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Abstract: Photopolymer resins used in stereolithographic 3D printing are limited to penetration
depths of less than 1 mm. Our approach explores the use of near-infrared (NIR) to visible upcon-
version (UC) emissions from lanthanide-based phosphors to initiate photopolymer crosslinking at
a much higher depth. This concept relies on the use of invisibility windows and non-linear optical
effects to achieve selective crosslinking in photopolymers. SLA resin formulation capable of absorb-
ing light in the visible region (420–550 nm) was developed, in order to take advantage of efficient
green-UC of Er3+/Yb3+ doped phosphor. NIR-green light UC shows versatility in enhancing curing
depths in laser patterning. For instance, a structure with a curing depth of 11 ± 0.2 mm, cured width
of 496± 5 µm and aspect ratios of over 22.2:1 in a single pass via NIR-green light UC. The penetration
depth of the reported formulation approached 39 mm. Therefore, this technique would allow curing
depths of up to 4 cm. Moreover, it was also demonstrated that this technique can initiate cross-linking
directly at the focal point. This shows the potential of NIR-assisted UC as a low-cost method for
direct laser writing in volume and 3D printing.

Keywords: upconversion; laser patterning; photopolymerization; stereolithography; 3D printing

1. Introduction

Unlike subtractive manufacturing processes, additive manufacturing (AM), also
known as three-dimensional (3D) printing, can directly produce complex 3D objects with
near-complete design freedom and shows promise in markets that have high demand for
customization, flexibility, design complexity and low transportation costs [1]. 3D printing
techniques based on photopolymerization such as stereolithography (SLA), digital light
processing (DLP) and two-photon polymerization (2PP) exhibit high resolution compared
to other 3D printing techniques, particularly 2PP, which is capable of fabricating structures
with sub 100 nm features [2]. In SLA/DLP techniques, the curing depths are limited to
hundreds of µm because of the low penetration depths of ultraviolet (UV) and blue light
due to the presence of UV/blue light absorbing photoinitators. It was demonstrated by
2PP, which utilizes two-photon absorption (TPA), where a molecule absorbs two photons at
the same time by using a virtual state, that the use of a long wavelength excitation source
(∼800 nm) allows for deeper penetration into the resin than UV light [3,4]. However, 2PP
machines are expensive due to the high-intensity femtosecond lasers, which are required
since the absorption cross-section of initiators for the two-photon process is very small.
Moreover, the time-consuming spot-by-spot printing process and small working distances
(<380 µm) of the focusing optics limit the overall size of fabricated objects, which makes
2PP more suitable for fabrication of nano/microstructures.

Upconversion (UC) involves the sequential absorption of low-energy photons (e.g.,
NIR) before the subsequent emission of a relatively higher energy photon (e.g., UV/visible).
Lanthanide-based UC phosphors have real energy levels, so the probability of transition
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for a two-photon process can be approximately one million times higher than systems
that use virtual energy levels (TPA, second-harmonic generation, etc.), hence the power
of the excitation laser can be much smaller and inexpensive diode lasers can be used [5].
It was recently demonstrated that NIR to UV/blue UC based on thulium (Tm3+) and
ytterbium (Yb3+) co-doped sodium yttrium fluoride (NaYF4) can be used for ultra-deep
photopolymerization, reaching curing depths of more than 13 cm [6]. Tm3+ doped crystals
were also demonstrated to show potential in 3D printing applications [7,8]. In UC, the
emission intensity is proportional to the nth power of the excitation intensity, with n
representing the number of excitation photons required per emitted photon [9]. In the
aforementioned Tm3+/Yb3+ doped systems used to enhance photopolymerizations, the
1G4→ 3H6 (475 nm) transition is a three-photon process (n = 3), whilst 1D2→ 3H6 (360 nm)
and 1D2→ 3F4 (450 nm) transitions require four-photon processes (n = 4) [10,11]. Moreover,
traditional UV or blue light absorbing photoinitiators used in the previous similar studies
are not biocompatible, due to toxicity [12].

Erbium (Er3+)/Yb3+ co-doped NaYF4 is one of the most efficient UC materials [13–15].
The green emissions from 2H11/2→ 4I15/2 (525 nm) and 4S3/2→ 4I15/2 (547 nm) transitions
in Er3+/Yb3+ co-doped systems, as shown in Figure 1a, typically involve two-photon UC
(n = 2) [5,16,17]. This article is an extended version of a brief conference abstract published
in reference [18]. Herein, we utilize efficient NIR (980 nm) to green light UC (Figure 2a,b)
of NaYF4:Yb3+,Er3+ phosphor for laser patterning of structures with high curing depths, as
well as demonstrating the possibility of photocuring directly in volume similar to 2PP. To
the best of our knowledge, this is the first demonstration of UC-assisted laser patterning of
photopolymers achieved with the green Er3+ UC emissions, instead of the systems based
on UV and/or blue Tm3+ UC emissions used in the previous studies. The enabling factor
for using the green UC, is the synergistic addition of Eosin Y, a visible-light absorbing dye
(420–550 nm) and triethanolamine (TEA), as a co-initiator, that bridges the gap towards
photopolymerization, as illustrated in Figure 1b [19,20]. Moreover, Eosin Y is a Food and
Drug Administration (FDA)-approved photoinitiator, and can be activated with a green
light, circumventing the harmful effects from traditionally used UV light, such as DNA
damage, accelerated aging of tissues and cancer [20]. This expands the potential of UC-
assisted photopolymerization in fabrication of biocompatible objects and devices in situ.
The versatility of Er3+ based formulation was demonstrated in laser patterning of structures
with high aspect ratios, as well as ability to only print at the focal point of the laser.
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NaYF4:(20%)Yb3+, (3%)Er3+ phosphor at different 980 nm laser excitation powers densities.

2. Materials and Methods

The NaYF4: (20%)Yb3+, (3%)Er3+ phosphor, Eosin Y and TEA were obtained from
Sigma-Aldrich (St. Louis, MO, USA), and Clear resin (FLGPCL04) was obtained from
Formlabs (Somerville, MA, USA). UV/Vis spectra were recorded in a Perkin Elmer Lambda
25 spectrometer. The information on functional groups in resin and laser patterned samples
was analyzed in the Nicolet Summit FTIR with a built-in mid- and far-IR attenuated total
reflection (ATR) diamond (iD7, Thermo Scientific, Waltham, MA, USA). The double bond
conversion was calculated using a method described in literature [21]. The refractive index
of Formlabs Clear resin was obtained in an Abbe refractometer (2WAJ, Newtry, Shenzhen,
China). Laser patterning was performed using a 980 nm laser diode (OFL371, OdicForce
Lasers, Surbiton, UK) and a two-axis stage with a stepper motor controller (A-MCB2,
Zaber Technologies, Vancouver, BC, Canada). A calibrated spectrofluorometer (FLS920,
Edinburgh Instruments, Livingston, UK) was used for spectral measurements, equipped
with a 102 mm inner diameter integrating sphere (HORIBA Jobin-Yvon, Edison, NJ, USA)
and a 980 nm laser diode (LSR980NL-3W, Lasever Inc., Ningbo, China) used for excitation.
As shown in Equation (1) [14], the external photoluminescence quantum yield (PLQY) was
determined by dividing the number of emitted photons (Nem) by the number of absorbed
photons (Nabs):

PLQY =
#photons emitted

#photons absorbed
=

Nem(λex)

Nabs(λex)
(1)

Further details for PLQY measurements can be found in reference [10].

3. Results and Discussion

As Figure 2 shows, bulk NaYF4: (20%)Yb3+, (3%)Er3+ powder exhibits prominent
green (540 nm) and red (660 nm) emissions, as well as small emissions in the blue (410 nm)
and UV (380 nm) regions, upon excitation with a 980 nm laser. As expected, the emission
intensity increases with a rising excitation power density (Figure 2b).

Figure 3a shows that at power densities above 4 W cm−2 the emission intensity of
red (600–700 nm), green (500–600 nm) and UV/blue (350–425 nm) emissions exhibit a
linear relationship with an increase in power density. At laser excitation power density of
17 W cm−2 PLQY reaches values of 2.3% for red (600–700 nm), 1.4% for green (500–600 nm)
and 0.1% for UV/blue (350–425 nm) emissions, respectively. PLQY reaches saturation and
starts to decrease slightly when the excitation power density exceeds 25 W cm−2 as depicted
in Figure 3c. It was reported for similar micrometer-sized NaYF4:Yb3+, Er3+ phosphors that
PLQY exhibits saturation in high power density regime [15,22]. For instance, Kaiser et al.
reported that PLQY (integrated over all emission bands) reaches a maximum value of 10.5%
at a power density of 30 W cm−2, after which saturation was observed [22]. Moreover, it
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was also reported that at excitation power densities exceeding 10 W cm−2, thermal effects
become influential in bulk UC phosphors [23].
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Figure 3. The following data was obtained for NaYF4:(20%)Yb3+, (3%)Er3+ phosphor at different
980 nm laser excitation power densities: (a) integrated emission; (b) absorption; (c) PLQY.

The refractive index of Formlabs Clear resin was measured to be 1.479, which matches
the refractive index of NaYF4:(20%)Yb3+, (3%)Er3+ phosphor (np = 1.48) [24]. As a result,
this SLA resin was chosen for this study to minimize scattering effects. In order to utilize
the emission profile of NaYF4:(20%)Yb3+, (3%)Er3+ for photopolymerization of SLA resin
(Formlabs Clear), a suitable photoinitator must be employed. Most of the commercially
available photoinitiators are Norrish Type I initiators, which cleave into free-radical frag-
ments upon light absorption [25–27]. Commonly used benzil ketal photoinitiators (Irgacure
184, Irgacure 369, Irgacure 651 and Irgacure 1173) exhibit fairly low energy n→ π* tran-
sitions, absorbing light in the UVB and UVA region (up to 350 nm) [26]. In phosphine
oxide-based photoinitiators (Irgacure 819, TPO, TPO-L and LAP), the phosphorous atom
lowers the energy level of the π* state. As a result, the peak of n→ π* transition is shifted
towards 400 nm [25]. Germanium-based photoinitiators such as Ivocerin exhibit a signif-
icant redshift of n→ π* transition, showing a strong absorption in the blue light region
(λmax = 408 nm) [28,29]. Another example of metallocene initiators include titanocenes,
such as fluorinated diaryl titanocene (Irgacure 784) and bis(pentafluorophenyl)titanocene,
which exhibits λmax at 465 nm. Formlabs Clear resin already contains a proprietary Type
I initiator, which absorbs light up to 420 nm and matches the 410 nm emission peak of
NaYF4: (20%)Yb3+, (3%)Er3+ as illustrated in Figure 4a. However, Type I initiators are
not suited for excitation with the green emissions (500–575 nm) of NaYF4: (20%)Yb3+,
(3%)Er3+ phosphor.
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Type II photoinitiating systems usually consist of an uncleavable photosensitizer
(CQ, benzophenones, thioxanthones, etc.) and a co-initiator (usually tertiary amines) [26].



Photonics 2022, 9, 498 5 of 8

Upon absorption of the light of an appropriate wavelength, photosensitizers form excited
triplet state and undergo hydrogen abstraction or electron transfer in the presence of a co-
initiator [25]. Eosin Y is a photosensitizer, which exhibits maximum absorbance at 530 nm
and closely matches the green emissions of NaYF4: (20%)Yb3+, (3%)Er3+ as shown in
Figure 4a. When used alongside a co-initiator (synergist), such as TEA, it can be effectively
used as a type II photoinitiator in photopolymerization reactions (Figure 1b).

Figure 4b depicts the comparison of Formlabs Clear resin with different NaYF4:
(20%)Yb3+, (3%)Er3+ concentrations with respect to transmission at 980 nm. In order to
ensure sufficient transmission of excitation light, the phosphor concentration of 5 mg mL−1

was chosen, which shows transmittance of 72% for a 10 mm light path at 980 nm (molar
extinction coefficient = 5.1 M−1 cm−1). At this concentration, the penetration depth (37%
I/I0) was measured to be 39 mm as shown in Figure 4c. Figure 5 illustrates that the for-
mulation containing Eosin Y effectively absorbs the upconverted green emissions, with
only red emissions visible. Initial observations reveal that the stability of the photosensitive
resin is similar to commercial formulations, and there is no accelerated degrading. FTIR
spectra of samples before and after laser patterning were collected in order to establish
the double bond conversion (DBC) achievable via UC-assisted cross-linking, as shown in
Figure 6. This was achieved by observing aliphatic C=C bond (1637 cm−1) conversion with
respect to the carbonyl C=O peak (1697 cm−1) as the internal standard. The laser patterning
of Formlabs Clear resin with the green Er3+ emissions, resulted in the DBC of 49%. This
compares well with the previously reported DBC of around 40% for blank Formlabs Clear
resin after 60 s of irradiation with UV light [30].
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This formulation was used for laser patterning of Formlabs Clear resin with a 980 nm
laser diode. At the laser power of 200 mW and laser scanning speed of 0.02 mm s−1, cross-
linking all the way up to the surface of the resin was achieved in a single pass, resulting in
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curing depth of 11 ± 0.2 mm, cured width of 496 ± 5 µm and aspect ratios of over 22.2:1 as
shown in Figure 7. Since the penetration depth of this formulation is 39 mm, technically
curing depths of up to 4 cm can be achieved.
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Moreover, NIR-green light UC allows for selective cross-linking at the focal point of
the laser, with the cured width of 437 ± 9 µm as shown in Figure 8. This was achieved
when the laser power was set to 240 mW, laser scanning speed to 0.2 mm s−1 and number
of passes = 4. This demonstrates that this technique shows potential in high-yield and
inexpensive “direct laser writing” (DLW) 3D printing, by using a low-cost 980 nm laser
diode (<£30), in comparison to the high-intensity femtosecond lasers used in 2PP.
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4. Conclusions

A new formulation based on Eosin Y and NIR-green light UC has enabled the pattern-
ing of structures with curing depths of over 10 mm, compared to less than 1 mm achieved in
traditional UV/blue light-based curing and 3D printing techniques. This method allows the
transformation of photopolymerization from thin 2D layers to the fabrication of thick 3D
layers with high aspect ratios in just one passing. This technique has shown the capability
of producing samples with 22.2:1 aspect ratio. Moreover, this technique can also be applied
as a low-cost method for DLW 3D printing, opening the door for new approaches, such as
multi-material SLA.
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