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Abstract: In optical communications, it is desirable to know some quantities describing a light field,
which are conserved on propagation or resistant to some distortions. Typically, optical vortex beams
are characterized by their orbital angular momentum (OAM) and/or topological charge (TC). Here,
we show analytically that the OAM of a single rotationally symmetric optical vortex is not affected
by an arbitrary-shape aperture or by other amplitude perturbations. For a superposition of two or
several optical vortices (with different TCs), we studied what happens to its OAM when it is distorted
by a hard-edge sector aperture. We discovered several cases when such perturbation does not violate
the OAM of the whole superposition. The first case is when the incident beam consists of two vortices
of the same power. The second case is when the aperture half-angle equals π multiplied by an integer
number and divided by the difference between the topological charges. For more than two incident
beams, this angle equals π multiplied by an integer number and divided by the greatest common
divisor of all possible differences between the topological charges. We also show that such a sector
aperture also conserves the orthogonality between the complex amplitudes of the constituent vortex
beams. For two incident vortex beams with real-valued radial envelopes of the complex amplitudes,
the OAM is also conserved, when there is a ±π/2 phase delay between the beams. When two beams
with the same power pass through a binary radial grating, their total OAM is also conserved. We hope
that these findings could be useful for optical communications since they allow for the identification
of incoming optical signals by their OAM by registering only part of the light field within a sector
aperture, thus reducing the cost of the receiving devices.

Keywords: sector aperture; optical vortex; superposition of optical vortices; orbital angular momentum

1. Introduction

Structured light, with its arbitrarily tailoring structure and multiple degrees of freedom,
has attracted wide attention [1,2]. One of the remarkable properties of some structured light
beams is their self-healing, i.e., their ability to reconstruct themselves after passing through
obstacles. Interest in this phenomenon has continued from the pioneering work [3] to the
present day. Among recent works, we can mention, for instance, [4,5]. In [4], the field’s
modal content was studied as a predictor or indicator of the self-healing ability of coherent
structured light beams. It was shown that the fidelity between the obstructed and unob-
structed beams’ modal spectra allows for the estimation of how likely it is that the beam
will self-heal after an arbitrary obstacle. As an example, the superiority of the self-healing
properties of Laguerre–Gaussian over Bessel–Gaussian beams was experimentally demon-
strated. In [5], the self-healing of a partially obstructed beam was analyzed by representing
it by two orthogonal field components—an attenuated copy of the unobstructed beam and a
pure distortion field. It was discovered that the self-healing reaches a limit degree at the far
field, and that certain relatively small phase obstructions may produce total damage on the
beam. In [6], the possibility of vortex beam generation was studied by incomplete computer
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generated holograms, imitating digital micromirror devices with random dead pixels. It
was observed that such distorted beams are less intense, but maintain their transverse
intensity profiles, and that their topological charge is not affected.

When studying the resistance of various beams to perturbations, two opposite cases
can be considered. The first one is when the obstacle is small compared to the beam width.
Another case occurs, when only a small portion of the beam cross-section remains. The
second case does not necessarily mean that the beam was distorted by a large obstacle. A
similar problem occurs when there is a need to obtain the beam properties by analyzing
only a small part of the beam cross-section. For instance, on propagation, beams with a
larger TC diverge more strongly, and it becomes impractical to register the whole intensity
ring. The authors of [7] address this problem of orbital angular momentum (OAM) modes
demultiplexing by using only the partial aperture receiving scheme. As a partial case of the
problem studied in [7], the demultiplexing of the OAM modes was studied earlier by using
a partial angular receiving aperture [8] with the shape of a truncated sector (large-radius
sector minus small-radius sector). Another work, studying how the sector aperture affects
the beam is the paper by Volyar, A.V. et al. [9]. In [9], sector perturbations of vortex beams in
the form of a hard-edged aperture were investigated both theoretically and experimentally.
Transformations of the vortex spectra, OAM, and the informational entropy of the perturbed
beam were measured. It was found that relatively small angular sector perturbations have
almost no effect on the OAM, although the informational entropy rapidly increases due to
the birth of new optical vortices caused by diffraction at the diaphragm edges. At small
sector angles, the OAM rapidly decreases due to the uncertainty principle between the
OAM and the sector angle. However, in [9], the incident beam was a single cylindrically
symmetric optical vortex. To the best of our knowledge, it is unknown yet how the sector
aperture affects the OAM of a superposition of optical vortices. There is a theoretical work
that analytically investigated the diffraction of a light field by a sector aperture in the
Fresnel zone [10]. However, the OAM was not studied.

In this paper, we studied what happens to the OAM when, instead of one cylindrically
symmetric vortex, a superposition of such vortices is truncated by a sector aperture. We
show that the normalized-to-power OAM is conserved in some specific cases. We note that
at small sector angles, the uncertainty principle between the aperture angle and the OAM
takes place [11,12]. In the current work, we did not consider this effect, and supposed that
the sector angle was large enough so that both this angle and the OAM could be exactly
determined.

The results of this work can find application in optical data transmission since they
allow for the identification of incoming optical signals by their OAM by registering only
part of the light field within a sector aperture.

2. Normalized Orbital Angular Momentum of a Rotationally Symmetric Vortex Beam
Passed through an Arbitrary-Shape Aperture

Throughout the paper, we suppose that a paraxial light beam propagates along the
optical axis z and that its transverse complex amplitude distribution is E(r, ϕ, z), with (r, ϕ)
being the transverse polar coordinates. For a paraxial beam, transverse components of
the OAM vector are usually neglected, and only the longitudinal component Jz can be
notable. Orbital angular momentum Jz and the power W of a paraxial beam are given by
the following formulae [13]:

Jz = Im
∞∫

0

2π∫
0

E∗(r, ϕ, z)
∂

∂ϕ
E(r, ϕ, z)rdrdϕ, (1)

W =

∞∫
0

2π∫
0

|E(r, ϕ, z)|2rdrdϕ. (2)
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We note that the left parts are constant, whereas the right parts depend on the prop-
agation distance z. Actually, calculation for an arbitrary z yields the same values. This
means that the power and the OAM should conserve their values on propagation in free
space. This is actually always the case since if some function E(r, ϕ, z) is a solution of the
Helmholtz equation ∂2E/∂ϕ2 + r−1∂E/∂ϕ + r−2∂2E/∂ϕ2 + ∂2E/∂z2 = 0 (in the paraxial
limits), then the functions E* and ∂E/∂ϕ are also solutions of these equations and the dot
product of two arbitrary solutions (Equations (1) and (2) are the dot products) conserves its
value on propagation in free space. Only some element can distort the beam power and
OAM, and here, in this work, we considered apertures as such elements.

If we represent the complex amplitude via the intensity I and phase Ψ:

E(r, ϕ, z) =
√

I(r, ϕ, z) exp[iΨ(r, ϕ, z)], (3)

then the OAM and the power can be rewritten as

Jz =

∞∫
0

2π∫
0

I(r, ϕ, z)
∂

∂ϕ
Ψ(r, ϕ, z)rdrdϕ, (4)

W =

∞∫
0

2π∫
0

I(r, ϕ, z)rdrdϕ. (5)

Equations (4) and (5) indicate that if the angular derivative of the field phase is a
constant that is independent of the polar coordinates r and ϕ, like is the case for the
rotationally symmetric optical vortices, then any amplitude perturbation does not affect
the normalized OAM, i.e., the OAM divided by the power. Indeed, if ∂Ψ/∂ϕ = n and if we
perturb the amplitude so that the intensity distribution becomes Ipert(r, ϕ, z), instead of
I(r, ϕ, z), the normalized OAM reads as

Jz

W
=

 ∞∫
0

2π∫
0

Ipert(r, ϕ, z)nrdrdϕ

·
 ∞∫

0

2π∫
0

Ipert(r, ϕ, z)rdrdϕ

−1

= n. (6)

In particular, when an optical vortex passes through an arbitrary-shape aperture, its
transverse shape becomes distorted, and its topological charge also can change, but the
normalized OAM is conserved.

As an example, Figure 1 illustrates a Laguerre–Gaussian beam truncated or not trun-
cated by an elliptic aperture. Intensity and phase distributions in the initial plane are shown
in Figure 1a,b. Complex amplitude in the initial plane is given by

E(r, ϕ, z = 0) =
(√

2r
w0

)n
Ln

p

(
2r2

w2
0

)
exp

(
− r2

w2
0
+ inϕ

)
×rect

[
(r cos ϕ− x0)

2/a2
x + (r sin ϕ− y0)

2/a2
y

]
,

(7)

where w0 is the waist radius of the Gaussian beam, n is the vortex topological charge,
p is the radial mode index, ax and ay are the horizontal and vertical radii of the elliptic
aperture, (x0, y0) are Cartesian coordinates of the ellipse center, rect() is the aperture function
[rect(ξ) = 1 at |ξ| ≤ 1 and rect(ξ) = 0 at |ξ| > 1], and Ln

p is the associated Laguerre
polynomial.
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which are outside the computed distributions of the complex amplitude. 

 
Figure 1. Intensity (a,c,e,g,i) and phase (b,d,f,h,j) distributions of a Laguerre–Gaussian beam in 
the initial plane (a,b), as well as after free space propagation, when the beam is not truncated (c,d) 
or truncated in the initial plane by an elliptical aperture in three possible cases: the optical vortex 
is within the aperture (e,f), on its edge (g,h), or outside the aperture (i,j). Three red dashed ellipses 
(a,b) show the aperture borders in all these three cases. 

Nevertheless, the computed normalized OAM values Jz/W are almost the same for 
the untruncated and all truncated beams: 4.99 (Figure 1c,d), 4.87 (Figure 1e,f), 4.88 (Fig-
ure 1g,h), and 4.78 (Figure 1i,j). In the initial plane, the OAM values of these beams are 
even close to 5: 5.00 (for the beam from Figure 1c,d), and 4.99 (for the beams from Figure 
1e–j). 

Figure 1. Intensity (a,c,e,g,i) and phase (b,d,f,h,j) distributions of a Laguerre–Gaussian beam in the
initial plane (a,b), as well as after free space propagation, when the beam is not truncated (c,d) or
truncated in the initial plane by an elliptical aperture in three possible cases: the optical vortex is
within the aperture (e,f), on its edge (g,h), or outside the aperture (i,j). Three red dashed ellipses (a,b)
show the aperture borders in all these three cases.

Figure 1c–j show the beam after propagation in space when it is not truncated
(Figure 1c,d) in the waist plane or truncated (Figure 1e–j) by an elliptic aperture with
three different locations. The following parameters were used: wavelength λ = 532 nm,
waist radius w0 = 0.5 mm, topological charge n = 5, radial index p = 2 (i.e., the beam con-
tains three light rings), horizontal and vertical radii of the elliptic aperture ax = 0.5 mm and
ay = 1 mm, position of the ellipse center y0 = 0 and x0 = 0.25 mm (vortex is within the aper-
ture, Figure 1e,f), x0 = 0.5 mm (vortex is on the aperture edge, Figure 1g,h), x0 = 0.25 mm
(vortex is outside the aperture, Figure 1i,j), propagation distance z = 2z0 (z0 = kw2

0/2 is the
Rayleigh distance), illustrated area |x|, |y|≤ R with R = 3.3 mm (initial plane, Figure 1a,b),
R = 5 mm (untruncated beam, Figure 1c,d), and R = 6.7 mm (untruncated beam, Figure 1c–j).

As seen in Figure 1, the aperture damages the beam significantly, its shape is distorted,
and only an outer ring is recognizable. Instead of the single fifth-order vortex in the center,
as in Figure 1d, truncation leads to a large amount of peripheral vortices, so that it is hard
to compute the topological charge. Its computation by using M.V. Berry’s formula

TC =
1

2π
lim
r→∞

2π∫
0

∂

∂ϕ
[argE(r, ϕ, z)]dϕ (8)

over a ring with the radius 7.5 mm yields the following values: 3 (Figure 1e,f), 0 (Figure 1g,h),
and 3 (Figure 1i,j), whereas we expected other values: 5 (since the entire vortex is within
the aperture), 2 or 3 (since the vortex is on the aperture edge), and 0 (since the vortex is
outside the edge). This mismatch is due to the numerous peripheral vortices, which are
outside the computed distributions of the complex amplitude.

Nevertheless, the computed normalized OAM values Jz/W are almost the same for the
untruncated and all truncated beams: 4.99 (Figure 1c,d), 4.87 (Figure 1e,f), 4.88 (Figure 1g,h),
and 4.78 (Figure 1i,j). In the initial plane, the OAM values of these beams are even close to
5: 5.00 (for the beam from Figure 1c,d), and 4.99 (for the beams from Figure 1e–j).
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3. Normalized Orbital Angular Momentum of a Superposition of Two Vortex Beams
Passed through a Sector Aperture

If two cylindrically symmetric optical vortices pass through a sector aperture placed
in the initial plane (z = 0), then the complex amplitude behind the aperture reads as

E(r, ϕ, 0) = [C1E1(r, ϕ, 0) + C2E2(r, ϕ, 0)]rect(ϕ/α), (9)

where (r, ϕ) are the polar coordinates in the initial plane, C1 and C2 are the superposition
coefficients, α is the half-angle of the sector aperture, and E1(r,ϕ,0) and E2(r,ϕ,0) are the
complex amplitudes of two coaxial optical vortices with the different topological charges n
and m, but the same energy:

E1(r, ϕ, 0) = W−1/2
1 A1(r) exp(inϕ), E2(r, ϕ, 0) = W−1/2

2 A2(r) exp(imϕ), (10)

with W1, W2 being the factors making the energies of the beams E1 and E2 equal:

W1,2 = 2π

∞∫
0

|A1,2(r)|2rdr. (11)

Now, we derive the normalized-to-power OAM of the beam (9).
Substituting the complex amplitude (9), we get the beam power (Appendix A):

W = |C1|2
α

π
+ |C2|2

α

π
+
|C1C2|√

W1W2

4
n−m

∞∫
0

|A1(r)||A2(r)|χ(r)rdr, (12)

with
χ(r) = sin[(n−m)α] cos[argC1 − argC2 + argA1(r)− argA2(r)]. (13)

Substitution of the complex amplitude (9) into Equation (4) yields the OAM (Appendix A):

Jz = n|C1|2
α

π
+ m|C2|2

α

π
+ 2

n + m
n−m

|C1C2|√
W1W2

∞∫
0

|A1(r)||A2(r)|χ(r)rdr. (14)

Dividing the OAM by the beam power, we get the normalized-to-power OAM of the
beam (9):

Jz
W =

[
n|C1|2 α

π + m|C2|2 α
π + 2 n+m

n−m
|C1C2|√

W1W2

∞∫
0
|A1(r)||A2(r)|χ(r)rdr

]

×
[
|C1|2 α

π + |C2|2 α
π + 4

n−m
|C1C2|√

W1W2

∞∫
0
|A1(r)||A2(r)|χ(r)rdr

]−1

.

(15)

This expression looks huge, but it is drastically simplified in several cases.

4. Superposition of Two Vortex Beams of Equal Energy

If the two incident vortex beams have the same energies, i.e., the superposition coeffi-
cients are equal by the absolute value (|C1| = |C2|), then Equation (15) reduces to

Jz

W
=

n + m
2

. (16)

This expression is independent of the aperture half-angle α and, therefore, the aperture
does not affect the normalized OAM. For example, Figure 2 shows truncated and not
truncated superpositions of two single-ringed LG beams with the same energies, i.e., a light
field with the following complex amplitude:
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E(r, ϕ, z = 0) =
C1√
W1

(√
2r

w0

)n

exp

(
− r2

w2
0
+ inϕ

)
+

C2√
W2

(√
2r

w0

)m

exp

(
− r2

w2
0
+ imϕ

)
, (17)

with |C1| = |C2| and

W1 =
πw2

0
2

n!, W2 =
πw2

0
2

m!. (18)
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Figure 2. Intensity (1st and 3rd columns) and phase (2nd and 4th columns) distributions of two
different superpositions of two single-ringed LG beams with the same energies passing through a
sector aperture with different angle.

The following parameters were used for computation: wavelength λ = 532 nm, waist
radius w0 = 0.5 mm, topological charges n = 5 and m = 2, half-angle of the sector aperture
α = π (first row), α = π/6 (second row), and α = π/18 (third row), superposition coefficients
C1 = C2 = 1 (first and second columns) and C1 = 1, C2 = i (third and fourth columns), and
computation area |x|, |y| ≤ R (R = 2.5 mm).

Computation by the general expressions (1) and (2) yields the following values of the
normalized OAM: 3.499 (Figure 2a–d), 3.493 (Figure 2e,f), 3.491 (Figure 2g,h), and 3.492
(Figure 2i–l), i.e., in all cases, Jz/W ≈ 3.5. These values are consistent with (16). Thus, we
conclude that if the energies of both constituent beams are equal, then the sector aperture
cannot violate the normalized-to-power OAM of such a superposition, regardless of the
aperture angle.

This phenomenon can be roughly described by decomposing the beams into the OAM
spectrum. The transmittance function of the sector aperture can be decomposed into a
symmetric series of angular harmonics:

rect
( ϕ

α

)
=

∞

∑
p=−∞

sin αp
πp

eipϕ. (19)

Therefore, when a single optical vortex passes through such an aperture, it becomes
a superposition of an infinite number of optical vortices of all possible integer orders.
If the aperture is illuminated by two optical vortex beams, their OAM spectra interact,
and, if both beams have equal energies, the resulting OAM spectrum remains symmetric
(Figure 3a). However, if the beam energies are different, the resulting OAM spectrum is, in
general, asymmetric (Figure 3b). When the OAM spectrum is symmetric, the OAM of such
a light field is equal to the average TC in such a spectrum [14], i.e., (m + n)/2.
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5. Superposition of Two Vortex Beams with Different Energies
5.1. Conserving the OAM of Two Incident Beams by Choosing the Angle of the Sector Aperture

If two constituent vortex beams of the superposition (9) have different energies, i.e., if
the superposition coefficients are not equal to the absolute values (|C1| 6= |C2|), then the
normalized OAM of the untruncated beam (i.e. α = π) reads as

Jz

W
=

n|C1|2 + m|C2|2

|C1|2 + |C2|2
. (20)

Generally, the sector aperture violates this normalized OAM of the beam (9). Here,
we tried to determine some partial cases, when the OAM remains unchanged, despite the
aperture. For instance, the OAM (16) can be conserved after the truncation, if the function
χ(r) from Equation (13) is zero. This can be achieved by choosing the following half-angle
α of the sector aperture:

α =
πp

n−m
, (21)

with p being an arbitrary integer number.
For example, Figure 4 shows two untruncated and truncated superpositions of two

single-ringed LG beams with different energies, i.e., the beam (17) with different val-
ues |C1| and |C2|. The following parameters were used for computation: wavelength
λ = 532 nm, waist radius w0 = 0.5 mm, topological charges n = 5 and m = 2, half-angle of
the sector aperture α = π (Figure 4a–d), α = π/9 (Figure 4e–h), α = π/18 (Figure 4i–l), and
α = π/3 (Figure 4m–p), superposition coefficients C1 = 21/2, C2 = 1 (Figure 4, 1st and 2nd
columns) and C2 = –1 (Figure 4, 3rd and 4th columns), and computation area |x|, |y| ≤ R
(R = 2.5 mm). The dark spots in Figure 4g,k seem smaller than those in Figure 4c,o, but this
is only because all the images are normalized to their maximal intensity.
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According to Equation (20), the theoretical OAM value of the untruncated beam is
Jz/W = (5·2 + 2·1)/(2 + 1) = 4. Computation yields the following values of the normalized
OAM: 3.999 (Figure 4a–d), 3.801 (Figure 4e,f), 4.682 (Figure 4g,h), 3.764 (Figure 4i,j), 4.999
(Figure 4k,l), 3.998 (Figure 4m,n), and 3.992 (Figure 4o,p).

This indicates that the sector aperture changes the OAM (although not by large values).
However, at α = π/3 (condition (21)), the OAM is conserved.

We note that the angle (21) conserves not only the normalized OAM, but conserves
also the orthogonality of two vortices (10), i.e., the dot product of their complex amplitudes
yields zero if the topological charges are different. Indeed, for an arbitrary angle of the
sector aperture, the dot product is (Appendix A)

〈C1E1(r, ϕ, 0), C2E2(r, ϕ, 0)〉 =
C∗1 C2√
W1W2

2
m− n

∞∫
0

A∗1(r)A2(r) sin[(m− n)α]rdr. (22)

If the angle α is given by (21), the sine in the integrand is zero.
Thus, since the sector aperture conserves the orthogonality of the constituent beams,

diffractive optical elements can be used to determine individual mode values of the dis-
torted superimposed beam. Such techniques for modal decomposition of light fields are
described, for instance, in [15,16].

5.2. Generalization for More Than Two Incident Beams

The rule (21) can be generalized for the case of more than two beams in the superposi-
tion. If the incident beam contains M beams with the topological charges ms (s = 1, . . . , M),
then, beyond the aperture, its complex amplitude is given by

E(r, ϕ, 0) =
M

∑
s=1

Cs√
Ws

As(r) exp(ims ϕ)·rect(ϕ/α), (23)
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with Cs being the superposition coefficients and Ws being the normalizing factors:

Ws = 2π

∞∫
0

|As(r)|2rdr. (24)

Obtaining the normalized OAM yields an expression, similar to Equation (15), but
even more bulky:

Jz
W =

[
α
π

M
∑

s=1
ms|Cs|2 + 2

M
∑

s=2

s−1
∑

q=1

|Cs ||Cq|√
WsWq

mq+ms
mq−ms

∞∫
0
|As(r)|

∣∣Aq(r)
∣∣χsq(r)rdr

]

×
[

α
π

M
∑

s=1
|Cs|2 +

M
∑

s=2

s−1
∑

q=1

|Cs ||Cq|√
WsWq

4
mq−ms

∞∫
0
|As(r)|

∣∣Aq(r)
∣∣χsq(r)rdr

]−1 (25)

with
χsq(r) = sin

[(
mq −ms

)
α
]

cos
[
argCq − argCs + argAq(r)− argAs(r)

]
. (26)

Unfortunately, if all the beams have the same energy, i.e., |C1| = |C2| = . . . = |CM|,
Equation (25) does not lead to the average OAM, in contrast to the case of two beams
(Equation (16)). However, we can make all the functions χsq(r) equal to zero. This happens,
if, for any s, q = 1, . . . , M, the following condition holds

α =
πpqs

mq −ms
, (27)

with pqs being arbitrary integer numbers.
Thus, for the OAM to be conserved, the aperture half-angle should be equal to an

integer number of π divided by the greatest common divisor of all the possible differences
between the topological charges.

To demonstrate this, Figure 5 shows an untruncated and truncated superposition
of three single-ringed LG beams. The following parameters were used for computation:
wavelength λ = 532 nm, waist radius of all three beams w0 = 0.5 mm, topological charges
m1 = 6, m2 = 9 and m3 = 12, half-angle of the sector aperture α = π (Figure 5a,b) and α = π/3
(Figure 5c,d), superposition coefficients of the three beams C1 = 31/2, C2 = –21/2, and C3 = 1,
and computation area |x|, |y| ≤ R (R = 2.5 mm).
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Figure 5. Intensity (a,c) and phase (b,d) distributions of a superposition of three single-ringed LG
beams with different energies, untruncated (a,b) and truncated (c,d) by a sector aperture with the
half-angle π/3.

Similarly to Equation (20), the theoretical OAM value of the untruncated beam is
Jz/W = (6·3 + 9·2 + 12·1)/(3 + 2 + 1) = 8. Computation yields the following values of the
normalized OAM: 7.999 (Figure 5a,b), and 7.991 (Figure 5c,d). The greatest common divisor
of all possible differences between the topological charges 6, 9, and 12, is 3, and, indeed,
the OAM is conserved for the aperture with the half-angle π/3.

As in the case of two vortices, we note that, according to Equation (22), the half-angle
(27) of the sector aperture also conserves the orthogonality of several optical vortices.



Photonics 2022, 9, 531 10 of 14

5.3. Distorting the Beam and Conserving the OAM on Propagation in Free Space

If the beam from Figure 5a,b passes through a sector aperture, its shape on propaga-
tion is distorted. Figure 6 demonstrates the intensity and phase distributions in the initial
plane before the aperture, truncated distributions beyond two apertures with different
angles, and after propagation over a Rayleigh distance from these apertures. The follow-
ing parameters were used for computation: wavelength λ = 532 nm, waist radius of all
three beams w0 = 0.5 mm, topological charges m1 = 6, m2 = 9 and m3 = 12, propagation
distance z = z0 = kw0

2/2, half-angle of the sector aperture α = π/6 (Figure 6c–f) and α = π/3
(Figure 6g–j), and superposition coefficients of the three beams C1 = 31/2, C2 = –21/2, C3 = 1.
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half-angle α = π/6 (c,d) and α = π/3 (g,h) and after propagation in space over the Rayleigh distance
(e,f,i,j). Scale mark in each figure shows 1 mm. The text (e,i) shows the computed OAM value.

The theoretical value of the initial beam is Jz/W = 8. The OAM values computed by
Equations (1) and (2) confirm that the aperture with α = π/6 distorts the OAM (Jz/W ≈ 6.18),
whereas the aperture with α = π/3 leaves the OAM almost unchanged (Jz/W ≈ 7.87).

5.4. Orbital Angular Momentum of a Superposition of Two Beams with a ±π/2 Phase Delay

Another example of conserving OAM occurs when two beams have the ±π/2 phase
delay (|arg C1 – arg C2| = π/2) and if the functions A1(r) and A2(r) are real-valued.
This is the case, for example, for the Laguerre–Gaussian beams [17] and Bessel–Gaussian
beams [18], but not for the hypergeometric-Gaussian beams [19,20], since their Gaussian
envelope is real, but the confluent hypergeometric function [21] is complex.

For instance, it can be seen in Figure 4 that a small-angle sector aperture can change
the normalized OAM significantly (e.g., Figure 4i–l). Figure 7 depicts similar two super-
positions of two LG beams, but with ±π/2 phase delays between them. The following
parameters were used for computation: wavelength λ = 532 nm, waist radius w0 = 0.5 mm,
topological charges n = 5 and m = 2, half-angle of the aperture α = π (Figure 7a–d), α = π/9
(Figure 7e–h), α = π/18 (Figure 7i–l), superposition coefficients C1 = 21/2, C2 = i (Figure 7,
1st and 2nd columns) and C2 = –i (Figure 7, 3rd and 4th columns), and computation area
|x|, |y| ≤ R (R = 2.5 mm).
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It can be seen that the untruncated beam (Figure 7a,c) has the same intensity distribu-
tion as in Figure 4a,c, but rotated. However, in contrast to Figure 4e–l, the theory predicts
that the sector aperture should not violate the normalized OAM, which should remain
equal to four. Computation by general expressions (1) and (2) yields the following values
of the normalized OAM: 3.999 (Figure 7a–d), 3.992 (Figure 7e–h), and 3.982 (Figure 7i–l),
i.e., all values are close to 4. This indicates that ±π/2 phase delay allows the normalized
OAM to be conserved.

6. Normalized Orbital Angular Momentum of a Superposition of Two Vortex Beams
Passed through a Binary Radial Grating

Radial grating is a symmetric optical element, with its transmittance function being
periodic with the azimuthal polar coordinate. For example, amplitude sinusoidal radial
gratings can be used for measuring the topological charge of vortex beams [22]. It was also
recently proposed for use in generating sub-diffracted Bessel beams [23]. A phase binary
radial grating has the following transmittance function:

T(r, ϕ) = sgn cos(pϕ)rect(r/R), (28)

with R being the grating radius, and p being an integer number defining the azimuthal
period. Such a grating can be considered as composed of sector apertures and, therefore,
the above theory can be applied for analyzing the normalized OAM of beams passing
through the binary radial grating.

According to (16), if two coaxial vortex beams have the same energy, then, after passing
the binary radial grating, its OAM should be conserved. Figure 8 illustrates the intensity
and phase of the beam from Figure 2a,b passing through two phase binary radial gratings
(with p = 8 and with p = 17). Computation yields the following values of the normalized
OAM: 3.487 (Figure 8a,b), and 3.472 (Figure 8a,c), i.e., the values are close to theoretical 3.5.
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7. Conclusions

Today, structured light is a hot topic, and significant progress has been achieved in this
field, allowing for the tailoring of optical patterns in all their degrees of freedom, from con-
ventional 2D transverse patterns to exotic forms of 3D, 4D, and even higher-dimensional
modes of light [24], including vector vortex light fields [25]. Potential applications of
such fields include laser machining and fabrication, complex tweezers and multi-particle
manipulation, topological photonics, high-capacity encoding and communication, high-
dimensional quantum information processing, and others [24]. Using structured light
with multiple degrees of freedom will allow for spatial multiplexing to achieve in the
future ultrahigh capacity, low error-rate optical communications. For instance, it is demon-
strated in [26] that the modal basis of ray-wave geometric beams outperforms the OAM
and LG modal basis, in terms of approaching the capacity limit of a free-space optical
communication channel.

To use structured light in optical data transmission, it is needed to study how all such
structured light beams resist obstacles, e.g., apertures, and whether or not the incoming
optical signal can be identified by registering only a portion of the transverse intensity.

Here, in this work, we limited our analysis by a simple case of one or several circularly
symmetric scalar vortex beams. We found that when a single rotationally symmetric
optical vortex beam is distorted by passing through an arbitrary-shape aperture or by other
amplitude perturbations, its normalized OAM remains unaffected and conserves its value.
If, however, two or more coaxial optical vortex beams pass through a sector aperture, the
normalized OAM of the whole superposition is, in general, changed. However, several
cases exist where this OAM is conserved. We found that this happens when both beams
have the same power. If the beams are of different power, the OAM is also conserved when
the aperture half-angle has a specific value, namely, it is an integer number of π divided
by the difference between the topological charges. For more than two incident beams,
this angle equals an integer number of π divided by the greatest common divisor of all
possible differences between the topological charges. If the radial envelopes of the complex
amplitudes of two vortex beams are real-valued, then the OAM is conserved, when there is
a ±π/2 phase delay between the beams. When two vortex beams with the same power
pass through a binary radial grating, their total OAM is also conserved.

The results of this work can find application in optical data transmission since they
allow for the identification of incoming optical signals by their OAM by registering only
part of the light field within a sector aperture, thus reducing the cost of the receiving devices.
Future research on this topic can study what happens with other quantities that describe
the optical vortices and topological charge after passing through a sector aperture.

Author Contributions: Conceptualization, A.A.K. and V.V.K.; methodology, A.A.K.; software, A.A.K.;
validation, V.V.K.; formal analysis, A.A.K.; investigation, V.V.K. and A.A.K.; resources, V.V.K. and
A.A.K.; writing—original draft preparation, A.A.K.; writing—review and editing, V.V.K.; visual-
ization, A.A.K.; supervision, V.V.K.; project administration, V.V.K.; funding acquisition, V.V.K. and
A.A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the RUSSIAN SCIENCE FOUNDATION, grant number
22-12-00137.



Photonics 2022, 9, 531 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge the support of RF Ministry of Science and Higher Education
within a government project of the FSRC “Crystallography and Photonics” RAS.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Here, we briefly describe the derivation process of the orbital angular momentum,
power, and orthogonality property of a superposition of optical vortices.

To obtain the beam power of the light field given by Equation (9), we substitute the
complex amplitude (9) into the general formula (2) for the power of a paraxial beam. Thus,
we get:

W =
∞∫
0

∞∫
−∞
|E(r, ϕ, z)|2rdrdϕ

=
∞∫
0

α∫
−α

[
C∗1 W−1/2

1 A∗1(r)e
−inϕ + C∗2 W−1/2

2 A∗2(r)e
−imϕ

]
×
[
C1W−1/2

1 A1(r)einϕ + C2W−1/2
2 A2(r)eimϕ

]
rdrdϕ

= |C1|2 α
π + |C2|2 α

π + |C1C2|W−1/2
1 W−1/2

2
4

n−m

∞∫
0
|A1(r)||A2(r)|χ(r)rdr,

(A1)

Similarly, substitution of the complex amplitude (9) into Equation (4) yields the OAM:

Jz = Im
∞∫
0

α∫
−α

E∗(r, ϕ, 0) ∂
∂ϕ E(r, ϕ, 0)rdrdϕ

= Re
∞∫
0

α∫
−α

[
C∗1 W−1/2

1 A∗1(r)e
−inϕ + C∗2 W−1/2

2 A∗2(r)e
−imϕ

]
×
[
nC1W−1/2

1 A1(r)einϕ + mC2W−1/2
2 A2(r)eimϕ

]
rdrdϕ

= n|C1|2 α
π + m|C2|2 α

π + 2 n+m
n−m |C1C2|W−1/2

1 W−1/2
2

∞∫
0
|A1(r)||A2(r)|χ(r)rdr.

(A2)

The dot product of two constituent beams in the superposition of optical vortices
reads as

〈C1E1(r, ϕ, 0), C2E2(r, ϕ, 0)〉 =
∞∫
0

2π∫
0

C∗1 C2E∗1 (r, ϕ, 0)E2(r, ϕ, 0)rdrdϕ

=
C∗1 C2√
W1W2

∞∫
0

A∗1(r)A2(r)
α∫
−α

exp(imϕ− inϕ)rdrdϕ

=
C∗1 C2√
W1W2

2
m−n

∞∫
0

A∗1(r)A2(r) sin[(m− n)α]rdr.

(A3)
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