 10−10, and 2.1 × 10−12, and for RZ, they were
9.82 × 10−14, 2.75 × 10−10, and 2.6 × 10−12, respectively. The EOPM module was used
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to simultaneously modulate the signals’ phase carried by DWDM channels to eradicate
the intra-channel FWM effect. The eradication of intra-channel FWM occurs because its
contributions coming from different pulses acquire a relative phase shift. In ref. [19] the
optimum phase deviation of the EOPM module was set at 2π/3, which helped to destroy
the interference between different intra-channel FWM contributions. Thus, the phase shift
was responsible for reducing the intra- channel FWM effect, which in turn lowered the
bit error.

The effectiveness of the EOPM module was more significant in the case of the CSRZ
modulation formats compared to RZ and MDRZ formats. These findings of the current
study are consistent with those in ref. [20].

5. Conclusions

In conclusion, following the theoretical analysis on the hybrid optical CDMA/DWDM
system, it was found that the EOPM module was more effective using the CSRZ modulation
format compared to the MDRZ and RZ modulation formats. This is due to the phase shift
introduced by the EOPM between the pulses. The phase shift is responsible for reducing
the intra-channel FWM effect, as the destructive interference can be achieved between
different pulses by optimizing the phase shift. The simulation results indicated that the
strength of the FWM effect depends on the optical signature code properties, where the
longer code is better. The phase deviation of the EOPM module is the key parameter that
plays a crucial role in eradicating the effect of intra-channel FWM.
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