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Abstract: Fractional vortex beams (FVBs) possess unique topological properties that are manifested
in the vortex distribution. However, there are still discrepancies in the value of the vortex strength
of FVBs at the far field. In this work we present a complete picture of the behavior of the phase
singularities of non-integer (commonly known as fractional) beams in the Fraunhofer diffraction
region and demonstrate a very good correspondence between experiments and simulations. As
shown in the text, the original beam waist ω0 was found to be a key factor relating to the beam
profile topology. This variable was measured in the process of calibrating the experiment. Finally, an
experimental method to obtain the non-integer topological charge is proposed. This method only
requires an analysis of the intensity, knowledge of the transition behaviors, and the beam waist.

Keywords: singular optics; optical vortices; spatial light modulators

1. Introduction

Singular beams with circularly symmetric transverse profiles—along the axis of
propagation—are characterized by an angular phase dependence of the form exp(iαθ),
where α is the integer topological charge. Light fields with non-integer α values are known
as fractional vortex beams (FVBs) and have interesting applications and properties due
to the behavior of their phase singularities. Research on FVBs includes particle trap-
ping [1], perfect FVBs [2], topologically structured darkness [3], and even a representation
of Hilbert’s hotel paradox [4].

Despite these recent advances, there are some inconsistencies in the studies on FVBs
due to their complex propagation properties. Basistiy et al. [5] presented an analytical
approach to the fractional topological charge problem, but only for the particular case of
α = 1/2. Berry has developed an analytical model for integer and non-integer topological
charges for vortex beams propagating in free space [6] and the results of his work have been
confirmed experimentally [7,8]. According to these studies, FVBs do not maintain their
strength during propagation and remain fractional only in the near field. That is, depending
on the initial topological charge they evolve from fractional to the nearest integer, since the
non-integer part generates systemically opposite unitary charge vortexes that cancel each
other out [6]. Therefore, it can be said that the vortex strength evolves from fractional to a
“topological charge (TC) staircase”.

The current works have focused their attention on the value of the total vortex strength
of FVBs at the Fraunhofer diffraction zone. However, at this point different authors have
proposed divergent interpretations. According to Jesus-Silva et al. [9], the vortex strength
increases by one only at a number slightly larger than an integer. However, more recently,
it has been found theoretically and experimentally that the total strength of FVBs at the
far field exhibits two unitary jumps only when a non-integer α is in the close vicinity of
any even-integer number [10]. The total strength of the FBVs depends not only on the
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initial charge α, but also on the incident light source; therefore, considering a Gaussian
beam instead of an ideal plane wave produces a different output. This is of the utmost
importance because in many practical applications a Gaussian beam is incident upon a
spatial light modulator (SLM) to generate an optical vortex.

Some aspects of this vortex transition have produced different opinions and views
among authors. For example, Wen et al. discovered that the “staircase” of vortex strength
vs. initial topological charge α is always an odd integer in the far field. Their results
pose a discrepancy with previous works such as [4,6,9] that obtain the “TC staircase” but
with different values. Recently, this debate led to a further study by Kotlyar et al. [11,12],
who developed an analytical model for vortex propagation, and they also supported their
discoveries with numerical simulations and experiments.

Even though many scholars agree on the staircase scenario, its values for practical
non-integer beams are highly dependent on the experimental conditions. For that reason, in
this work we intended to study the behavior of non-integer vortex transition experimentally
for different transitions and beam waists. To this end, a practical application is proposed to
determine vortex strength experimentally given certain parameters.

A complete list of all the work carried out on fractional and non-integer vortex beams
can be found in a recent review conducted by Zhang et al. [13].

2. Theoretical Insights and Numerical Results

To analyze fractional vortex beams in the Fraunhofer diffraction zone of practical
optical fields (optical beams with finite width), it is necessary to consider a monochromatic
Gaussian beam as a normally incident light source on an SLM with transmission function
exp(iαθ) in the initial transverse plane r = (r, θ). Then the initial field is expressed
as Uα(r, θ) = exp(−r2/ω2

0) exp(iαθ), where ω0 is the beam waist radius and α is the
topological charge. Under the paraxial regime, the field in the Fraunhofer diffraction zone—
aside from multiplicative phase factors—is the two-dimensional Fourier transform of the
initial field, evaluated at the frequency ρ/λz, i.e., Uα(ρ, φ) ∝ F [Uα(r, θ)] [9]. A non-integer
α in the initial field produces a step discontinuity in addition to the central singularity [6].
The propagated field is then calculated with a non-integer α, by means of an expansion of
the fractional transmission function in Fourier series. The result is the equation [6]

Uα(r, θ) =
eiπα sin(πα)

π

∞

∑
n=−∞

Un(r, θ)

α− n
, (1)

where Un(r, θ) is the initial complex field associated with a beam with an integer topo-
logical charge. The two-dimensional Fourier transform of Equation (1), together with
multiplicative phase factors, produces the far-field expression [11]

Uα(ρ, φ) =
eiπα sin(πα)√

π

ρk2ω3
0

8z2 exp(ikz) exp
(

i
kρ2

2z

)
exp(−γ)

×
∞

∑
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(−i)|n|+1
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[
I |n|−1

2
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2
(γ)

]
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where Im(·) is the modified Bessel function of the first kind of order m and γ = [kω0ρ
√

2/4z]2.
A strictly fractional α breaks the circular symmetry in the far field but, in return, an axial
symmetry appears, where all the vortex dynamics is observed. Figure 1 presents numerical
results for the particular case α = 2.15 and α = 3.63. The initial phase with a fractional
step is shown in Figure 1a.1,b.1. Assuming a collimated Gaussian beam as an incident light
source, the far-field phase and intensity are shown in Figure 1a.2,b.2 and Figure 1a.3,b.3,
respectively. The far-field phase exhibits three unit vortices (five for case α = 3.63), which
implies three local minima in the amplitude. To better visualize this distribution of unit
vortices, Figure 1a.4,b.4 shows the intensity in logarithmic scale. The distribution of the
unit vortex depends on α, ω0 and the orientation of the symmetry axis (for simplicity,
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this is chosen to be vertical). At this point, it is interesting to analyze the distribution
of unit vortices during a phase transition between two integer values of α. A complete
phase transition is considered to be the process that occurs when α goes from an integer
value n to the next one, n + 1, with fractional (non integer) values in between them. These
phase transitions involve an interesting ±1 charge vortex dynamics, in which it is possible
to distinguish two types of unit vortices. The first one—from hereon called the resident
vortex—has a charge of an equal sign to that of the nucleus charge. This resident vortex
enters (or leaves from) the center from (towards) infinity. The second one—henceforth
called the tourist vortex—has a charge of the opposite sign to that of the nucleus. This
tourist vortex comes from infinity, reaches a minimum distance from the center, and returns.
This is well documented in [10]. Therefore, the distance of the unit vortices to the optical
axis in the far field is a parameter of great interest which has not been studied yet and can
be related to the fractional topological charge α. The dimensionless value d/d0 is defined
as the normalized distance of the unit vortices from the center to their positions, where
d0 is the radius of the beam or the real beam extension. Those distances are calculated by
tracking the dark spots present in the intensity distributions. The center is obtained from
the regular integer vortices position at the beginning (or end) of the transition, whereas the
beam extension is determined by the experimental conditions (i.e., the camera aperture).
A visual example can be seen in Figure 1a.4,b.4. Figure 1c shows the distance d/d0 as a
function of the fractional topological charge α, for a fixed ω0 and λ. All transitions have
resident-type vortices, as can be seen in Figure 1c.1. The tourist vortices only appear in
intermediate transitions, as shown in Figure 1c.2. This behavior is related to the parity of
the integer topological charges at the borders of a transition [10].

Figure 1. Cont.
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Figure 1. Numerical simulations. (a) Fractional vortex beam with α = 2.15: (a.1) initial phase profile,
(a.2) far-field phase profile, (a.3) far-field intensity profile, and (a.4) far-field intensity profile in
logarithmic scale. (b) Fractional vortex beam with α = 3.63: (b.1) initial phase profile, (b.2) far-field
phase profile, (b.3) far-field intensity profile, and (b.4) far-field intensity profile in logarithmic scale.
(c) Normalized distance measured from the position of the unit vortices to the center. (c.1) Distance
for the resident vortices vr in transitions from 1→ 2 to 7→ 8. (c.2) Distance for the tourist vortices
vt, present only in transitions starting with odd n, from 1→ 2 to 7→ 8.

3. Experimental Results and Discussion

By means of the experimental setup shown in Figure 2a, the intensity patterns can
be obtained, and based on these, one can obtain the unit vortex distances. Utilizing a 2f
lens focusing system, it is possible to measure far-field intensity distributions of FVBs,
since the complex amplitude distribution in the focal plane of a lens corresponds to the
Fraunhofer diffraction pattern. A collimated Gaussian beam (HeNe, λ = 633 nm), with
reduced power by means of a neutral filter (NF), passes through a beam splitter (BS) and
reaches a reflective SLM (Holoeye Pluto II, with 1920× 1080-pixel resolution). The SLM is
programmed with one of the phase profiles (Figure 1a.1 to produce practical FVBs, and the
blazing order is filtered by means of a variable diameter aperture (AP). After the field is
reflected by a beam splitter (BS), the intensity distributions of the FVBs are detected using a
CMOS camera (EO-5012M, pixel size 2.2 µm × 2.2 µm) positioned at the focal plane of a
convex lens (f = 400 mm). Samples of the experimental intensity profiles (logarithmic scale)
for transitions [α, 1 → 2] and [α, 2 → 3] are shown in Figure 2b,c. Figure 2b.1,b.2 shows
the far-field intensity profile corresponding to α = 1.38 and α = 1.82 respectively. In the
same way, Figure 2c.1,c.2 shows the far-field intensity profile corresponding to α = 2.34
and α = 2.88, respectively. These results are in agreement with those presented in [10].

From the intensity profiles obtained experimentally, it is possible to calculate the
distances of the unit vortices in the focal plane as α changes in the initial input field. This
analysis is started by measuring the distances in the intermediate steps of each transition,
i.e., for the transition [α,3→ 4], α = 3.5; for [α,4→ 5], α = 4.5, and so on. The experimental
results are shown in Figure 3a, marked with green triangles. The distances are measured by
means of an algorithm—using MATLAB software—that calculates the position of the local
minima in the intensity profiles (logarithmic scale) and subsequently the distance with
respect to the central position in which all the vortices are located together for the integer
α. The top right of Figure 3a shows the experimental intensity profile at the focal plane
for α = 1.50 as a sample. Carrying out numerical simulations with the parameters of the
experiment, it is possible to estimate the range of values between which the experimental
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beam waist is located. Following Figure 3a, it is possible to calculate the distances for
beam waists ω0 = 0.3 (red squares), 0.6 (blue circles), and 0.9 mm (black asterisks). Consid-
ering what was obtained in the simulations and the experimental measurements (green
triangles), the beam waist value should be located between 0.6 and 0.9 mm. Figure 3b
shows the experimental beam profile at the SLM position. By measuring the full width at
half maximum (FWHM) and using the relation ω0 = FWHM/2

√
ln(2), an experimental

beam waist of 0.77± 0.01 mm can be obtained, which is in agreement with the theoretical
value using the data provided by the manufacturer. Using ω0 = 0.77 mm, and setting
intermediate α values of 0.5, the simulations provide the distances for each half-integer
transition. Figure 4a shows a comparison between the numerical (red squares) and the
experimental (green triangles) results. The difference ∆ between the distances calculated
in the simulations and those calculated based on the experimental data is represented by
the blue bars. The numerical simulations are in good agreement with the experimental
results, as can be observed in the low error obtained for the first ten phase transitions. As
an example, Figure 4b,c shows the intensity and logarithmic scale profiles for α = 3.50,
respectively (ω0 = 0.77 mm). Figure 4b.1 presents the intensity profile at the focal plane
and Figure 4b.2 presents its respective experimental profile. In the same way, Figure 4c.1
presents the intensity profile (logarithmic scale) at the focal plane and Figure 4c.2 presents
its respective experimental profile.

Figure 2. (a) Experimental setup: a collimated beam (HeNe, λ = 632.8 nm) hits the SLM programmed
with one of the phase profiles. The focused field is imaged by means of the CMOS camera through
a 2f system (f= 400 mm). Notation: NF, neutral filter; BS, beam splitter; AP, aperture. (b,c) Sample
intensity profiles (logarithmic scale) for transition [α, 1 → 2], (b.1) α = 1.38, and (b.2) α = 1.82.
Transition [α, 2→ 3], (c.1) α = 2.34, and (c.2) α = 2.88.

After obtaining the beam waist, the intensity profiles at the focal plane are recorded
experimentally by means of the CCD camera. Then, every distance from the center of
the beam to the resident vortex can be obtained by varying α in steps of 0.02. Figure 5a
presents a comparison between the numerical simulation results and the experimental
results considering the transitions [α, 2 → 3] and [α, 4 → 5] as examples. The distances
dSIM, calculated based on the numerical simulations, are represented by red circles for
[α, 2 → 3] and green squares for [α, 4 → 5]. The experimental results are represented by
black triangles for [α, 2 → 3] and blue asterisks for [α, 4 → 5]. This comparison shows
a very good agreement between the numerical simulations and the experimental values.
Figure 5b shows the experimental distances of the resident vortices for phase transitions
1 → 2, 2 → 3, 3 → 4, 4 → 5, and 5 → 6 with α steps of 0.02. Because the size of a vortex
beam increases with topological charge (consider that the experiment has a fixed field of
view—about 2 mm × 2 mm—therefore ω0 is constant), the first experimental distance
obtained for every transition occurs at higher fractional values. Then, as the transition
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increases, the initial measurement moves away from the origin. This can be seen in Figure 5,
where, for example, the first measurement of the resident vortex for transition [α, 2 → 3]
occurs at α = 2.10 and at α = 4.20 for transition [α, 4 → 5]. Furthermore, the transition
5→ 6 starts with α ' 5.35, resulting in a reduction of the values of α available for greater
transitions. Nevertheless, this inconvenient can be overcome by changing the value of ω0
and keeping the beam extension intact. To clarify, observing Figure 3a, it can be inferred
that the set of transition curves (e.g., Figure 1c.1) are transported farther from or nearer to
the origin according to the beam waist. Then, to obtain a higher resolution at the origin
(transitions with α > X.5) it is better to have a low value of ω0. On the contrary, to obtain a
greater measurement range, the curve has to start at lower values α < X.5, which can be
achieved by having a high value of ω0, which diminishes the resolution at the center. This
compromise has to be performed in order to have a good range of non-integer values of α.

Figure 3. Distances of resident vortices vr with fractional steps of 0.5. (a) Numerical simulations
for different waists ω0: 0.3 (red square), 0.6 (blue circle), and 0.9 mm (black asterisk). Experimental
results (green triangle) for the measured waist ω0 = 0.77 mm. Top right: focal plane intensity profile
sample (logarithmic scale) for α = 1.50. (b) Experimental Gaussian beam profile (HeNe,THORLABS
HNL100L, λ = 632.8 nm).

Figure 4. (a) Distances of resident vortices with fractional steps of 0.5; numerical simulation (red
square), and experimental measurements (green triangle) comparison. (b) Normalized focal-plane
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intensity profiles for α = 3.50, ω0 = 0.77 mm, λ = 632.8 nm. (b.1) Numerical simulation and (b.2)
experimental results. (c) Normalized focal plane intensity profiles (logarithmic scale) for α = 3.50,
ω0 = 0.77 mm, λ = 632.8 nm. (c.1) Numerical simulation and (c.2) experimental results.

Figure 5. (a) Distances of resident vortices vr (ω0 = 0.77 mm, λ = 632.8 nm), for phase transitions
2 → 3 and 4 → 5. Numerical simulations (red circles for 2 → 3 and green square for 4 → 5)
and experimental results (black triangles for 2 → 3 and blue asterisks for 4 → 5) comparison.
(b) Experimental results: distances of resident vortices for transitions 1 → 2, 2 → 3, 3 → 4, 4 → 5,
and 5→ 6 with α steps of 0.02.

The curves presented in Figure 5b show that is possible to relate—with some degree of
certainty—the distance of the resident vortex with the magnitude of the original topological
charge α. In this case, original refers to the topological charge initially set up for any
particular vortex. For example, d(α = 2.24) = 0.4 mm, whereas d(α = 2.26) = 0.35 mm.
Using these curves, it is possible to estimate the non-integer value of α when knowing only
two parameters, d and ω0. Figure 6 shows four experimental examples of two different
transitions, α, 2→ 3 and α, 4→ 5. The estimation of d, considering the known value of ω0,
is then interpolated in the corresponding curves of Figure 5. The result is the value of α
with an error of approximately less than 1% (see Table 1). Regarding the error, as can be
seen in Figure 5, the zone composed of values α < X.5 has greater error for d. On the other
hand, the zone α > X.5 has a small error. This is reflected in the values obtained for these
examples (see Table 1). It is to be noted that, as shown in Figure 6a.1,b.1, the resident vortex
is diffuse at values of α < X.5. This is the reason for the greater error in the estimation of d.
Even though the relative error for the estimation of d can be high as 7% the estimation of α
can still have a small error. In conclusion, it is possible to estimate α merely by extracting
the value of d from the intensity profile of the vortex under known beam waist conditions.
The TC estimation proposed here does not have a superhigh resolution, compared to the
work of Liu et al. [14], but it is possible to detect TC at a fractional level without the need
for a trained neural network. Even though the method proposed here is not direct it has
potential due to its simplicity.
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Figure 6. Experimental results: far-field intensity profiles (logarithmic scale). (a) Phase transition
α, 2 → 3. (a.1) α = 2.18. (a.2) α = 2.86. (b) Phase transition α, 4 → 5. (b.1) α = 4.38. (b.2) α = 4.74.
Top right: zoomed local minimum for resident vortex position.

Table 1. Estimated topological charge |α| via interpolation from resident vortex experimental distance
curves, dexp(µm). Data correspond to Figure 6 samples: α = 2.18, α = 2.86, α = 4.38, and α = 4.74.

Input α d (µm) dexp (µm) αexp Err ∆α

2.18 462.3 462.0 ± 35.2 2.18 ± 0.02 <1%
2.86 88.0 83.6 ± 4.4 2.87 ± 0.01 <0.7%
4.38 352.3 358.6 ± 13.2 4.40 ± 0.04 <1%
4.74 176.1 176.0 ± 2.2 4.74 ± 0.02 <0.4%

4. Conclusions

The behavior of non-integer practical vortex beams in the Fraunhofer diffraction zone
was studied thoroughly, according to the presented theoretical model and its experimental
verification. A complete picture of each transition from topological charges 1 to 6, compar-
ing the numerical and the experimental data, is presented here. The measurement of ω0
turned out to be a key part of this work, allowing the self-calibration of the experiment
and matching it with the simulations with very low error. As mentioned in the text, when
the resident enters the beam extension, its position is difficult to pinpoint, hindering the
measurement of d, and therefore producing greater error. Moreover, it generates some
minor discrepancies at approximately the middle point of the curve. This is also reflected
in the measurement of ω0, where larger transitions have greater errors. It is to be noted
that even though the transition curves for the resident vortex do not cross, the greater the
transition, the shorter the interval. This inconvenience can be surpassed by changing the
value of ω0 as the transition integer becomes larger. Finally, in this work we demonstrate a
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method of making a precise determination of the vortex strength of non-integer vortexes
without the need of the phase. The vortex strength was estimated here with an error of
less than 1%. This opens up new possibilities for the application of non-integer vortex
beams in free-space optical communication using each vortex as a symbol, assuming the
orthogonality of each one, as can be seen in [14].
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