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Abstract: Although researchers have investigated a variety of approaches to the development of three-
dimensional (3D) point cloud matching algorithms, the results have been limited by low accuracy and
slow speed when registering large numbers of point cloud data. To address this problem, a new fast
point cloud registration algorithm based on a 3D neighborhood point feature histogram (3DNPFH)
descriptor is proposed for fast point cloud registration. With a 3DNPFH, the 3D key-point locations
are first transformed into a new 3D coordinate system, and the key points generated from similar 3D
surfaces are then close to each other in the newly generated space. Subsequently, a neighborhood
point feature histogram (NPFH) was designed to encode neighborhood information by combining
the normal vectors, curvature, and distance features of a point cloud, thus forming a 3DNPFH
(3D + NPFH). The descriptor searches radially for 3D key point locations in the new 3D coordinate
system, reducing the search coordinate system for the corresponding point pairs. The “NPFH”
descriptor is then coarsely aligned using the random sample consensus (RANSAC) algorithm. Ex-
periment results show that the algorithm is fast and maintains high alignment accuracy on several
popular benchmark datasets, as well as our own data.

Keywords: local surface descriptors; descriptor matching; point cloud registration; iterative closest point

1. Introduction

There has been a recent and rapid development of three-dimensional (3D) laser scan-
ning technology for use in reverse engineering, digital cities, deformation monitoring,
and other applications [1]. Owing to limitations in the field of view of 3D laser scan-
ning equipment, and the complex geometry of the scanned objects themselves, the point
cloud data collected from each viewpoint only partially cover the geometric information
of the scanned object surfaces. To obtain complete information regarding such surfaces,
it is necessary to register the point clouds from individual scans into the same reference
coordinate system.

To date, the classic iterative nearest point (ICP) [2] remains the most widely-used
point cloud matching algorithm. Many researchers have made improvements to the ICP
algorithm [3–6], which relies on a good initial alignment position. Without this, it quickly
falls into the local optimum and cannot achieve a good registration effect. Therefore, as
common practice, the initial alignment method is used to obtain a good initial alignment
position and then the ICP algorithm is applied to achieve an accurate alignment. Due to the
irregular nature of 3D point clouds, designing a local surface descriptor with high overall
performance is a challenge. Three-dimensional point cloud descriptors fall into two main
categories: handcrafted and deep learning based methods. The incredible power of deep
learning techniques has resulted in a breakthrough in the obtainment of 3D point cloud
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descriptors. As an example, Deng et al. [7] proposed the Point Pair Feature NETwork,
which uses a new N-tuple loss and an architecture that naturally injects global information
into the local descriptors, achieving good results in terms of accuracy, speed, and other
factors. In addition, Ao et al. [8] proposed Spinnet, which first introduces a spatial point
transformer to map the input local surface into a well-designed cylindrical space and
then applies a powerful point-based and 3D cylindrical convolutional neural layer feature
extractor to derive compact and representative descriptors for matching. Spinnet has
an excellent ability to generalize well under unseen scenarios. Finally, Fabio et al. [9]
normalized their estimated local reference system by extracting point cloud patches and
encoding rotationally invariant compact descriptors using a robust deep neural network
based on PointNet. Although deep learning has made significant progress in the area
of point cloud alignment, it inherently requires a large amount of training data, and a
separate training process is needed to learn a separate feature extraction network, which is
time-consuming and results in significant hardware requirements.

For handcrafted methods, such descriptors are divided into two categories depending
on whether a local reference frame (LRF) is used. Although many efficient methods have
been proposed for descriptors without an LRF, point pair feature (PPF) based descriptors
are the most classical approaches for a 3D surface description. Johnson and Heber [10]
proposed using spin image (SI) features, in which the normal vectors of the key points
are first applied as reference axes and the local neighborhood points are then projected
onto a 2D surface both horizontally and vertically. Although an SI is a frequently cited
descriptor, it has limited descriptive power and is sensitive to changes in the data resolution.
In addition, a point feature histogram (PFH) [11] has high discriminatory power but is
extremely time-consuming. To address this problem, Rusu et al. [12] constructed a fast
point feature histogram (FPFH) using a simplified point feature histogram (SPFH), which
is characterized as fast and discriminative. Albarelli et al. [13] defined a descriptor for
low-dimensional surface hashing and applied it to the surface matching problem in a
game-theoretic framework, where the surface hash features are mainly computed based
on multiscale statistical histograms of the local properties, including normal vector pinch
angles, integral volumes, and their combination. Moreover, Zhao et al. [14] proposed
a novel normal surface reorientation drawing upon a Poisson-disc sampling strategy to
address the problem of data redundancy during data preprocessing. Subsequently, a new
technique is used to divide the local point pairs for each key point into eight regions,
where each local point pair distribution region is applied to construct the corresponding
sub-features. Finally, an extracted histogram of the point pair features is generated by
concatenating all the subfeatures into a single vector.

For LRF-based features, Stein and Medioni [15] designed the local characteristics of
point clouds as a consequence of the offset angle, torsion angle, and curvature relationships
between key points and those within the geodetic neighborhood. Frome et al. [16] also
suggested using a 3D shape context (3DSC) by extending the 2D shape context (SC) [17] into
the 3D domain. The proposed method first divides the local spherical domain into multiple
subspaces and then computes the feature descriptors by calculating the percentage of points
in each subspace. Zaharescu et al. [18] compute gradient vectors for each neighborhood
point and project them onto three orthogonal planes of the LRF. Each plane is divided into
four quadrants, and each quadrant corresponds to an 8-dimensional feature. In addition,
Prakhya et al. [19] form a histogram by accumulating the points in each interval divided
by a “3D” descriptor. As a concrete process, the local surface of the key points is aligned
to the defined LRF by employing a “3D” descriptor, and the range between the minimum
and maximum x-coordinate values of the points on the surface is then divided into D
intervals along the x-axis. The same process is repeated along the y- and z-axes, and a
3D histogram of the point distribution (3DHoPD) is generated by concatenating these
histograms. Although this method is fast, it is poorly descriptive. Guo et al. [20] first rotate
the local surface in the LRF, project the surface after each rotation to calculate the projected
point density statistics, and concatenate these statistics to obtain rotational projection
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statistics (RoPs). Although the use of RoPS has achieved the highest matching performance
for several datasets, its shortcomings include a poor descriptiveness and time-consuming
computations for data with uneven point distributions. Similar to the rotational projection
mechanism of RoPS, Guo et al. [21] use the three orthogonal axes of the LRF to compute
three spin map features and obtain triple spin images (TriSI) that are more resistant to
occlusions than RoPS but are still more time-consuming.

In this paper, a point cloud alignment algorithm based on the 3D point neighborhood
feature histogram (3DNPFH) descriptor is proposed to address the current problems
inherent to an alignment algorithm. After uniform sampling using the voxel grid method,
the algorithm transfers the key points to the new 3D coordinate system for the point cloud.
The point pairs to be matched are obtained using the principle in which the key points
are generated by similar numbers of 3D surfaces that are close to each other. We construct
the neighborhood point feature histogram (NPFH) descriptor by calculating the normal
vector, curvature, and distance features within the neighborhood of the key points, and
finally apply the RANSAC algorithm to achieve a coarse alignment and obtain a good
initial alignment position.

2. Proposed Methods

In general, in a 3D surface description, a unique high-dimensional feature vector is
used to describe a local 3D surface at a 3D key point. In this study, a 3D neighborhood point
feature histogram (3DNPFH) is proposed to represent a local 3D surface. Generating the
3DNPFH descriptor involves two main steps: encoding the 3D key point positions to form a
pre-3D descriptor and obtain a list to be matched, and finding an exact match by computing
the NPFH descriptor. Let us consider an input source point cloud Psource upon which I
key points, Ki, where i = {1, 2, . . . , I}, are extracted using a uniform sampling. We then
create a 3DNPFH descriptor from its radius neighborhood surface, Sur f aceik, including
K points, where k = {1, 2, . . . , K}. The neighborhood surface from which the descriptor
is constructed is determined based on its support radius r. A key point Ki has Sur f aceik,
where i represents the index of the key points, and k represents the index of the points
within the surface of the neighborhood of the key points.

2.1. Encoding 3D Key Point Locations

The uniformly-sampled key points are transformed into a new 3D coordinate system,
and their 3D coordinates are recorded in the first three dimensions of the 3DNPFH descrip-
tor. The extraction of feature descriptors around the key points and a comparison to find
their correspondences are conducted to locate exact 3D key point correspondences gener-
ated from a similar 3D surface neighborhood. Therefore, the key points are transformed
into a new 3D coordinate system in which the key points of similar surfaces are close to one
another. We first calculate the centroid coordinates meanpt in the neighborhood coordinate
system Sur f aceir of surface radius r of key point Ki, and then subtract the centroid coordi-
nates meanpt from all point coordinates in Sur f aceir, effectively generating a new surface
Sur f aceir−meanpt , and letting the key points Ki subtract the centroid coordinate meanpt to
obtain Ki−meanpt . Finally, we have a new surface, Sur f aceir−meanpt , used to calculate the
local reference coordinate system {a}. The three axes of {a} form the rotation matrix [RF]3×3,
and the key point Ki−meanpt is then transferred to a new 3D coordinate system, as shown in
(1).

[KiRF]3×1 = [RF]3×3

[
Ki−meanpt

]
3×1

(1)

where its new coordinates, KiRF, constitute the first three dimensions of the descriptors
proposed herein.

Local reference coordinate system: This algorithm establishes a local reference frame,
such as SHOT [22], and the corrected covariance matrix of the point cloud is then calculated
using the 3D surface Sur f aceir−meanpt , as shown in (2). Within the radius neighborhood of
the considered key points, weighting is conducted according to the distance Ki−meanpt of
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the key points from the centroid. For better readability, we use qr to represent the point
within the surface Sur f aceir−meanpt around the key points, and q to represent the distance
between the key points and the centroid Ki−meanpt .

COV =
1

∑
r:dr≤r

(r− dm)
∑

i:dm≤r
(r− dr)(qr − q)(qr − q)T (2)

Here, dr = ‖qr − q‖2. To create a unique local reference coordinate system, it is
necessary to disambiguate the direction of the normal. We use the orientation of the local x-
and z-axes toward the principal directions of the vectors they represent, and finally obtain
the local y-axis through the cross product of z and x, where y = z × x. By solving the
covariance matrix COV, we can obtain the eigenvalues and the eigenvectors corresponding
to the eigenvalues, which can be sorted in descending order to obtain µ1 > µ2 > µ3. The
corresponding eigenvectors x, y, and z represent the three coordinate axes, and the rotation
matrix is constructed as follows:

[RF]3×3 = [xTyTzT ]
T

(3)

However, because there may be various anomalies, we cannot state that the point
closest to the key point in the new 3D coordinate system is the correct match; for example,
noisy point cloud data may be acquired by the sensor or similar local reference coordinate
systems. However, the correct match lies within the neighborhood of the key points,
significantly reducing the search coordinate system for correctly matched points.

Figure 1 shows a schematic of the 3DNPFH descriptor. The key points of the source
point cloud are shown in blue, and the key points of the target point cloud are shown in
red. The blue and red spheres represent the LRF and the support size of the constructed
descriptor, respectively. Then, for each model key point, the list of key points in the scene
(shown as pink spheres in the new 3D coordinate system) is retrieved through a radial
search of the threshold radius. From this retrieved list of possible key point matches of a
scene, the one closest to the NPFH descriptor is considered an exact match.
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Figure 1. Schematic of 3DNPFH descriptor.

2.2. Calculation of Neighborhood Point Feature Histogram (NPFH)

Geometric features such as the curvature, surface normals, and distances reflect the
most basic geometry of a point cloud, which is the key to expressing the local features of the
cloud. In this section, based on the radius neighborhood of the key point, the neighborhood
curvature sum, normal vector angle sum, and distance sum corresponding to the key point
are calculated. A 3D vector consists of the sum of the curvature of the neighborhood, the
sum of the angle between the normal vectors, and the sum of the distance. This 3D vector
is an NPFH descriptor.
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2.2.1. Curvature

The normal and curvature information of a point cloud surface are important geometric
features for 3D object recognition. The curvature is invariant to rotation, translation, and
scaling and is therefore used as a feature element. The curvature value reflects the degree
of concavity of the point-cloud surface. The sharp features of the point cloud have a more
significant curvature. By contrast, the non-featured parts of the point cloud exhibit a
relatively slight curvature.

In this study, the method described in [23] is used to estimate the norm and curvature
of the data points by analyzing the covariance of k neighborhood points within radius
r. We analyze the covariance of a given point of the neighborhood point covariance for
point cloud datasets and solve the covariance matrix. The direction of the eigenvector
corresponding to the smallest eigenvalue is defined as the normal value of the point. The
curvature of the point is then estimated based on the surface variation of the point in the
local area. The curvature Curi is calculated as follows:

First, the following is calculated:

Ci·vj = λj·vj (4)

This is transformed into solving the eigenvalues and eigenvectors of matrix Ci, where
matrix Ci is a covariance matrix of k points, and (v1, v2, v3) are the eigenvectors of the
matrix. Each data point Ki in the point cloud corresponds to matrix Ci as follows:

Ci =

[
Ki1 − Ki
Kik − Ki

]T[ Ki1 − Ki
Kik − Ki

]
(5)

where Ci is a positive semi-definite third-order symmetric matrix, Ki is the centroid of
the point within the neighborhood of the key points Ki, and Kik is the coordinate of the
point in the radius neighborhood of Ki. The three eigenvalues λ1, λ2, and λ3 of matrix Ci
and the corresponding unit eigenvectors e1, e2, and e3 are then calculated. Assuming that
λ1 ≤ λ2 ≤ λ3, λ1 describes the change in the surface in the normal direction and represents
the distribution of data points on the tangent plane, the curvature can then be expressed as

Curi =
λ1

λ1 + λ2 + λ3
(6)

2.2.2. Deviation Angle between Normals

Previous studies have demonstrated that a representation based on the deviation angle
between two normals has a high discriminative power [9]. The normal directions of Ki and
Kik are nKi and nKik , respectively. The cosine of the normal angle between Ki and Kik can be
expressed as

cos θKik =
nKi ·nKik∣∣nKi

∣∣∣∣nKik

∣∣ (7)

The sum of the angles normal to the key points and all points in the radius neighbor-
hood is calculated as follows:

ωa(Ki) = ∑
Kir∈Sur f aceir

θKik (8)

Figure 2 shows a schematic of the angle between the normal vector of the feature and
non-feature regions. In Figure 2a, the normal angle in the neighborhood of the key point
Ki is larger, which generally forms the feature region of the point cloud. In Figure 2b, the
normal angle within the neighborhood of key point Ki is smaller, which generally forms
the non-featured region of the point cloud. Therefore, the normal vector angle is also used
as a parameter to calculate the feature description of the point cloud.
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Figure 2. Angle between the normal vector of the feature and non-feature areas. (a) the normal vector
of the feature area; (b) the normal vector of the non-feature area.

2.2.3. Sum of Distances between Neighborhood Points

For the radius neighborhood of a key point, the number of points within the neighbor-
hood generally differs; therefore, the local 3D geometric features can be described by the
distance sum of the neighborhood points.

The sum of the distances between the key points and the neighboring points reflects
the characteristics of the point cloud. The point cloud feature is distinguished using the sum
of the distances between the key points and neighboring points as the distance parameter.

The distance from a point in the neighborhood to a point in the radius neighborhood
can be expressed using the following formula:

ωd(Ki) = ∑
Kir∈Sur f aceir

|Kik − Ki| (9)

Figure 3 shows a diagram of the neighborhood point distances, where Ki is the key
point, and Kik is the point within the radius neighborhood of Ki.
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After proposing three local geometric features, three sub-histograms are obtained: the
sum of the distances between neighborhood points, the sum of the curvatures, and the
sum of angles between the normal direction of the key point and the normal direction of
the neighborhood points. Figure 4 shows a schematic of the NPFH feature-description
mechanism. A 3DNPFH descriptor is created by combining the three sub-histograms above
into a single histogram. The following are the three primary characteristics of the NPFH
descriptor: The NPFH descriptor is computationally efficient, the three local geometric
characteristics of the NPFH descriptor are low-dimensional and computationally efficient,
and the computational cost of the NPFH descriptor is O(k), where k is the number of points
within the radius neighborhood of key point Ki.
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2.3. Matching

Taking advantage of the fact that key points generated by similar 3D surfaces are
close to each other in the new 3D coordinate system, we apply the following matching of
the 3DNPFH descriptors. First, the extracted key points are transformed into a new 3D
coordinate system by constructing local reference coordinate systems for the key point
neighborhood surfaces in the source and target point clouds. Then, for each source key
point Ki−source in the new 3D coordinate system, we find a list of the closest target key
points Ki−target in the new system that lie within the radius threshold Td. Finally, we find
the most accurate nearest neighbors in the 3DNPFH descriptor using a Euclidean distance
search to form the corresponding point pairs in the to-be-matched list.

2.4. Mismatch Rejection of RANSAC

The corresponding point pairs are identified using the 3DNPFH feature-based descrip-
tors. This study uses the RANSAC algorithm to eliminate mismatched pairs and improve
the alignment accuracy of two-point clouds. Assuming that n matching pairs are obtained
after the above feature matching, the RANSAC algorithm is used to reject false matches
and obtain the transformation relationships between the point clouds as follows:

Step 1: Randomly select three non-collinear points from the source point cloud P,
denoted as {p1, p2, p3}, and search for their corresponding points from the target point
cloud Q, which are denoted as {q1, q2, q3}, {p1, p2, p3}, and {q1, q2, q3}, as samples.

Step 2: Use the samples to estimate the rigid body transformation matrix H.
Step 3: Using the model estimation matrix, transform the remaining points in the

source point cloud P and calculate the distance error between all points in the transformed
source point cloud P and the target point cloud Q if the distance error of one point pair is
below the set threshold. If there is an error, the point is added to the interior point set U;
otherwise, it is an outlier.

Step 4: Repeat the above process until the number of points in the interior point set
reaches the set threshold or the iteration number becomes greater than the maximum
iteration number, and then stop the iterative calculations.

Step 5: Select the model parameter H with the most significant number of interior
points in the interior point set as the optimal model parameter and use the optimal model
parameter H to achieve a rough registration of the point cloud.

Because of the increased proportion of correct points in the set of correspondence
points optimized using the RANSAC algorithm, the resulting rigid body transformation
matrix is more accurate and effectively reduces the error in the point cloud alignment.
However, RANSAC requires multiple iterations in the algorithm, and thus a lengthy time is
required to obtain optimal results when the number of correspondence point pairs is large.
Therefore, when using the RANSAC algorithm, care should be taken to set the threshold
error and the number of iterations, as reasonable settings can help improve the rejection of
erroneous point pairs.
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3. Results

This section describes a performance test of our algorithm on four public datasets and
on our own data, and compares the results with those of existing state-of-the-art descriptors.
All experiments were conducted on a laptop with an Intel 2.40-GHz i5-10200H processor
and 16 GB of memory, and the algorithms were implemented on Microsoft Visual Studio
2019 and the Point Cloud Library (PCL). To verify the effectiveness of the algorithm, in this
study, the FPFH and 3DHoPD algorithms are compared under similar environments.

3.1. Experimental Data

This experiment first uses the open-source “Happy Buddha,” “Bunny,” “Armadillo” [24]
and “Chicken” point cloud data [25], taken from the “Bologna” object recognition dataset,
the “UWA” dataset, and the “random view” dataset. The numbers of points in the point
cloud data in the experiment were as follows: Happy Buddha (32,316, 31,424), Bunny
(34,834, 34,618), Armadillo (28,885, 32,385), and Chicken (135,142, 135,142). We then used
a locally scanned mobile phone camera module point cloud for testing to further verify
the effectiveness of the algorithm. The number of points in the point cloud of the “Camera
Module” is (171,996, 171,979). The relevant information regarding the data used in this
study is listed in Table 1, and the initial pose of the point cloud data is shown in Figure 5.

Table 1. Data used in the experiment.

No. Model Acquisition Quality Dimension Data Set

1 Happy Buddha Synthesis High 3D Bologna
2
3
4
5

Armadillo
Bunny

Chicken
Camera Module

Minolta vivid
Synthesis
Synthesis
SR7080

Medium
High
High
High

2.5D
3D
3D
3D

Random View
Bologna UWA

Bologna
Ours
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Figure 5. Initial pose graph of experimental data (the source point cloud is shown in green, and the
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3.2. Selection of Main Parameters

The choice of relevant parameters directly affects the registration results. To measure
the registration effect under different parameters, we use the most commonly applied
root-mean-square error (RMSE) to measure the accuracy of the point cloud registration.
This is defined as

RMSE =

√
1
N ∑N

i=1 ‖Pi −Qi‖
2

(10)

where Pi and Qi are two corresponding points, and N is the number of matching point
pairs. The smaller the RMSE is, the better the alignment of the two-point clouds.

In this study, uniform sampling is used to extract the key points. Table 2 lists the
number of sampling points for the “Happy Buddha” dataset for the different grid sizes. To
reduce the running time of the algorithm, there are generally several hundred key points.
Figure 6 shows the registration results for the different voxels. As shown in the figure, with
an increase in the grid size, the registration time and number of feature points gradually
decrease, and the RMSE is the lowest when the voxel size is 0.015 m. Therefore, we set the
voxel size to 0.015 m.

Table 2. Number of key points under different voxel sizes.

Grid Size/m 0.01 0.013 0.015 0.017 0.02

Source points (P) 640 375 279 279 146
Target points (Q) 671 377 388 288 141

Photonics 2022, 9, x FOR PEER REVIEW 10 of 13 
 

 

Table 2. Number of key points under different voxel sizes. 

Grid Size/m 0.01 0.013 0.015 0.017 0.02 
Source points (P) 640 375 279 279 146 
Target points (Q) 671 377 388 288 141 

 
Figure 6. Registration results under different voxel sizes. 

Table 3 shows the registration results of the Happy Buddha image dataset under dif-

ferent values of ransacε . When the value of ransacε  is too large, the distance threshold of 
the corresponding point pair increases, leading to an increase in the calculation error. 

When the value of ransacε  is too small, the distance threshold of the corresponding point 
pair becomes smaller, leading to a decrease in the number of corresponding points; thus, 
the model parameters cannot be accurately estimated, and the registration fails. When 
ransacε  is 0.01, the registration time of the algorithm is the shortest, and the root-mean-

square error is the smallest. 

Table 3. Registration errors under different values of 𝜀 . 

ransacε /m 0.002 0.003 0.004 0.005 0.01 
RMSE/m --- 0.00632 0.00172 0.00172 0.00172 
Time/s 3.081 3.002 2.902 2.632 2.552 

3.3. Evaluation 
To better test the effectiveness of the proposed descriptors, this section compares the 

algorithm with the well-performing FPFH and 3DHoPD algorithms. The registration re-
sults are first evaluated through a visualization and then by applying the well-known 
RMSE. The RMSE is defined through (5). Figure 7 shows the registration effect of the 
FPFH, 3DHoPD, and our proposed algorithms. The target point cloud is shown in red, 
and the registered point cloud is shown in blue. Table 4 lists the coarse registration RMSE 
values for each algorithm for the five models. The best results are highlighted in bold. 
From the experimental results, it can be seen that for all test point cloud data, our pro-
posed algorithm achieves the smallest registration error for the five models, which further 
demonstrates the effectiveness of the proposed 3DNPFH descriptor. If a precise ICP reg-
istration is required in the future, our algorithm will provide a smaller pose registration, 
which requires fewer iterations to achieve better results. 

Figure 6. Registration results under different voxel sizes.



Photonics 2022, 9, 414 10 of 13

Table 3 shows the registration results of the Happy Buddha image dataset under
different values of εransac. When the value of εransac is too large, the distance threshold
of the corresponding point pair increases, leading to an increase in the calculation error.
When the value of εransac is too small, the distance threshold of the corresponding point pair
becomes smaller, leading to a decrease in the number of corresponding points; thus, the
model parameters cannot be accurately estimated, and the registration fails. When εransac is
0.01, the registration time of the algorithm is the shortest, and the root-mean-square error is
the smallest.

Table 3. Registration errors under different values of εransac.

εransac/m 0.002 0.003 0.004 0.005 0.01

RMSE/m — 0.00632 0.00172 0.00172 0.00172
Time/s 3.081 3.002 2.902 2.632 2.552

3.3. Evaluation

To better test the effectiveness of the proposed descriptors, this section compares
the algorithm with the well-performing FPFH and 3DHoPD algorithms. The registration
results are first evaluated through a visualization and then by applying the well-known
RMSE. The RMSE is defined through (5). Figure 7 shows the registration effect of the FPFH,
3DHoPD, and our proposed algorithms. The target point cloud is shown in red, and the
registered point cloud is shown in blue. Table 4 lists the coarse registration RMSE values
for each algorithm for the five models. The best results are highlighted in bold. From the
experimental results, it can be seen that for all test point cloud data, our proposed algorithm
achieves the smallest registration error for the five models, which further demonstrates the
effectiveness of the proposed 3DNPFH descriptor. If a precise ICP registration is required
in the future, our algorithm will provide a smaller pose registration, which requires fewer
iterations to achieve better results.
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Table 4. Registration errors of five models.

Model FPFH 3DHoPD Proposed

Happy Buddha 0.00544 0.00364 0.00172
Armadillo 0.00436 0.00410 0.00314

Bunny 0.00317 0.00331 0.00148
Chicken 0.00259 0.00302 0.00248

Camera Module 0.05895 0.05992 0.05739

Table 5 lists the registration times of the five models under the three different algo-
rithms. The proposed method is the most effective. This is mainly due to the low number of
dimensions of our proposed descriptor, i.e., only six. In addition, we significantly reduced
the search space of the corresponding point pairs through “3D” descriptors, avoiding a
complex corresponding point pair search. The total registration time of our method for the
five models was only 1/6 that of the FPFH method and 7/10 that of the 3DHoPD approach.
For the FPFH algorithm, which has 33 dimensions, its extraction time is significantly higher
than that of the other descriptors because the supported radius size for the descriptor
extraction doubles when calculating the SPFH. This was verified on the “Chicken” and
“Camera Module” point clouds. Because of the higher density in these clouds, the number
of points in the 3D sphere increases exponentially with the increase in the support radius
size. Therefore, the computational cost of the FPFH is high in high-density point clouds or
with larger support radius sizes [26]. For the 3DHoPD algorithm, which has 18 dimensions,
the calculation of the histogram of point distributions (HoPD) descriptor considers the
changes in the surface along the x-, y-, and z-directions, and then calculates the number
of points by normalizing the histogram. However, this cannot explain the small surface
changes (using a normal is helpful in this case).

Table 5. Comparison of the registration times of all algorithms for the five models.

Model FPFH 3DHoPD Proposed

Happy Buddha
Armadillo

Bunny
Chicken

Camera Module

3.693
3.286
3.076
63.781
14.432

2.620
2.507
2.415
7.611
5.875

1.828
1.514
1.217
6.262
4.232

Total 88.268 21.028 15.053

The above experiments revealed that the FPFH algorithm, 3DHoPD algorithm, and
our proposed method successfully registered five of the models, and the registration
error of the proposed algorithm was the smallest. Additionally, our approach requires
the shortest registration time and exhibits a higher efficiency. Therefore, the proposed
algorithm achieves a significant improvement over other previous algorithms.

4. Conclusions

We propose a point cloud registration algorithm based on the 3DNPFH descriptor.
The algorithm first uniformly samples the point cloud to extract the key points, transfers
the key points to a new 3D coordinate system by constructing a local reference coordinate
system of the point cloud, and significantly reduces the coordinate search system during
feature matching based on key points of similar surfaces that are close to each other. Then,
by combining the density, curvature, and normal vector information of the point cloud, a
neighborhood point feature histogram is constructed to find exact matches. Comparing
popular point cloud registration algorithms on different datasets, we deduce that this
algorithm is faster and maintains a similar level of registration accuracy, making it more
suitable for point cloud registration systems than existing algorithms.
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