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Abstract: Despite the literature providing compelling evidence for the medical efficacy of pho-
tobiomodulation (PBM) therapy, its consistency in terms of accuracy and standardization needs
improving. Identification of new technology and reliable and ethical biological models is, therefore,
a challenge for researchers working on PBM. We tested the reliability of PBM irradiation through
a novel delivery probe with a flat-top beam profile on the regenerating amphioxus Branchiostoma
lanceolatum. The caudalmost 9 ± 1 myotomes, posterior to the anus, were excised using a sterile
lancet. Animals were randomly split into three experimental groups. In the control group, the beam
area was bounded with the 635-nm red-light pointer (negligible power, <0.5 mW) and the laser
device was coded to irradiate 810 nm and 0 W. In Group laser-1, the beam area was bounded with
the same 635-nm red-light pointer and irradiated at 810 nm, 1 W in CW for 60 s, spot-size 1 cm2,
1 W/cm2, 60 J/cm2, and 60 J; irradiation was performed every day for two weeks. In Group laser-2,
the beam area was bounded with the same 635-nm red-light pointer and irradiated at 810 nm, 1 W in
CW for 60 s, spot-size 1 cm2, 1 W/cm2, 60 J/cm2, and 60 J; irradiation was performed on alternate
days for four weeks. We observed that PBM improved the natural wound-healing and regeneration
process. The effect was particularly evident for the notochord. Daily irradiation better supported the
regenerative process.

Keywords: low-level laser therapy; light therapy; phototherapy; regeneration; wound healing; ethical
model; 3Rs principle

1. Introduction

The chemical and physical environment of the primitive Earth is enforced to explain
the origin of life and its evolution [1]. All life forms need energy for existence, but only
photosynthetic organisms adopted light-energy conversion and elected some wavelength
ranges to survive in the biosphere. Conversely, the animal cell did not choose light as a
source of energy for its metabolism [2].

However, during the last 50 years, growing evidence has suggested that visible and
near-infrared light wavelengths can modulate energy metabolism also in non-photosynthetic
cells [3]. Indeed, animal-cell photoacceptors can interact with photons, absorb their photo-
energy, and, through a photosynthetic-like process, transform the radiant energy into
chemical energy [4]. Just like for the chloroplast in a plant, the key role in that conversion
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process is played by the mitochondrion, either directly through the chromophores of
respiratory chain complexes [4–7] or indirectly after modulation of calcium homeostasis [8],
nitric oxide release [9], and vibrational energy of water [10], lipid [11], and transforming
growth factor-beta (TGF-β) [12]. This role of the mitochondrion can be explained through
the theory of endosymbiont models and the parallel and convergent evolution of the
mitochondrion and chloroplast from ancestral bacteria [13]. From a clinical point of view,
the modulation of the cell energy metabolism improves tissue dysfunction during nerve,
bone, endothelial, muscle, and epithelial regeneration [3] as well as in mental disorders [14].
Furthermore, effects on neurotransmitter release have been demonstrated [15]. The medical
treatment exploiting this process is known as photobiomodulation (PBM), which was
preferred to the term low-level laser therapy (LLLT). Basically, photobiomodulation works
because visible and (near-)infrared light can modulate cell metabolism and homeostasis
without causing significant thermal increases.

Recently, Amaroli et al. [8] discussed the effect of PBM on cellular pathways that
commonly govern life/death processes and, according to Hamblin [16], suggested that
all life forms could be responsive to energization by photons. However, PBM within the
animal kingdom was only partially investigated, and information is particularly lacking
for invertebrates, which can potentially represent suitable bioethical models for pre-clinical
research. Additionally, although the literature provides compelling evidence for the medical
efficacy of PBM therapy [3], its consistency in terms of accuracy and standardization needs
improving [17]. Limits in the delivery instruments and the standardization of related
therapies may indeed dramatically affect the applications of PBM. The identification of
new technologies and reliable and ethical biological models is, therefore, a challenge
for PBM researchers. Furthermore, fractional calculus [18] and electromagnetic numerical
models [19] could support the description of photo-induced effects and their reproducibility.
On this basis, we tested the reliability of PBM therapy through a novel delivery probe [17]
on the European amphioxus Brachiostoma lanceolatum Pallas, 1778.

Amphioxus, or cephalochordates, are benthic, marine filter-feeding invertebrates that,
together with tunicates and vertebrates, constitute the chordate phylum. Its morphological
and genomic features and phylogenetic position as the earliest branching chordate (Figure 1)
make amphioxus the best model organism to study the evolutionary changes that occurred
during chordate evolution. The body plan of amphioxus is indeed that of a prototypical
chordate: a dorsal, hollow nerve cord with an anterior brain, an axial notochord, segmented
muscles, pharyngeal gill slits, and an endostyle. Moreover, many organs and structures
of amphioxus are homologs to those of vertebrates [20]. From the operative point of
view, the maintenance of amphioxus in captivity is relatively easy, and alternative reliable
husbandry methods have been established in different laboratories worldwide, with or
without direct access to seawater [21]. Pharmacological treatments are easily performed, as
the animals can adsorb drugs present in the seawater through their skin and gut, especially
during development [22], and bead implants have been successfully employed to locally
administer chemicals to adult tissues [23]. Gene editing is also feasible, although not as
easily as in other organisms [24]. In sum, amphioxus is not only interesting per se, but it can
also provide a better proxy of vertebrates than any other invertebrate model, including flies
and nematodes. Since a vertebrate-like epimorphosis process orchestrated by canonical
Wnt/bone morphogenetic protein (BMP)-signaling pathways is involved in amphioxus
tail regeneration [23,25,26], this organism could be proposed as a pre-clinical animal model
of regeneration, which meets the principles of the 3Rs (Replacement, Reduction, and
Refinement) [27].
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Figure 1. Phylogenetic position of Cephalochordates (amphioxus) among the Metazoa. Taxa written 
in white contain species that are affected by exposition to photobiomodulation with 810 nm, 1 W, 
and 60 J/cm2, in continuous-wave for 60 s on a spot-size area of 1 cm2 (1 W/cm2; 60 J). Paramecium 
primaurelia (Protozoa) [28]; Dictyostelium discoideum (Protozoa) [29]; Dendrobaena veneta (Annelida) 
[30]; Paracentrotus lividus (Echinodermata) [31]; Mus musculus (Gnathostomata, Mammalia) [32]; 
Homo sapiens (Gnathostomata, Mammalia) [33]. Created with BioRender.com. 

Therefore, the predictor variable of our research was both the employment of a novel 
hand-piece with a flat-top (FT-HP) beam profile to deliver the PBM therapy on the animal 
model amphioxus and the regenerative ability of B. lanceolatum. The primary endpoint 
was the improvement of tissue regeneration. The secondary endpoint was detecting any 
adverse effects. Animal specimens were irradiated through the higher power and fluence 
therapy of 810 nm, 1 W, and 60 J/cm2, in a continuous wave (CW) for 60 s on a spot-size 
area of 1 cm2 (1 W/cm2; 60 J). The laser therapy was chosen according to our previous 
works on the FT-HP characterization of isolated mammalian mitochondria [17] and or-
ganisms [28–33] (Figure 1). 

2. Materials and Methods 
2.1. Animal Model: Branchiostoma lanceolatum 

Adult Branchiostoma lanceolatum specimens were collected at Argelès-sur-Mer 
(France) [34] in April, before the beginning of the spawning season, and maintained in a 
seawater facility under standard conditions [22]. Experiments started in November of the 
same year, after around seven months of acclimatization to captivity. 

  

Figure 1. Phylogenetic position of Cephalochordates (amphioxus) among the Metazoa. Taxa written
in white contain species that are affected by exposition to photobiomodulation with 810 nm, 1 W,
and 60 J/cm2, in continuous-wave for 60 s on a spot-size area of 1 cm2 (1 W/cm2; 60 J). Paramecium
primaurelia (Protozoa) [28]; Dictyostelium discoideum (Protozoa) [29]; Dendrobaena veneta (Annelida) [30];
Paracentrotus lividus (Echinodermata) [31]; Mus musculus (Gnathostomata, Mammalia) [32]; Homo
sapiens (Gnathostomata, Mammalia) [33]. Created with BioRender.com.

Therefore, the predictor variable of our research was both the employment of a
novel hand-piece with a flat-top (FT-HP) beam profile to deliver the PBM therapy on
the animal model amphioxus and the regenerative ability of B. lanceolatum. The pri-
mary endpoint was the improvement of tissue regeneration. The secondary endpoint
was detecting any adverse effects. Animal specimens were irradiated through the higher
power and fluence therapy of 810 nm, 1 W, and 60 J/cm2, in a continuous wave (CW)
for 60 s on a spot-size area of 1 cm2 (1 W/cm2; 60 J). The laser therapy was chosen ac-
cording to our previous works on the FT-HP characterization of isolated mammalian
mitochondria [17] and organisms [28–33] (Figure 1).

2. Materials and Methods
2.1. Animal Model: Branchiostoma lanceolatum

Adult Branchiostoma lanceolatum specimens were collected at Argelès-sur-Mer (France) [34]
in April, before the beginning of the spawning season, and maintained in a seawater facility
under standard conditions [22]. Experiments started in November of the same year, after
around seven months of acclimatization to captivity.
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2.2. Device for Irradiation of Photobiomodulation

To improve the knowledge of PBM therapy and its consistency, an 810 nm diode laser
(GaAlAs) device (Garda Laser, 7024 Negrar, Verona, Italy) was used. Such a device was
equipped with our novel hand-piece prototype, the FT-HP, which can irradiate through a
flat-top beam profile [17].

According to our recent study on the characterization of FT-HP on mitochondria
isolated from mammals [17], the PBM therapy was administered at the power of 1 W in
CW for an exposure time of 60 s and on a spot size of 1 cm2, which allowed for generating a
power density of 1 W/cm2 and a fluence of 60 J/cm2 (energy administered = 60 J) (Figure 2).
The accuracy of the laser parameter irradiated was secured by the Pronto-250 power meter
(Gentec Electro-Optics, Inc. G2E Quebec City, QC, Canada). To avoid beam reflection, the
Petri dishes with the animal sample were posed on an absorbing-material mat.
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Figure 2. Experimental setup. Top left: anatomical description of amphioxus. Excision, irradiation of
the specimens, and 810-nm diode-laser parameters were used. Created with BioRender.com.

Adverse events due to a possible undesirable thermal effect were avoided by monitor-
ing the irradiation with a thermal camera FLIR ONE Pro-iOS (FLIR Systems, Inc. designs,
Portland, OR, USA) (dynamic range: −20 ◦C/+400 ◦C; resolution 0.1 ◦C).

2.3. Experimental Setup

Branchiostoma lanceolatum specimens were accustomed to growing in Petri dishes
(100 mm × 20 mm) filled with sterile, filtered seawater and kept at the temperature of
19 ◦C. During the process of adaptation and for the whole experiment, the animals were
fed once every two days with Tysocrisis sp., while the water was changed daily. In total,
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36 specimens of B. lanceolatum of the same size (total body length = 4 ± 0.2 cm) were
selected for the experimental procedure. The experimental design is briefly described
in Figure 2. Animals were anesthetized with MS222 (250 mg/mL in seawater), and the
caudalmost 9 ± 1 myotomes were excised using a sterile lancet [25]. The cut result was
from the posterior to the anus.

Animals were randomly split into three experimental groups, which received different
treatments. Control group: the beam area was bounded with the 635-nm red-light pointer
(negligible power, <0.5 mW), and the laser device was set to irradiate 810 nm, 0 W for 60 s,
spot-size 1 cm2, 0 W/cm2, 0 J/cm2, and 0 J. Group laser-1: the beam area was bounded
with the 635-nm red-light pointer (negligible power, <0.5 mW), and the laser device was
set to irradiate 810 nm, 1 W in CW for 60 s, spot-size 1 cm2, 1 W/cm2, 60 J/cm2, and 60 J;
irradiation was performed every day for two weeks. Group laser-2: the beam area was
bounded with the 635-nm red-light pointer (negligible power, <0.5 mW), and the laser
device was set to irradiate 810 nm, 1 W in CW for 60 s, spot-size 1 cm2, 1 W/cm2, 60 J/cm2,
and 60 J; irradiation was performed on alternate days for four weeks. In all groups, the
angle of incidence of the laser beam was orthogonal to the surface on which the animals
were lying.

Despite the HP-FT being able to keep the power constant from contact to many
centimetres [17], a spacer of 2 cm was employed (Figure 2) to maintain the irradiation
distance constant and to keep animals inside the irradiated-spot area. To avoid bias, the
splitting of the groups, irradiation, and specimen analysis were performed by different
operators, and the Petri dishes were maintained in a blinded manner. The animals were
monitored every day, and the specimens were analyzed as described below.

2.4. Gross Morphology and Histology

The posterior end of the amputated animals was monitored daily with a Leica MZ
APO stereo microscope (Leica, Wetzlar, Germany) equipped with a Moticam 10+ camera
(Seneco S.r.l., Milan, Italy). Representative specimens were selected for histological analysis
at different time points. Briefly, animals were euthanized by an MS222 overdose, fixed with
10% neutral buffered formalin at 4 ◦C for 24 h, dehydrated, and embedded in paraplast
(P3558, Sigma-Aldrich Corporation, Saint Louis, MO, USA). Then, 5 µm-thick longitudinal
sections were produced using a Leica RM2125 RTS microtome (Leica, Wetzlar, Germany)
and stained with Masson’s trichrome stain (04-010802, Bio-Optica, Peschiera Borromeo,
Italy). Slides were analyzed and photographed using a Leica DMRB microscope (Leica,
Wetzlar, Germany) equipped with a Moticam 3+ camera (Seneco S.r.l., Milan, Italy).

3. Results
3.1. Morphological Analysis

Morphological analysis (Figure 3) showed the natural ability of amphioxus to regener-
ate the amputated posterior part of its body. Importantly, all samples were able to produce a
new tail anlage by week 8, and abnormal morphology was not observed. However, a faster
regeneration was observed in Group laser-1, subjected to daily irradiation (Figure 3A–H′).
Indeed, an organized blastema-like structure was observed in these samples several days
earlier than in both the controls and the samples irradiated on alternate days (Group laser-2).
Additionally, longer and better-organized tails appeared in animals from Group laser-1
compared to those from Group laser-2 and the control group. Of note, the regenerative
process in animals from Group laser-2 follows a temporal progression comparable to that
observed in the control animals.
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Figure 3. Gross morphology of the regenerating tail over the course of 10 weeks. (A–H,A′–H′)
show two representative specimens from Group laser-1. (A′′–H′′,A′′′–H′′′) show two representative
specimens from the control group. (A′′′′–H′′′′) show a representative specimen from Group laser-2.
The scale bar in (A) is 0.5 mm and is valid for all panels.

3.2. Histological Analysis

Histological analyses performed 24 days post-amputation (dpa) revealed a similar
picture in all specimens assayed (Figure 4A–C). The wound was sealed with a simple epithe-
lium. At the posterior end of the nerve cord, neural cells are reorganized to form a cavity
(terminal ampulla). The terminal part of the notochord lost its typical stack-of-coin structure
and was constituted by loosely organized mesenchymal cells. The notochordal collagenous
sheath was interrupted at the posterior end, so the mesenchymal cells of the notochord were
in contact with the mesenchymal cells of the blastema (asterisks in Figure 4). The muscle
fibers of the posterior-most myotomes also appeared unorganized (arrows in Figure 4).
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Similar analyses conducted at a later time point (63 days post-amputation) highlighted con-
siderable differences between the treatment groups (Figure 4A′–C′). In the control group,
the cells of the terminal myotomes and notochord (arrowhead in Figure 4B′) still appeared
poorly organized, which was similar to what was observed at 24 days post-amputation.
Conversely, both laser-irradiated groups had terminal myotomes with well-formed fibers
and stack-of-coin cells up to the posterior end of the notochord (Figure 4A′,C′). Overall, the
histological organization of both groups is comparable to that of the normal unamputated
tail. The main difference between treatment groups appeared to be the amount of new
tissue produced, with the specimens from Group laser-1 having a significantly longer newly
formed tail (Figure 4A′,C′).
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Figure 4. Histology of the regenerating tail 24 and 63 days post-amputation (dpa) of representative
specimens from Group laser-1 (A,A′), control (B,B′), and Group laser-2 (C,C′). (D,E): Scheme of the
regenerative process as seen in Group laser-1. ta, terminal ampulla; asterisks indicate mesenchymal
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3.3. Thermal Monitoring

No substantial thermal increase (T increment < 2 ◦C) was detected during the 60-s
irradiation by monitoring with the thermal camera FLIR ONE Pro-iOS.

4. Discussion

Our results showed the regenerative ability of amphioxus, which followed the spatial
and temporal organizations described by Somorjai and colleagues [25]. This supports
the consistency of our experimental setup and the choice of the samples, which meet the
experimental requirement for laser irradiation. Complying with our primary variable, the
laser therapy of 810 nm, 1 W, 60 s, and 60 J/cm2 in CW mode irradiated through a novel
flat-top beam profiled hand-piece improved the natural wound-healing and regeneration
process of Branchiostoma lanceolatum. Indeed, regenerated structures in laser-irradiated
animals presented better tissue organization compared to the control group. The effect
was particularly evident for the notochord. Additionally, the posology of therapy ad-
ministration significantly affected the tail-regeneration process. Indeed, if both daily and
every-other-day irradiation supported better histological organization, the continuous
frequency of administration significantly sped up the process. A similar outcome was
observed in Dendrobaena veneta (Annelida), where the daily irradiation of the same 810 nm
PBM therapy allowed a more equilibrated employment of cell energy, by mitigating the
effect on inflammation and tissue degeneration and likely affecting the energy metabolism
of the cells [30].

Somorjai and collaborators [25] suggested that local progenitors resembling the stem
cells involved in vertebrate tail regeneration are activated during amphioxus tail regenera-
tion, and, like those, their ability to regenerate drastically reduces with aging. Actually, in
vertebrates, it is well established that the proliferative ability and plasticity of stem cells
decline with aging. Stem cells isolated from aged individuals, indeed, show a weaker
expansion potential, rendering their autologous transplantation a challenge [35]. How-
ever, as recently reviewed by Amaroli and collaborators [36], photons can modulate the
agenda of vertebrate stem cells through the improvement of energetic metabolism and anti-
inflammatory and osteogenic capacity. On the other hand, PBM not only improves stem cell
viability and proliferation but, in accordance with precise parameters, also prompts these
multipotent cells towards a predefined lineage commitment and secretome. In particular,
the authors pointed out that 810-nm therapy, the same that we irradiated on amphioxus,
was able to improve cell respiration and metabolic energy production [6] as well as the
osteogenic agenda of murine mesenchymal stromal cells [32,37].

Somorjai and collaborators [25] found that β-catenin is specifically involved in the
nascent notochord in regenerating amphioxus, suggesting an implication of the canonical
Wnt pathway during tail regeneration. Expression of the BMP signaling in undifferentiated
cells of the early bud-stage tail blastema was further described. In addition, phosphohistone
H3-positive nuclei, indicative of cell proliferation, were found to be differentially located
in the blastema of young amphioxus compared to that of older individuals [38]. Of
note, Agas and collaborators [39] recently demonstrated that PBM modulates the cellular
agenda of undifferentiated murine osteoblast-precursors through activation of both Wnt
and SMAD 2/3-β-catenin pathways. They suggested that PBM, after a primary target
interaction with the cytochromes of the mitochondrial respiratory chain, can modulate
cellular cascades such as Wnt, TGF, and BMP, which enhance cell differentiation and
proliferation. Similarly, murine stem cells were affected to increase the synthesis of TGF-β1,
down-regulate pro-inflammatory cytokines [interleukin (IL)-6, and IL-17], and up-regulate
anti-inflammatory ones (IL-1rα and IL-10) [32,37]. An increment of the osteogenic runt-
box-related transcription factor (Runx2) and osterix production was also observed. The
process was supported through cytoskeleton reorganization toward the upregulation of
key proteins involved in actin nucleation, such as neuronal Wiskott–Aldrich syndrome
protein (N-WASP), actin-related protein (Arp2/3) (specifically the p34/ArpC2 subunit),
and cortactin [32].
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Additionally, Martins and co-workers showed that PBM drives massive epigenetic
histone H3 modifications, stem cell mobilization, and accelerated epithelial healing [40].
Therefore, the faster and improved regeneration process that we observed in amphioxus
could be the consequence of the increased metabolic energy and proliferative and dif-
ferentiative cellular-pathways activation. This seem mimic cell-rejuvenating-like process
induced by laser light and described in stem cells from aged patients [36].

5. Conclusions

The prompt and predictable responses of amphioxus to PBM and the absence of ad-
verse effects support our primary and secondary variables. Indeed, the consistency of
the regeneration process observed after the PBM-therapy irradiation corresponds with
our previous data on both cellular and organismal responses to the same laser parame-
ters [9,30–33]. Particularly, the coherence between the regulative and restorative effects
observed in amphioxus and those of murine models [32] and humans [33] endorses the
possible employment of amphioxus as an ethical, preclinical screening model for PBM
therapies. From an evolutionary point of view, the 810 nm, 1 W, 60 s, and 60 J/cm2 in
CW-mode PBM therapy can positively affect the cell or tissues homeostasis in a wide range
of eukaryotes, such as Protozoa [29], Annelids [30], Echinoderms [31], Vertebrates [32], and
Cephalochordates (Figure 1). Basically, PBM through near-infrared light exploits the ability
of certain molecules of being both photoacceptive and capable of regulating conserved
cellular pathways. Therefore, regeneration, as well as other restorative effects of PBM,
appears to be a byproduct, which was conserved in evolution.
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