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Abstract: It is well-known that the quantum efficiency (QE) of inverted AlGaInP solar cells is less
than that of upright ones, and the mechanism has not been well-explained. In this paper, a Si-doped
AlInP window layer, compared with an emitter layer, is revealed to be one more important factor
that decreases QE. It is noted that the quality of a heavily Si-doped AlInP window layer would
decrease and further deteriorate subsequent active layers. An optimization strategy of a Si-doped
AlInP window layer is proposed, which proves effective through time-resolved photoluminescence
measurements (TRPL) of double heterojunctions. Inverted 2.1 eV AlGaInP solar cells with an
improved AlInP window layer are fabricated. A 60 mV Voc increment is achieved with a remarkable
enhancement of the fill factor from 0.789 to 0.827. An enhanced QE of 10% to 20% is achieved at
short-wavelength and the peak IQE rises from 83.3% to 88.2%, which presents a nearly identical
IQE compared with the upright reference. Further optimization in GaAs homojunction sub-cells
is performed by introducing an n-GaInP/p-GaAs heterojunction structure, which decreases the
recombination loss in the emitter caused by a poor AlInP window layer. The optimized structure
significantly improves the Voc of the inverted GaAs-based T-3J solar cells to 3830 mV, boosting the
efficiency of SBT five-junction solar cells to 35.61% under AM0 illumination.

Keywords: III-V solar cell; multi-junction; growth temperature; heterojunction; window layer

1. Introduction

III-V multi-junction solar cells continue to lead the development of solar cells with the
highest efficiency, which depends on the optimal bandgap combination and the realizability
of the designed structure [1–7]. The rapid progress in epitaxial and device technology makes
the efficiency of single-, dual- and triple-junction solar cells approach their theoretical
maximum values [8,9]. Breakthroughs in efficiency can be made in four-junction or greater
solar cells, which further improves the utilization of photon energy.

Among various multi-junction solar cell fabrication roadmaps, the semiconductor di-
rect bonding technique (SBT) has been demonstrated to have great potential in developing
larger-area and higher-efficiency solar cells [6], which has created the highest conversion
efficiency (36%) under the AM0 space spectrum up to now. Based on the detailed balance
model, the SBT five-junction solar cell with a 2.10/1.70/1.42//1.1/0.8 eV bandgap combi-
nation in AM0 spectrum can realize an efficiency of >36%, considering the actual device
process loss factor of 15% [10]. This SBT five-junction solar cell is usually composed of
an upright bottom two-junction sub-cell (B-2J) lattice-matched to InP and an inverted top
three-junction sub-cell (T-3J) lattice-matched to GaAs [7]. The final five-junction solar cell
efficiency is limited by the performance of these two sub-cells and the electrical loss at the
bonding interface [10].

Further, 2.1 eV AlGaInP solar cells with an Al-content over 18% have been employed
as the top cell of five-junction solar cells for the highest direct bandgap among III-V semi-
conductors lattice-matched to GaAs. It is widely recognized that high-Al-content AlGaInP

Photonics 2022, 9, 404. https://doi.org/10.3390/photonics9060404 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9060404
https://doi.org/10.3390/photonics9060404
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-8218-6392
https://doi.org/10.3390/photonics9060404
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9060404?type=check_update&version=1


Photonics 2022, 9, 404 2 of 13

quaternary alloys face more epitaxy difficulty. Upright 2.05 eV AlGaInP solar cells grown
by metal organic vaper phase epitaxy (MOVPE) with a Voc of 1457 mV were fabricated for
the multi-junction structure [11]. Molecular-beam-epitaxy (MBE)-grown 2.1 eV AlGaInP
solar cells were treated with the RTA process and achieved a Voc of 1505 mV [12]. To further
reduce defects in high-Al-content material, a high growth temperature was processed in
AlGaInP solar cells and a Voc of 1590 mV could be achieved in the 2.1 eV AlGaInP solar
cells [13]. Recently, a new structure called a reverse heterojunction AlGaInP solar cell has
been proposed to relieve the problem [14]. Although the carrier collection efficiency is
enhanced due to a lower defect concentration in the emitter layer, the reduced Voc and
problem of current-match in multi-junction solar cells limit the application of this structure.
However, the solar cell designed above is an upright structure and could hardly be used
in four-junction or greater solar cells. Performance degradation in inverted AlGaInP solar
cells would cause reduced carrier collection efficiency and make the AlGaInP top-cell the
current-limiting sub-cell [12,15,16].

This paper focuses on the optimization of inverted GaAs T-3J sub-cells. Through
comparative experiments, the key factors restricting the T-3J performance are analyzed.
Improvements through structure design and epitaxial growth process are proposed and re-
alized. The open circuit voltage (Voc) of the inverted GaAs T-3J sub-cell eventually increases
from ~3710 mV to ~3830 mV. A high Voc is achieved and a better current-match condition
realized, which help to boost the efficiency of SBT five-junction solar cells to 35.61%.

2. Materials and Methods

All III-V solar cells and related samples were grown using an AIX-2600 G3 MOCVD
installation. The primary group III and group V precursors used were trimethylgallium
(TMGa), trimethylindium (TMIn), trimethylaluminium (TMAl), arsine (AsH3) and phos-
phine (PH3). The dopant precursors used were silane (SiH4), trimethyltellurium (DETe),
carbon tetrabromide (CBr4) and diethylzinc (DEZn). The V/III ratio of all epilayers was
maintained at 250–300. Chamber pressure was set to 100 mbar, and 4-inch n-type 15◦ off-cut
(001) epi-ready GaAs substrates (purchased from Vital Inc., Tokyo, Japan) were used for
T-3J solar cells, while 3-inch n-type and p-type 0◦ off-cut (001) epi-ready InP substrates
(purchased from Vital Inc.) were used for B-2J solar cells.

Figure 1 illustrated typical schematic cross-section structure of the inverted T-3J solar
cell device, which is lattice-matched to GaAs substrate. The active region of each sub-
cell consists of n-on-p junction (emitter/base) surrounded by n-type window layer and
p-type BSF layer. Detailed T-3J structure could be seen in Figure S1. High-performance
AlGaInP/AlGaAs tunnel junctions were used to connect sub-cells, which were optically
transparent to the underlying sub-cells and achieved a tunneling current density of over
7.8 A/cm2 [17]. After growth process, epi-layers were transferred to InP substrates or InP-
based dual-junction solar cells through direct bonding technique [7,18]. Following the direct
bonding, GaAs substrates were removed. Photolithography techniques were utilized for
the fabrication of the devices. Pd/Zn/PdAu stacks were deposited on substrates backside
and annealed to provide ohmic contacts. AuGeNi/Au/Ag/Au stacks were deposited on
contact layer as front grids. The structures were processed following standard III-V solar
cell device art. Finally, wafers were cut into cells in size of 2.0 × 2.0 cm2 (Figure S2). Details
of device process have been described previously [10,19].
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Figure 1. Schematic cross-section structure of inverted GaAs T-3J sub-cell.

The light J–V measurements were performed under Spectrolab X-25A AM0 simula-
tor. External quantum efficiency (EQE) and reflectance (R) were evaluated using an EnLi
apparatus. Then, internal quantum efficiency (IQE) was calculated through EQE/(1-R).
Cells were placed on 25 ◦C cooled stage during the measurements. The doping concen-
tration of epi-layers was measured through electrochemical capacitance–voltage method
(Nanometric-ECVPro). Double heterojunctions (DH) with 2.1 eV AlGaInP embedded
between Si-doped AlInP barriers were grown to evaluate the carrier recombination. Time-
resolved photoluminescence measurements (TRPL) were performed at room temperature to
evaluate the carrier lifetime using the time correlated single photon counting technique. The
excitation wavelength was 532 nm, and all samples were in low-level injection conditions.

3. Results and Discussion
3.1. Epitaxy Process Optimization in AlGaInP Sub-Cell

As shown in Figure 2, the upright and inverted AlGaInP/AlGaAs/GaAs three-junction
solar cells made of an identical structure are fabricated and measured, which show the
same pattern as reported previously [12,15,16]. The IQE of the 1.7 eV AlGaAs sub-cell
remains nearly unchanged, which indicates that the AlGaAs growth direction has little
effect on the device performance. However, the IQE of the inverted 2.1 eV AlGaInP top-cell
decreases by 10% to 20% compared with the upright reference in the range of 300 to 500 nm.
The calculated current density from the integral of the IQE curve could be acquired to
estimate the current-match condition of the T-3J solar cells. For the upright T-3J solar cell,
the integral current density of the AlGaInP, AlGaAs and GaAs sub-cell is 12.49 mA/cm2,
11.58 mA/cm2 and 11.59 mA/cm2, respectively. However, the integral current density of
the AlGaInP sub-cell in the inverted solar cells decreases to 11.09 mA/cm2. The reduced
carrier collection efficiency in the AlGaInP sub-cell causes current-mismatch and makes the
AlGaInP sub-cell current-limiting, which would affect the performance of multi-junction
solar cells.
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Figure 2. IQE spectra of fabricated AlGaInP/AlGaAs/GaAs (2.1 eV/1.7 eV/1.4 eV) T-3J solar cells
grown in upright (solid line) and inverted structure (dashed line). Inverted 2.1 eV AlGaInP sub-cell
presents decreased IQE compared with upright reference.

For solar cell devices, such a reduction in the IQE means poor carrier collection
efficiency and is mostly caused by the short minority carrier diffusion length in the base
or emitter, which is the result of an inappropriate thickness or doping concentration [13].
It is widely recognized that AlInP or AlGaInP compounds with high Al contents will
introduce more defects, such as Al-O defects [20–22], Si-related DX centers [23,24] and
P-vacancies [25]. Defects in solar cells have been characterized and modeled using DLTS
measurement [26–28], which should be controlled in high-efficiency solar cells. Usually,
compared with GaInP, high-Al-content compounds are grown at a higher temperature and
V/III ratio to decrease O-related defects and P-vacancies-related defects, respectively [13].
Si-related DX centers tend to grow with increasing Al-content and eventually reduce solar
cell performance [12,20,23,29]. However, since the architecture of both upright and inverted
devices remains the same, it is hard to explain the differences in IQE.

3.1.1. Effect of Growth Temperature

First, the influence of the growth temperature of inverted AlGaInP solar cells is investi-
gated. Since AlGaAs sub-cells grown in different directions (upright and inverted structure)
make no difference to the IQE performance, as shown in Figure 2, AlGaInP/AlGaAs dual-
junction solar cells are used in this paper for a tradeoff between optical environment and
process complexity [19]. As shown in Figure S3, the AlGaAs absorbing layer is 400 nm
thicker than the designed AlGaAs sub-cell in the T-3J structure to generate enough pho-
tocurrent and make the AlGaInP sub-cell current-limiting. Figure 3 depicts the IQE of
inverted AlGaInP sub-cells grown at increasing temperature from 690 ◦C to 720 ◦C (S-043,
S-036, S-033 and S-037), together with the IQE of the upright AlGaInP sub-cell grown at
710 ◦C (S-018) as a benchmark (dashed line). It is obvious that the IQE values of all the
inverted solar cells are lower than that of the upright one. For inverted AlGaInP solar
cells grown at 690 ◦C, 700 ◦C, 710 ◦C and 720 ◦C, the peak IQE is 86.3%, 86.0%, 83.1%
and 76.3%, respectively. Obviously, there is a remarkable reduction in the IQE as the
growth temperature elevates, although the difference between the solar cells grown at
690 ◦C (S-043) and 700 ◦C (S-036) is minor. Besides the decreased IQE, the open-circuit
voltage (Voc) of inverted AlGaInP/AlGaAs dual-junction solar cells decreases as the growth
temperature increases, as shown in Table 1. Considering the minor differences between
upright and inverted AlGaAs sub-cells, it is reasonable to attribute the decrease in Voc
to the degradation of AlGaInP sub-cells. The Voc loss of the inverted AlGaInP solar cells
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grown at 690 ◦C, 700 ◦C, 710 ◦C and 720 ◦C could be roughly estimated to be 49 mV, 98 mV,
101 mV and 130 mV, respectively, compared with the upright AlGaInP solar cell (S-018).
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(690 ◦C–720 ◦C, solid line), showing that higher temperature reduces carrier collection efficiency.
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Table 1. Light J–V results of dual-junction solar cells (S-018, S-043, S-036, S-033 and S-037).

No. Temp. (◦C) Jsc (mA) Voc (mV) Ff

S-018 710 11.79 2705 0.850
S-043 690 11.25 2656 0.732
S-036 700 11.18 2607 0.813
S-033 710 10.45 2604 0.791
S-037 720 9.36 2575 0.809

High-Al-content upright AlGaInP solar cells grown at higher temperatures are sup-
posed to have better performance [13,22,30]. However, the IQE curves of the inverted solar
cells in Figure 3 indicate the opposite results. As the temperature increases, the collection
efficiency of the inverted AlGaInP solar cell tends to decrease significantly. The drop in
the IQE mainly originates from the poor short-wavelength response. According to Hovel’s
model [31], reduced collection efficiency in short-wavelength range is mostly caused by
the topmost layers in the solar cell, namely the emitter and window layer. The minority
carrier diffusion length in the emitter (Lp) and interface recombination velocity between the
emitter and window layer might influence the short-wavelength IQE. Both parameters are
relevant to the doping levels of the emitter and window layer. Since the mole flows of the
dopants are fixed during the growth of the above sub-cells, in spite of varied temperatures,
such degradation might be related to increased defects and Si-related DX centers as a
result of increased Si dopant incorporation at an elevated temperature for high-Al-content
AlGaInP [24,32].

3.1.2. Effect of Doping Concentration

To investigate the influence of the Si dopant concentration, solar cells with reduced
doping levels in the window and emitter layers, as shown in Table 2, are then fabricated.
The IQE curves of AlGaInP sub-cells with different Si doping concentrations are displayed
in Figure 4.
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Table 2. Light J–V results of dual-junction solar cells (S-033, S-039, S-040 and S-043).

No. Temp. (◦C)
Doping Level (cm−3)

Jsc (mA) Voc (mV) Ff
Emitter Window

S-033 710 3E18 7E18 10.45 2604 0.791
S-039 710 3E17 7E18 10.38 2540 0.758
S-040 710 3E17 7E17 11.07 2545 0.671
S-043 690 3E18 6E18 11.25 2656 0.732
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Figure 4. IQE curves of inverted 2.1 eV AlGaInP solar cells grown at 710 ◦C (S-033, S-039 and S-040)
and 690 ◦C (S-043) with varied doping concentrations in emitter and window layer (detailed doping
levels of samples are listed in Table 2). Reduced Si doping level in emitter has little effect on IQE,
while reduced Si doping level in window causes an IQE recovery. In addition, Si-doped AlInP
window layer grown at lower temperature results in better material quality and enhanced IQE.

First, the influence of a Si-doped AlGaInP emitter layer with different dopant concen-
trations is considered. A lower doping level by one order of magnitude in the Si-doped
emitter layer of S-039 (3 × 1017 cm−3) compared to that of S-033 (3 × 1018 cm−3) results in
a Voc loss of about 60 mV, which could be estimated by the built-in voltage in equilibrium
(Vbi) caused by the lower emitter concentration. The reduced emitter concentration would
result in a longer minority carrier lifetime in the emitter and less recombination loss. How-
ever, the IQE curve of S-039 remains almost the same as that of S-033, which suggests that
the carrier collection efficiency is not dominated by the emitter layer.

Then, the impact of the doping level in the window layer is considered and analyzed.
S-040 (7 × 1017 cm−3) with a further reduced doping level of the Si-doped AlInP window
layer is fabricated and compared with S-039 (7 × 1018 cm−3). The Voc values of S-039 and
S-040 are almost the same, which could be attributed to the identical doping level in the
emitter. The poor FF of S-040 is greatly degraded due to a high barrier for the majority
carrier across the interface between the window and emitter caused by the decreased
doping concentration in the window. In particular, the IQE presents an appreciable recovery
from the poor short-wavelength response and is enhanced by 10% to 20%, which means
that the window layer plays a more dominating role in the short-wavelength response
of the inverted AlGaInP solar cells than the emitter layer. It seems that the lower doping
level in the Si-doped AlInP window layer might improve the IQE performance, which is
rather counter-intuitive. According to the traditional Hovel’s model [31,33], the doping
concentration in the window layer has little direct impact on the carrier collection efficiency.
In addition, the solar cells fabricated in this paper possess a front-emitter structure with
nearly all depleted emitters. The change in the interface recombination velocity only
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slightly contributes to the total collection efficiency. Thus, it suggests that the improved
carrier collection efficiency comes from the recovered minority carrier diffusion length in
the emitter layer. The Si doping concentration of the window layer might play an important
role in the minority carrier transport process.

However, S-043 (690 ◦C) with a high doping level in the window layer (6 × 1018 cm−3)
shows even a slightly improved IQE compared with S-040 (710 ◦C). At 690 ◦C, higher
Si-doped in the AlInP window layer seems to have little effect on the material quality of
the active layer. It proposes that a reduction in the IQE is not simply caused by the Si
doping level in the window layer. The growth temperature of the window layer, besides
the doping level, will also result in a reduction in the solar cell performance directly.

3.1.3. Effect of Window Verified by 2.1 eV AlGaInP DHs

AlInP/AlGaInP DHs are employed to determine the impact of the AlInP window
layer on the 2.1 eV Al0.18Ga0.33In0.49P bulk layer. The DH consists of a 500 nm Si-doped
2.1 eV Al0.18Ga0.33In0.49P bulk layer, which is embedded between a 100 nm Si-doped AlInP
barrier. Besides the samples grown at 690 ◦C and 710 ◦C, another temperature-shift-grown
DH, meaning a 2.1 eV AlGaInP layer grown at 710 ◦C and AlInP barrier grown at 690 ◦C, is
prepared. Growth pauses of 120 s are introduced at both interfaces to ramp up or down
the temperature, with a moderate PH3 inlet to stabilize the growth surface. In addition,
all three DHs (710 ◦C/710 ◦C, 690 ◦C/690 ◦C and 690 ◦C/710 ◦C) have the same growth
pause between the AlInP barrier and AlGaInP bulk layer to keep the interface conditions
identical. The doping concentrations of the Si-doped AlInP barriers are the same as those
in the AlGaInP sub-cells grown at different temperatures (7 × 1018 cm−3 for 710 ◦C and
6 × 1018 cm−3 for 690 ◦C).

Figure 5 displays the time evolution of the PL intensity of the DHs. The DHs show
emission peaks in the Al0.18Ga0.33In0.49P bulk layer at 584.3 nm when excited at 532 nm,
which is consistent with the designed bandgap of 2.1 eV. Pure mono-exponential decays
present good fits, with minor deviations from the experiments in the analysis. In Figure 5,
the lifetime increases from 3.96 ns to 6.04 ns when the growth temperature decreases from
710 ◦C to 690 ◦C, which corresponds to the IQE result in Figure 4. An increasing lifetime
from 6.04 ns to 9.55 ns in the temperature-shift DH is observed, as expected. It could be
attributed to the decreased Al-O defects of the AlGaInP layer grown at a higher temperature.
A detailed mechanism of the defects in such layers might be complicated [26–28] and
is beyond the scope of this paper. However, the results support the aforementioned
assumption that a high growth temperature would damage the Si-doped AlInP window
layer and further affect the subsequent growth.

3.1.4. Fabrication of Improved Solar Cells

Based on the above results, an improved AlGaInP/AlGaAs inverted solar cell with a
lower growth temperature of the Si-doped AlInP window layer is fabricated. As shown in
Table 2 and Figure 4, the Si-doped AlInP window layer grown at 690 ◦C could achieve a
high doping concentration without the deterioration of the material quality and result in
tradeoffs between the IQE and FF.

Figure 6 shows the IQE and I-V curves of the improved inverted solar cell (S-051).
As a contrast, the results of the conventional inverted cell (S-033) and upright cell (S-018)
are also presented. All three solar cells have the same doping level in the emitter layers,
which is 3 × 1018 cm−3. The doping level in the window layer of S-051 (6 × 1018 cm−3) is
slightly lower than that of S-033 and S-018 (7 × 1018 cm−3). In Figure 6a, the peak IQE of
the improved inverted AlGaInP solar cells rises from 83.3% to 88.2%. The IQE curve of the
improved cell shows an almost full recovery from that of the upright cell except for a small
gap in the 400 to 500 nm range. In addition, the Jsc of the optimized inverted AlGaInP
cell rises from 10.45 mA/cm2 to 11.47 mA/cm2. The fill factor also improves from 0.789 to
0.827, resulting in an improvement in the IV curve shape. Optimized AlGaInP/AlGaAs
dual-junction solar cells achieve a 60 mV Voc increment compared with the traditional
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structure, resulting in an enhanced efficiency from 15.87% to 18.68% for dual-junction
AlGaInP/AlGaAs solar cells. As shown in Table 3, the performance of the improved cell
(S-051) is still lower than the upright cell (S-018). The performance difference might be
attributed to the thermal load of the AlGaInP sub-cell and tunnel junction [15,34–36], which
is at the bottom of the dual-junction solar cell. Dopant diffusion in the active layer would
cause Voc loss and have an impact on the p-n junction. However, the recovered IQE and Jsc
values of S-051 clearly demonstrate the effect of the Si-doped AlInP window layer on the
performance of the inverted AlGaInP solar cell.
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Improved carrier collection efficiency of the AlGaInP sub-cell helps to enhance the
current-match condition of the T-3J solar cell and improve the solar cell performance. The
optimized inverted GaAs T-3J sub-cell is then applied to the fabrication of the SBT five-
junction solar cell. The bottom two-junction solar cell (B-2J) consists of InGaAsP (1.04 eV)
and InGaAsP (0.8 eV), which is deposited lattice-matched to the InP substrate and has been
well-optimized [10,37]. The GaAs T-3J and InP B-2J sub-cell are then processed through
the semiconductor direct bonding technique to form a two-terminal 5J solar cell. After the
standard III-V-device-fabricated process, a broadband ZnS/MgF2 ARC is deposited on top
of the surface to reduce current loss. Then, the fabricated 5J solar cell is measured under the
AM0 spectrum simulator with multiple reference cell calibration. With the improvement in
the AlGaInP top-cell, the SBT-5J solar cell achieves an efficiency of 35.39% (AM0, 25 ◦C) [10],
which shows a Voc of 4.925 V, a Jsc of 11.37 mA/cm2 and an FF of 0.8554.

3.2. Structure Optimization in GaAs Sub-Cell

The SBT-5J solar cell performance has been increased through the optimization of
the AlInP window layer in inverted AlGaInP sub-cells. However, as shown in Figure 2,
inverted GaAs sub-cells also slightly suffer from poor material quality of the Si-doped
AlInP window layer. For the upright GaAs solar cell structure, the AlInP window layer is
deposited after the Si-doped GaAs emitter layer and Zn-doped GaAs base layer, acting as a
passivation layer to prevent minority carrier transport from the emitter. On the contrary,
inverted GaAs sub-cells will deposit the AlInP window layer first. As discussed earlier,
the Si-doped AlInP window layer in inverted solar cells will deteriorate the subsequent
active layer and decrease the solar cell performance. As shown in Figure 7, GaAs solar cells
with an upright and inverted structure are fabricated and measured. Both GaAs solar cells
have an AlGaAs absorbing layer to simulate the GaAs sub-cell in multi-junction solar cells.
The structure and doping profile of both solar cells are identical, which all have a 3500 nm
p-GaAs base layer, 100 nm n+-GaAs emitter layer and 120 nm n+-AlInP window layer. The
IQE of the upright GaAs solar cell remains 97.5% between 750 nm and 850 nm. However,
the IQE of the inverted GaAs solar cell decreases, especially in a short wavelength, between
750 nm and 800 nm. The IQE of the inverted GaAs solar cell suggests decreased carrier
collection efficiency in the GaAs emitter layer, which is suggested to be caused by the
Si-doped AlInP window layer beneath the GaAs emitter layer.
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As shown in the optimization route of AlGaInP solar cells, the Si-doped AlInP window
layer beneath the GaAs active layer would have impacts on the subsequent emitter layer.
According to a calculated band diagram of the GaAs sub-cell [10], the interface recombi-
nation velocity between the GaAs emitter and AlInP window layer will also influence the
carrier collection efficiency in a short wavelength, which would also cause recombination
loss in the GaAs emitter layer. An optimization of the solar cell structure is performed to
mitigate the effect that uses a wide bandgap emitter layer in the GaAs solar cell. GaAs
heterojunction solar cells with a wide bandgap emitter will decrease the photon generation
rate in the emitter layer near the GaAs band edge and, therefore, decrease the recombina-
tion rate in the emitter layer [38]. In multi-junction solar cells, the GaAs heterojunction
sub-cell is more effective because the high-energy photon is mostly absorbed in the top
sub-cell. Recombination loss in the wide bandgap emitter layer could be partly eliminated.
Band discontinuities in the heterointerface will cause band offset between the base layer
and wide bandgap emitter layer. A large band offset in the conduction band interface will
suppress electron transport from the depletion region to the emitter and deteriorate solar
cell performance [39]. It is important to minimize the band offset in a p-n heterojunction.
AlInP, GaInP and AlGaAs are commonly used wide bandgap emitter layers with a p-GaAs
base layer. Among them, the GaInP/p-GaAs heterojunction has minimized the band offset,
which is 0.08 eV, and is most suitable for GaAs heterojunction solar cells [39–42].

With a set of optimization route, a 20 nm Si-doped GaInP emitter layer is introduced
in the inverted GaAs sub-cell to mitigate the effect of the AlInP window layer. The doping
level of the Si-doped GaInP emitter layer is 2 × 1018 cm−3. The GaAs sub-cell is grown
at 680 ◦C to achieve a better performance. An inverted AlGaInP/AlGaAs/GaAs 3J solar
cell is then fabricated. The inverted 3J solar cell is processed with semiconductor bonding
technology with an InP buffer layer. With the help of decreased recombination loss and
improved built-in potential [43,44], the optimized 3J solar cell achieves a Voc of 3830 mV
and an FF of 0.854 under AM0 illumination. The IQE curves in Figure 8b show that the
GaInP/p-GaAs heterojunction solar cell retains the same carrier collection efficiency with
the GaAs homojunction solar cell. Unwanted low carrier collection efficiency in the wide
bandgap GaInP emitter is avoided by the design of the multi-junction structure.
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As the performance of the GaAs T-3J solar cell is improved by the GaAs sub-cell,
previously fabricated 5J solar cells [10] could be enhanced further. SBT-5J solar cells with
GaAs heterojunction sub-cells are fabricated using the standard III-V-device-fabricated
process. The solar cell area is 2 × 2 cm2 in size. The bandgap of the 5J solar cell is 2.1 eV,
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1.7 eV, 1.4 eV, 1.04 eV and 0.80 eV, respectively. The calculated current density of the sub-
cell from the EQE curve is shown in Figure 9a. This agrees with the light IV measurement
under the AM0 spectrum, which shows a Jsc of 11.29 mA/cm2. After the optimization of
the AlGaInP and GaAs sub-cells, optimized 5J solar cells achieve an excellent performance.
The solar cell efficiency improves to 35.61% under the AM0 spectrum (AM0, 25 ◦C). An
enhanced Voc of 4961 mV and FF of 0.861 are achieved. The average voltage loss of the
sub-cell could be estimated to be around 410 mV.
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Figure 9. EQE curve (a) and light J–V curve (b) of SBT 5-junction solar cell. The bandgap combination
of optimized SBT-5J solar cell is 2.1 eV, 1.7 eV, 1.4 eV, 1.04 eV and 0.8 eV, which is made of AlGaInP,
AlGaAs, GaAs, InGaAsP and InGaAsP sub-cell, respectively. Light J–V curve is measured under
AM0 spectrum (AM0, 25 ◦C) and calibrated by multiple reference cells.

4. Conclusions

The effect of an Si-doped AlInP window layer on the performance of an SBT-5J solar
cell was studied. It was confirmed that a higher growth temperature damages the quality
of the Si-doped AlInP window layer, and it further deteriorates the subsequent active
layers, which is supported by the results from the carrier lifetime investigation. Based on
that, improved growth sequences for inverted 2.1 eV AlGaInP solar cells and improved
n-GaInP/p-GaAs heterojunction structures for GaAs solar cells were then proposed. By the
optimization of the inverted T-3J solar cell structure, the influence of the heavily Si-doped
AlInP window layer is decreased. A fabricated inverted AlGaInP sub-cell achieves an
enhanced QE of 10% to 20% and the peak IQE rises from 83.3% to 88.2%, which presents a
nearly identical IQE compared with the upright reference. Further optimization in GaAs
sub-cells decreases the recombination loss in the emitter caused by the poor AlInP window
layer. The optimized structure significantly improves the Voc of inverted GaAs-based 3J
solar cells to 3830 mV, boosting the efficiency of the five-junction solar cells to 35.61% under
AM0 illumination. The demonstration confirms the important role of the Si-doped AlInP
window layer during the growth of inverted solar cells.
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