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Abstract: External optical feedback (EOF) has great impacts on the properties of lasers. It influences
the stable operation of lasers. However, various applications based on lasers with EOF have been
developed. One typical example is self-mixing interferometry technology, where modulated steady-
state laser intensity is utilized for sensing and measurement. Other works show that laser dynamics
can also be used for sensing, and the laser in this case is more sensitive to EOF. This paper reviews
the sensing technology that uses the dynamics of lasers with EOF. We firstly introduce the basic
operating principles of a laser with EOF and discuss the noise properties of and intensity modification
in lasers induced by EOF. Then, sensing applications using laser dynamics are categorized and
presented, including sensing by frequency-shifted optical feedback, relaxation oscillation frequency,
and dynamics with self-mixing interferometry signals and laser optical chaos. Lastly, we present an
analysis of the transient response waveform and spectrum of a laser with EOF, showing its potential
for sensing.
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1. Introduction

External optical feedback (EOF) influences the properties and behavior of a laser [1].
Such optical feedback has been considered as a serious problem that degrades the perfor-
mance of lasers [2,3]. However, various applications based on lasers with EOF have been
developed. Typical examples are self-mixing interferometry (SMI) or optical feedback inter-
ferometry (OFI), which are emerging and promising non-contact sensing techniques using
the self-mixing effect that occur when a fraction of light is back-reflected or back-scattered
by an external target and re-enters the laser’s inside cavity [4–9]. In this case, the steady-
state intensity of the lasing light is modulated by a varying external optical feedback phase,
which is a remarkably universal phenomenon occurring in lasers regardless of type. The ba-
sic structure of a typical SMI system is depicted in Figure 1, which consists of a laser diode
(LD), an integrated photodiode (PD) in the LD package, a lens, and an external target to be
measured. This configuration reflects a minimum part-count scheme, which is useful for engi-
neering implementation. SMI-based sensing and detection have been developed for different
applications such as the measurement of displacement [10,11], distance [12–14], speed [15,16],
mechanical parameters of materials [17,18], laser parameters [19,20], angle [21,22], acoustic
field [23–25], biomedical signals [26–28], the characterization of micro-machined silicon
gyroscopes [29], and monitoring plasma accumulation in laser ablation [30,31].

For all the above applications, the laser operates in a steady state and the modulated
steady-state laser intensity is used as the sensing signals, also called SMI signals. Recently,
sensing and measurement by using laser dynamics have been reported and higher sensitiv-
ity compared with the conventional SMI has also been demonstrated [32]. The progress of
SMI technology was reviewed in several works [33–38] but few have focused on a review
of sensing by the dynamics of lasers with EOF.
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Figure 1. Basic structure of a laser with external optical feedback. 

For all the above applications, the laser operates in a steady state and the modulated 
steady-state laser intensity is used as the sensing signals, also called SMI signals. Re-
cently, sensing and measurement by using laser dynamics have been reported and higher 
sensitivity compared with the conventional SMI has also been demonstrated [32]. The 
progress of SMI technology was reviewed in several works [33–38] but few have focused 
on a review of sensing by the dynamics of lasers with EOF.  

This work aims to provide an overview of sensing by the dynamics of lasers with 
EOF. The rest of the paper is organized as follows. Section 2 reveals the basic operating 
principle of lasers with EOF and presents discussion on the noise properties and intensity 
modification in lasers induced by EOF. Section 3 presents categorized sensing applica-
tions using the dynamics of lasers with EOF, including sensing by frequency-shifted op-
tical feedback, relaxation oscillation frequency, dynamics in SMI signals and laser chaos. 
Then, a method to investigate the transient response waveform and spectrum of lasers 
with EOF is also proposed in this section, showing the potential of using them for sens-
ing. Finally, a summary is included in Section 4. 

2. Operating Principle  
In 1980, Lang and Kobayashi analyzed EOF effects on LD properties and proposed 

the standard Lang–Kobayashi (L–K) equation to describe its behavior by adding a com-
ponent representing the EOF effects to the rate equations of an LD, as follows [1]: 
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Equation (1) can be explained with Figure 2, where the facet amplitude reflectivity of 
back facet M1 and front facet M2 is denoted by r1 and r2, respectively. The external target 
has an amplitude reflectivity, r3. Some of the emission light is back-reflected by the target 
and re-injects to the laser’s internal cavity. Considering the weak to moderate optical 
feedback levels, only one reflection in the external cavity is included. Hence, in Equation 
(1), the last term accounts for the back-reflection from the target, i.e., the EOF, and the 
other terms are for the solitary laser diode without EOF. The optical feedback strength is 
evaluated by the parameter κ, which is expressed as 2

3 2 2(1 )r r rκ σ −= / , where σ ≤ 1 rep-
resents the possible loss on the back injection, i.e., mode mismatch. 
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Figure 2. Basic model for a laser diode with external optical feedback. 

Figure 1. Basic structure of a laser with external optical feedback.

This work aims to provide an overview of sensing by the dynamics of lasers with
EOF. The rest of the paper is organized as follows. Section 2 reveals the basic operating
principle of lasers with EOF and presents discussion on the noise properties and intensity
modification in lasers induced by EOF. Section 3 presents categorized sensing applications
using the dynamics of lasers with EOF, including sensing by frequency-shifted optical
feedback, relaxation oscillation frequency, dynamics in SMI signals and laser chaos. Then,
a method to investigate the transient response waveform and spectrum of lasers with EOF
is also proposed in this section, showing the potential of using them for sensing. Finally,
a summary is included in Section 4.

2. Operating Principle

In 1980, Lang and Kobayashi analyzed EOF effects on LD properties and proposed the
standard Lang–Kobayashi (L–K) equation to describe its behavior by adding a component
representing the EOF effects to the rate equations of an LD, as follows [1]:

d ˆE(t)
dt

=

{
1 + iα

2

[
G[N(t), ˆE(t)]− 1

τp

]
+ iω0

}
ˆE(t) +

κ

τin
· ˆE(t− τ). (1)

Equation (1) can be explained with Figure 2, where the facet amplitude reflectivity
of back facet M1 and front facet M2 is denoted by r1 and r2, respectively. The external
target has an amplitude reflectivity, r3. Some of the emission light is back-reflected by
the target and re-injects to the laser’s internal cavity. Considering the weak to moderate
optical feedback levels, only one reflection in the external cavity is included. Hence, in
Equation (1), the last term accounts for the back-reflection from the target, i.e., the EOF, and
the other terms are for the solitary laser diode without EOF. The optical feedback strength
is evaluated by the parameter κ, which is expressed as κ = σr3(1− r2

2)/r2, where σ ≤ 1
represents the possible loss on the back injection, i.e., mode mismatch.
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In Equation (1), ˆE(t) is the complex photoelectric field which contains slow varying
complex filed E(t) and fast optical angular frequency ω0. The variation of electric-field
amplitude is much slower than the optical angular frequency ω0. So, the fast optical
oscillation component can be separated from the slow complex electric field E(t) as below:

ˆE(t) = E(t)eiω0t. (2)
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Substituting Equation (2) into Equation (1), we can obtain:

dE(t)
dt = 1+iα

2

{
G[N(t), ˆE(t)]− 1

τp

}
E(t) + κ

τin
· e−iω0τE(t− τ).

(3)

The slow complex electric field E(t) can be written by the real values of the amplitude
E(t) and phase φ(t) as follows:

E(t) = E(t)eiφ(t). (4)

In laser theory, photon density, denoted by S(t), is usually used to describe the laser
mechanism when considering the effect of spontaneous emission and statistical Langevin
noises, which is expressed as [39]:

S(t) = |E(t)|2 = E(t)E∗(t). (5)

From Equations (4) and (5), we can obtain:

dS(t)
dt

= 2Re[E∗(t)
dE(t)

dt
], (6)

dφ(t)
dt

=
1

S(t)
Im[E∗(t)

dE(t)
dt

]. (7)

Substituting Equations (3) and (4) into Equations (6) and (7), and adding the terms
accounting for spontaneous emission and statistical Langevin noises [40,41], we obtain:

dS(t)
dt

=

{
G[N(t), ˆE(t)]− 1

τp

}
E(t) + 2

κ

τin

√
S(t)S(t− τ) · cos[ω0τ + φ(t)− φ(t− τ)] + Rsp + FS(t), (8)

dφ(t)
dt

=
1
2

α

{
G[N(t), ˆE(t)]− 1

τp

}
− κ

τin

√
S(t− τ)

S(t)
sin[ω0τ + φ(t)− φ(t− τ)] + Fφ(t). (9)

Another variable of describing lasers with optical feedback is carrier density
N(t), which is coupled with Equations (8) and (9) through the gain term of
G
[

N(t), ˆE(t)
]
= GN [N(t)− N0]

[
1− εΓE2(t)

]
= GN [N(t)− N0][1− εΓS(t)]. N(t) is ex-

pressed as follows:

dN(t)
dt

=
J

ev
− N(t)

τs
− G[N(t), ˆE(t)]E2(t) + FN(t). (10)

Equations (8)–(10) consist of the normal L-K equations, where Rsp accounts for sponta-
neous emission, FS(t), and FN(t) are Langevin noise forces, which are given by [41]:

Rsp =
γN(t)Γ

τs
, (11)

FS(t) =

√
2S(t)

∆t
RspχS, (12)

Fφ(t) =

√
2

S(t)∆t
Rspχφ, (13)

FN(t) =

√
2N(t)
τs∆t

χN −
√

2S(t)
∆t

RspχS. (14)

where χS, χφ, and χN denote Gaussian random variables with zero mean and unity stan-
dard deviation, and ∆t is the time interval over which the noise is held constant in the
numerical model. The physical meanings and typical values of the laser-related parameters
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in Equations (8)–(14) are presented in Table 1 [41,42]. Note that, although the L–K equation
is primarily for semiconductor lasers, it is also to be used for describing other types of
lasers, e.g., solid-state lasers [32,43,44].

Table 1. Physical meanings and typical values of the symbols in the L–K equations.

Symbol Physical Meaning Value

Fixed
Parameters

GN modal gain coefficient 8.1× 10−13 m3s−1

N0 carrier density at transparency 1.1× 1024 m−3

ε nonlinear gain compression coefficient 2.5× 10−23 m3

Γ confinement factor 0.3
τp photon life time 2.0× 10−12 s
τs carrier life time 2.0× 10−9 s
τin internal cavity round-trip time 8.0× 10−12 s
α linewidth enhancement factor 6.0
γ spontaneous emission factor 10−5

r1 = r2 amplitude reflectivity 0.55
σ reinjection loss 0.5
e elementary charge 1.6× 10−19 C
V volume of the active region 1.0× 10−16 m3

Controllable
Parameters

r3
amplitude reflectivity of the

external target

κ
optical feedback strength with

κ = σr3(1− r2
2)/r2

J injection current
L external cavity length

τ
light roundtrip time in the external cavity

with τ = 2L/c

The dynamic behavior of lasers with EOF is governed by the injection current (J) to
the laser and the parameters associated with the external cavity including optical feedback
strength (κ), the amplitude reflectivity of the external target surface (r3), and the light
roundtrip time in the external cavity (τ). The other parameters in the L–K equations are
related to the solitary laser itself, and can be treated as constants for a certain laser, as shown
in Table 1. With different operation parameters, i.e., J, r3, L, and τ, the laser with EOF ex-
hibits abundant high-level dynamics, e.g., period-one oscillation, quasi-periodic oscillation,
and chaos. Figure 3 shows a typical example of different dynamics by numerically solving
the L-K equations, where (a) is steady state, (b) is period-one oscillation, (c) is quasiperiodic
oscillation, and (d) is chaos. Note that, since the laser power P is with P ∝ S(t) = |E(t)|2,
we take S(t) = |E(t)|2 as the intensity as performed in the literature [36,40,45]. Since its
first discovery, the dynamics of the laser with EOF have been intensively investigated and
its potential sensing applications have been developed.

In practical applications, the noise characteristics of lasers is a significant parameter.
The noise properties are also influenced by EOF. Relative intensity noise (RIN) is often used
to characterize the laser intensity noise [40,46–48], which is expressed as [41]:

RIN =
[S(t)− S(t)]

2

S(t)
2 , (15)

where S(t) is the mean photon density. RINs under different operation conditons can be
obtained after numerially solving the L–K equations. In the simualtions, ∆t was taken with
10 ps as in [40,41] and thus the spectral range is 0–50 GHz. Figure 4 shows the typical
results of RINs with different external reflectivity in which we can find the RIN is as low
as −158 dB/Hz and is almost constant when the amplitude reflectivity r3 is less than
4× 10−3. With the increase in r3, RIN increases due to the relaxation oscillation becoming
undamped, but it is still less than −140 dB/Hz and can satisfy the requirements for most
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laser applications. Note that Jth is the threshold injection current of the laser with the
expression Jth =

(
N0 + 1/GNτp)/τs [49].
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The influence of EOF on the laser output power was then invesigated. We solved the
stationary solutions to Equations (8)–(10) by setting dS(t)/d(t) = 0, dφ(t)/d(t) = ωs −ω0
and dN(t)/d(t) = 0. Then, we obtained:

NF = N0 +
1

GNτp
− 2κ cos(ωFτ)

τinGN
, (16)

SF =
(J/eV − NF/τs)

GN(NF − N0)
, (17)
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whereωF is the laser angular frequency with EOF, NF and SF are respectively the carrier
density and photon density with EOF in the steady state. Inserting Equation (16) into
Equation (17), with the condition of weak feedback κ < 0.01 [50], we can obtain:

SF =
τp

τs
∗ [ Jτs

eV
− (N0 + 1

1
GNτP

) +
2κ cos(ωFτ)

τinGN
] ∗ [1 +

2κτp cos(ωFτ)

τin
]. (18)

With the similar treatment and setting κ = 0, we obtain the laser output intensity in
the steady state without EOF as below:

SNF =
τp

τs
[
Jτs

eV
− (N0 + 1

1
GNτP

)]. (19)

Thus, we can obtain the relative modification of laser output intensity induced by EOF
with κ = σr3(1− r2

2)/r2 as follows:

SF − SNF
SNF

=
2σr3(1− r2

2)τp cos(ωFτ)

r2τin
. (20)

It can be found that the relative modification of the intensity is propotioanl to the
amplitude reflectivity of the external target. Adapting typical values in Table 1, we obtained
the simulation results of intensity modification with EOF, as shown in Figure 5 when
constructive interference conditions occur, i.e., cos(ωFτ) = 1 [51]. It can be found the
modulation ratio of the EOF to laser steady-state intensity is at the scale of 10−3.
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3. Sensing by the Dynamics of Lasers with EOF
3.1. Sensing by Frequency-Shifted Optical Feedback

In 1999, Lacot et al. proposed an imaging method named laser optical feedback
imaging (LOFI), where the optical frequency shift is resonant with the relaxation oscillation
(RO) frequency of a solid-state laser [43]. In this case, the modulation of the laser intensity
is highly sensitive to the reflectivity of the external target surface. Frequency-shifted
feedback is usually applied to solid-state lasers because the RO frequency is around several
hundred kHz, which can be easily achieved by using acousto-optical modulation, while for
semiconductor lasers, it is hard to physically achieve due to the GHz-scale RO frequency.
Figure 6 shows the basic structure of a frequency-shifted optical feedback laser system.
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When the frequency shift Ω is resonant with the RO frequency, the maximum relative
modulation of the laser intensity is expressed as follows [43]:

∆P
P

= 2
γc

ηγ1

√
Re f f , (21)

where γc is the laser cavity decay rate, γ1 is the decay rate of the population inversion, η is
the normalized pumping rate. Re f f is the effective reflectivity of the target, and γc/γ1 is
typically on the order of 106 for the solid-state laser. Therefore, once the proper frequency
shift is set, the laser intensity can be greatly amplified. In [43], a two-dimensional image of
a coin immersed in 1 cm of milk was obtained.

In 2001 [44], a 3D image of a toy was achieved by using the technology of frequency
shift feedback together with a deformable liquid drop lens. After that, the frequency-
shifted feedback technology was applied to traditional laser confocal tomography (LCT)
and formed a technology called laser feedback confocal tomography, which shows su-
perior characteristics compared with traditional LCT in terms of optical sensitivity and
system stability [52]. To date, by using frequency-shifted optical feedback technology,
different applications, including for the early detection of skin cancer [53], biological tissue
imaging [54], the detection of ultrasound vibrations with nanometric amplitude [55], the
inspection and location of foreign bodies in biological samples [56,57], the measurement of
the refractive index [52], and structure measurement [58,59] have been reported.
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3.2. Sensing by Relaxation Oscillation Frequency

Relaxation oscillation in lasers occurs because the carrier cannot follow the photon
decay rate [32]. An RO is easily able to be excited by a step input to the injection current,
a shot noise originating from the driving circuit, and so on [39]. The RO frequency of
lasers with EOF can be determined from system stability analysis [60,61]. Its value is often
influenced by the laser’s operating conditions, including the injection current, feedback
strength, and external cavity length [49]. Therefore, RO frequency can be utilized for
sensing. To date, varieties of applications based on RO frequency have been developed.

In 2001, Lacot et al. [51] presented a work for imaging by using the RO frequency
of a YAG microchip laser with weak EOF, where the RO frequency was modified by the
reflectivity of the external target surface, as shown in Figure 7. Based on the relationship
between RO frequency and target reflectivity, a 2D image of a French one franc coin was
obtained. In 2009, based on precision measurement of RO frequency of the free running
laser as a function of injection current, Kane et al. proposed a novel method of measuring
the laser threshold current [62]. In 2013, Cohen et al. [63] presented a sub-laser-wavelength
position sensing system using RO frequency of an LD with EOF, where the LD was set to
operate in quasi-periodic oscillation. A displacement map between the variation of the
RO frequency and two dimensional (2D) position (100 nm × 100 nm) was experimentally
obtained, as shown in Figure 8, which shows the system can achieve an average 2D
resolution of ~λ/160.
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with permission from [63] © The Optical Society).

In 2017, Liu et al. [64] proposed a displacement sensing method by using the RO
frequency of an LD with EOF operating at period-one oscillation, where the frequency
of the period-one oscillation was considered as the RO frequency. Through numerically
solving the L–K equations, the relationship between the RO frequency and external target
displacement was investigated. The influence of the injection current on the LD and the
initial external cavity length on the relationship were analyzed. It was found that the
RO frequency varies with the displacement in a sawtooth-like form with the period of
a half-laser wavelength, as shown in Figure 9. A micro-displacement sensing method
was proposed based on this relationship. In 2018, a method of estimating the line-width
enhancement factor (also called the α factor and Henry factor) of the LDs was presented
by using the linear relationship between the RO frequency and external cavity length
when the external cavity length has a variation much larger than the laser wavelength [65].
By carefully controlling the external cavity phase, two fitting curves corresponding to
the phase of π and 3π/2 were able to be obtained, respectively, as shown in Figure 10.
Dividing the gradients of these two fitting curves, the α factor was estimated. More
recently, the relationship between the RO frequency and feedback optical phase with weak
feedback strength was investigated and a new method for measuring the α factor of an
LD was developed [20]. These RO frequency based methods of measuring the α factor
have little in common with the conventional SMI-based methods, providing new option
for measurement of the α factor, especially for lasers with small α factors.
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3.3. Sensing by Dynamics in SMI Signals

In conversional SMI sensing applications, the laser operates in steady state and the
modulated steady-state laser intensity is used as the sensing signal. An SMI system can
operate in weak, moderate, or strong feedback regimes, according to the optical feedback
level. In weak feedback regime, the laser is always in steady state and the SMI signals are
closely sinusoidal. However, when the system operates in moderate or strong feedback
regimes, the SMI signals exhibit a sawtooth-like pattern and some jumping points appear
in the SMI signals. At the jumping or discontinuous points, transient damped oscillation
corresponding to external cavity mode may happen [66]. On top of that, undamped RO
may occur in moderate or strong feedback regimes [45,67], which may introduce high-level
dynamics into the SMI signals. Figure 11 shows a simulated stability boundary for an SMI
system with J = 1.3 Jth and L = 16 cm in the plane of feedback strength and optical phase
by using the method in [68]. It finds that the stability boundary is periodic with respect to
the variation of the optical phase with a period of 2π. The SMI system is in a steady state
below the boundary, and it is unstable with undamped RO above the boundary.
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In 2012, Teysseyre et al. [66] presented dynamics phenomenon in the sawtooth-like
SMI signals where the target was more than one meter away from the LD when the RO was
still damped. It was found that the damped oscillation in SMI signals contains information
about the target distance and reflectivity, showing the possibility of estimating a target’s
distance and reflectivity by using transient damped oscillation. In 2014, Fan et al. presented
dynamic stability analysis on a laser SMI system and found some unique features of the SMI
signals by simulation when the laser experienced undamped RO [42]. In 2016 [68], these
features were experimentally verified and analyzed in detail, as shown in Figure 12. It has
been found that a laser SMI systems in moderate or strong feedback regimes may operate
with undamped RO, and the SMI signals in this case exhibit the form of high-frequency
oscillation with amplitude modulated by a slow-varying signal. Interestingly, the slow-
varying envelopes are similar to the conventional SMI signal characterized by the same
fringe structure. The SMI signals in this condition have the potential for achieving sensing
with improved sensitivity. Soon after this kind of SMI signal with period-one oscillation
dynamics, a special case for the system with undamped RO was analytically modeled, and
a method for displacement measurement with high resolution was proposed based on the
model [69]. More recently, it was found that the signal noise ratio of SMI signals can be
greatly improved by introducing an extra strong EOF into the system to make the laser
operate in period-one oscillation [70]. By using the energy excited by period-one dynamics,
the sensitivity of a laser SMI system is able to be largely enhanced.
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Figure 12. Experimental signals for DL4140-001S. (a) PZT control signal; (b) conventional SMI signals
in steady state; (c) SMI signal containing period-one dynamics; (d) the laser intensity in the same
condition as (c) when the target is stationary (adapted from [68]).

3.4. Sensing by Laser Optical Chaos

When the feedback strength increases to certain values, lasers with EOF may exhibit
chaos [49,60,61,71,72]. Laser optical chaos has been used in many applications, e.g., chaotic
secure communication [49], random bit generators [73], photonic microwave signal gen-
eration [74], and optical logic computing [75], which was reviewed recently [76]. In this
work, we focused on sensing applications based on optical chaos. Owing to the unique
properties of laser chaos signals, e.g., short pulse width, rapid decorrelation due to irregular
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pulse intervals, and amplitudes, sensing by chaotic lasers has been proposed, e.g., chaotic
radar [77], also known as chaotic lidar [78]. In 2001, ranging by using a chaotic laser pulse
train generated by a semiconductor laser with EOF was developed and achieved a range
resolution on the order of millimeters [79]. The measurement was made based on the shift
of the peak in the correlation signal of the chaotic pulses when the target to be measured
experienced a position change. Figure 13 shows the correlation of chaotic signals with
different time delays that the light transmits to the target. After that, optical chaotic radar
was intensively researched. In 2018, an unprecedented 3D-pulsed chaos lidar system to
effectively improve energy-utilization efficiency and the corresponding signal-to-noise ratio
was proposed [80]. More recently, a novel high-resolution chaos radar utilizing wideband
chaos originated from a self-phase modulated optical feedback–based semiconductor laser
cascaded by a dispersion component was introduced [81]. Simulation results show that the
system can improve resolution and anti-interference characteristics significantly. Moreover,
chaotic radars have also been applied in underwater target detection [82] and underwater
3D imaging [83].
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Figure 13. Cross-correlation of chaotic signals with different time delays.

Another kind of laser-chaos-based sensing application is chaotic correlation optical
time domain reflectometer (OTDR). In 2008, laser chaos induced by EOF was developed
for OTDR [84], where a spatial resolution of 6 cm was achieved for a distance of 140 m.
Based on this, in 2012, Wang et al. achieved precise fault location with a resolution of 2 cm
in a wavelength-division-multiplexing passive optical network by using a chaotic laser
with adjustable wavelength [85]. In 2015, chaotic the OTDR technique was used for fiber
attenuation measurement [86]. After that, different efforts were made for the chaotic OTDR
to improve spatial resolutions and detection [87,88]. In addition, chaotic lasers are also used
in Brillouin optical correlation domain analysis, i.e., the so-called chaotic BOCDA, which
is a distributed optical fiber sensing technology based on stimulated Brillouin scattering
(SBS) [89,90] In 2018, in order to suppress the off-peak amplification caused by chaotic
autocorrelation sidelobes, a time-gated chaotic BOCDA was proposed and experimentally
achieved with a 9 cm spatial resolution over a 10.2 km measurement range [90]. In 2021,
a dual-slope-assisted chaotic Brillouin optical correlation domain analysis technology for
static and dynamic strain measurement with high accuracy and resolution was proposed
and experimentally demonstrated [89].
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3.5. Transient Response of Lasers with EOF

For a laser with EOF, its dynamics and behavior are determined by both internal and
external cavity–associated parameters, e.g., internal cavity round-trip time, line-width
enhancement factor, injection current, feedback strength, external cavity length, etc. The
internal parameters are fixed for a certain laser, but the external parameters can be varied
in practice. By using L–K equations, we can numerically study the transient response of
the system to a certain parameter. Figure 14 shows a simulation result for laser transient
intensity and corresponding spectrum by numerically solving the L-K equations when the
injection current (J) has a step change from 1.1 Jth to 1.3 Jth at 40 ns, where Jth is the thresh-
old injection current of the solitary laser. Because the transient waveform and its spectrum
contains the information of the system, the parameters related to the system, such as the
line-width enhancement factor, can be retrieved by investigating the transient response.
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4. Conclusions

This paper presents an overview on sensing by the dynamics of lasers with external
optical feedback. Starting from the commonly used system, we introduce the operating
principle of the laser system with external optical feedback. The derivation the L–K
equations from the complex photoelectric-field equations is presented. Then the relative
intensity noise of lasers with EOF and the modification of laser intensity induced by EOF
was discussed. Afterwards, a few sensing applications by laser dynamics were categorized
and reviewed, including sensing by frequency-shifted optical feedback, RO frequency,
high-level dynamics in SMI signals, and laser optical chaos. Lastly, we presented the results
of analyzing transient response lasers with EOF, indicating the feasibility of using them for
sensing. With the development of laser technologies, e.g., the invention of nanolasers and
terahertz lasers, it is believed that the dynamics of lasers with EOF will have more potential
in sensing applications.
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