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Abstract: Lithium niobate (LN) is a promising optical material, its micro–nano structures have been
applied to fields such as photonic crystals, nonlinear optics, optical waveguides, and so on. At
present, lithium niobate structural colors are rarely studied. Although the nanograting structure
was researched, it has such large full width at half-maximum (fwhm) that it cannot achieve red,
green, or blue pixels or other high-saturation structural colors, thus, its color printing quality is
poor. In this paper, we design and simulate lithium niobate nanodisk metasurface resonators
(LNNDMRs), which are based on Mie magnetic dipole (MD) and electric dipole (ED) resonances.
In addition, the resonators yield very narrow reflection peaks and high reflection efficiencies with
over 80%, especially the reflection peaks of red, green, and blue pixels with fwhm around 11 nm,
9 nm, and 6 nm, respectively. Moreover, output colors of different array cells composed of single
nanodisk in finite size are displayed, which provides a theoretical basis for their practical applications.
Therefore, LNNDMRs pave the way for high-efficiency, compact photonic display devices based on
lithium niobate.

Keywords: lithium niobate; nanodisk metasurface resonators; Mie resonance; structural colors;
array cells

1. Introduction

In nature, the wings of Morpho butterflies [1,2] and the feathers of peacocks [3,4]
display vivid colors, known as “structural colors”, which are the result of the interac-
tion of visible light with periodic nanostructured materials on their surfaces. Compared
to conventional dye pigments, which are susceptible to optical damage and somewhat
hazardous to the environment [5], structural-color-based pixels offer the merits of high
resolution, good sustainability, and environmental friendliness. Thus, structural colors have
become a fascinating field in science and engineering in recent years [1,6–9]. For artificial
structural colors, methods based on Fabry−Perot (FP) cavity multilayer structure [10,11]
and plasmonic nanostructures [12,13] have emerged in large numbers; however, there
are still some challenges. Typically, the practical application of multilayer structures is
still limited due to complex fabrication processes and durability and oxidation issues [14].
In addition, for plasmonic nanostructures, their reflection peaks are generally broad and
less intensive [12,15] due to the inherent loss of metals in the visible region. Furthermore,
although the approach of applying the metasurface concept to plasmonic metals boosts
light–matter couplings [16–18], the intrinsic Ohmic losses still hinder their applications.

To solve these problems, all-dielectric metasurface materials with high refractive
indices have become brilliant alternatives. Proust et al. [19] utilized Si Mie resonators
and achieved an all-dielectric color metasurface, but silicon has very strong absorption
in the visible light range (when the wavelength λ is smaller than 450 nm, the imaginary
part of permittivity sharply increases with the decrease of λ), which directly brings about
challenges in generating blue and purple pixels. Xiao et al. [20] reported on the generation
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of colors in TiO2 metasurfaces, the cross-section of the structure is a 72◦ trapezoidal face that
is difficult to control and fabricate. Recently, due to several advantages of lithium niobate
(LiNbO3, LN) (i.e., its large refractive index, wide transparency wavelength, and large
second-order nonlinear coefficient), it has been widely studied and applied in the fields of
optics and photonics [21–24]. A complete set of optical components has been developed on
the LN platform with decent performance, such as nonlinear wavelength converters [25]
and broadband frequency comb sources [26], as well as photon-pair sources [27]. The
functional devices require the fabrication of micro–nano structures. Due to its stable
physical and chemical characteristics, it is a challenge for chemical etching and mechanical
sculpture. Fortunately, until now, laser beam writing [28], focused ion beam milling [29]
and other fabrications [30,31], has emerged for the processing of lithium niobate micro
and nanostructures. Moreover, a technique called “smart cut” [32,33] has been developed
specifically for the production of various thin-film materials. Through a series of processes
such as ion implantation, direct bonding, and thermal annealing, the technique can peel off
a single-layer lithium niobate single-crystal film from the bulk material and transfer it to the
target substrate, and its properties are almost the same as the bulk material performances.
Based on the above analysis and processing methods, however, structural colors based on
lithium niobate are rarely reported, even if only the nanograting structure of LN on quartz
was researched to generate transmission colors [34], but the full width at half-maximum
(fwhm) of the nanostructure is large, resulting in a low saturation, which means that other
spectral components corresponding to other colors are incorporated. Thus, the lithium
niobate nanograting metasurfaces are incapable of generating red, green, and blue (RGB)
color pixels and then causing low-quality structural color printing.

Here, we design and numerically simulate lithium niobate nanodisk metasurface res-
onators (LNNDMRs) and find that the resonators exhibit narrow peaks and high reflection
efficiencies, meanwhile, we demonstrate that electric and magnetic dipole moments are
well-formed in lithium niobate nanodisk metasurface resonators. Additionally, LNNDMRs
shows output colors of different array cells consisting of single nanodisks in finite size.

2. Results and Discussion

Figure 1a exhibits the structure of all-dielectric lithium niobate nanodisk metasurface
resonators (LNNDMRs) with the multi-functional material lithium niobate (LN) as the
metasurface structure and low refractive index glass (SiO2) as the substrate. The period (P)
and diameter (D) are tunable parameters that allow the resonance peaks to shift in the visible
wavelength range. The optical constants of LN and glass are plotted in Figure 1b. In order
to design metasurface resonators with better regularity, we define the period occupancy
rate (POR) of each structure, that is, the radius divided by the period; the expression is
POR = (D⁄2/P) × 100%. Figure 1c shows the reflection spectra of the RGB color pixels based
on LN nanodisk resonators, the fwhm of red, green, and blue reflection spectra are around
11 nm, 9 nm, and 6 nm, respectively. Lithium niobate nanodisk metasurface resonators
(LNNDMRs) generate the very narrow fwhm, resulting in higher saturation colors than
structures in published papers [35]. In addition, the dimensions of the structures are also
listed in the legend; thus, we can conclude that the PORs of RGB nanodisk metasurface
resonators are around 27.25%, 27.03%, and 25%, respectively. The corresponding output
colors of the RGB color pixels are depicted in a standard International Commission on
Illumination (CIE) 1931 chromaticity diagram (Figure 1d), indicating the generation of
the high-saturation RGB colors by virtue of the proposed metasurfaces with the specially
selected periods and diameters.
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Figure 1. Reflection spectra and structural colors. (a) Schematic of the arrays of LN nanodisks on a 
glass substrate. The height of the nanodisks is 500 nm (H = 500 nm); the diameter (D) and the period 
(Px = Py = P) are free parameters. (b) The top shows optical constants of LN; the bottom shows 
optical constants of glass. The refractive index (n) and extinction coefficient (k) are illustrated as red 
and blue solid lines, respectively. (c) Reflection spectra of the RGB color pixels based on LNNDMRs. 
Dimensions: D = 218 nm, P = 400 nm (red); D = 200 nm, P = 370 nm (green); D = 140 nm, P = 280 nm 

Figure 1. Reflection spectra and structural colors. (a) Schematic of the arrays of LN nanodisks on a
glass substrate. The height of the nanodisks is 500 nm (H = 500 nm); the diameter (D) and the period
(Px = Py = P) are free parameters. (b) The top shows optical constants of LN; the bottom shows
optical constants of glass. The refractive index (n) and extinction coefficient (k) are illustrated as red
and blue solid lines, respectively. (c) Reflection spectra of the RGB color pixels based on LNNDMRs.
Dimensions: D = 218 nm, P = 400 nm (red); D = 200 nm, P = 370 nm (green); D = 140 nm, P = 280 nm
(blue). (d) The direct output (black pentagram) structural colors from reflection spectra of LNNDMRs
with RGB in CIE 1931 color map.

After that, based on the structures of the RGB pixels, the positions of the reflection
peaks are only shifted by changing the diameter, which results in the generation of high
saturation structural colors. Figure 2a shows several output colors with diameters from
132 nm to 148 nm when the period is 280 nm. As the diameter increases, the colors change
from purple to blue. Figure 2b shows the output colors changing with the diameter when
the period is 370 nm; the structure obtains colors such as green, chartreuse, dark green, and
so on. Figure 2c shows the situation of the period at 400 nm; red, pink, and wine colors are
displayed. Thus, LN nanodisk metasurface resonators not only produce RGB pixels and
other brilliant colors, but also possess high saturations compared to previously reported
lithium niobate nanograting metasurfaces [34]. Likewise, we can conclude that, with the
change of diameter, the reflections of LNNDMRs are almost above 80% with narrow full
widths at half-maximum. Upon further consideration, such brilliant output colors are
manifested due to the higher refractive index contrast between the all-dielectric lithium
niobate and the glass. Mie resonance theories explain the phenomenon [36]. In principle,
each lithium niobate nanodisk resonator sustains a Mie electric dipole (ED) resonance and
a Mie magnetic dipole (MD) resonance. We design periodic nanodisks so that the proximity
resonance can occur when the Mie multiple resonators are arrayed closely, effectively
enhancing the magnitude of the resonant modes. Therefore, lithium niobate nanodisk
metasurface resonators (LNNDMRs) are formed. Under further analysis, the periodically
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placed lithium niobate nanodisks can even form the so-called photonic band gap, which
shall suppress other high-order resonant modes and remarkably improve obvious color
impressions.
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Figure 2. Simulated reflection spectra and structural colors. (a) Output colors for LNNDMRs at a
period of 280 nm. (b) Output colors for LNNDMRs at a period of 370 nm. (c) Output colors for
LNNDMRs at a period of 400 nm.

For the above analysis, we numerically simulate and calculate the reflection spectra of
LNNDMRs as a function of nanodisk diameter (Figure 3b) with commercial finite-difference
time–domain software (Lumerical FDTD Solutions 2018a). The incident light is along the
z-axis, and the polarization direction is along the x-axis (Figure 3a). When the diameter
is 206 nm, the maximum reflection peak appears at the wavelength of 587 nm. With the
increase of diameter, the resonant mode continuously shifts to longer wavelengths. To
further verify the mechanism of the resonance in LNNDMRs, we select two representative
resonance cases at a diameter of 218 nm and mark them with yellow pentagrams, labeled
Mode i and Mode ii, respectively (Figure 3b). Simultaneously, Figure 3c depicts electric (E)
field distributions at the above two resonant peaks, in which the upper group of diagrams
show the field distribution on the z = 0 plane, and the lower group of diagrams show the
field distribution on the y = 0 plane. For the resonance Mode i at 605 nm, a resonance peak
is excited, which is due to the magnetic dipole (MD) mode. In addition, the conclusion
can be proved by the electric field distribution from the y = 0 plane (Figure 3c-Mode i),
there is a clear circulating electric field loop inside the LN nanodisks, which partially
extends into the glass. Moreover, the MD resonance-enabled reflection peak tends to show
redshift, which has been explained in the literature, and the redshift of the MD resonance
requires the analysis of the physics behind the photo-induced processes taking place in
the nanodisks [37]. Similarly, we can conclude that the obtained narrow band reflection
spectrum of the proposed red pixel, as presented in Figure 2c, shows simple resonance.
While, for the resonance Mode ii at 700 nm, the resonance shows a more complex electric
dipole (ED) mode with two adjacent circulating electric currents in the incidence plane
and weak electric field enhancement (Figure 3c-Mode ii), which is in good agreement with
previous works [38–40]. Meanwhile, in Figure 3b, since the magnetic resonance is the
fundamental resonant mode, there are no resonances on the red peak side. In addition, the
periodic nanodisk yields a band gap that beneficially suppresses the higher-order modes.
In this sense, the lithium niobate nanodisk metasurface resonators (LNNDMRs) can have
notable advantages in displaying structural colors, such as saturation and contrast.
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Figure 3. Mechanism of LNNDMRs. (a) Schematic illustration of a LN nanodisk resonator with
plane wave excitation, where the polarization is along the x-axis; k is the wave vector of the incident
white light. The origin of the coordinate system is placed at the center of the structure. (b) The
reflection spectra versus different radiuses of LN nanodisks with periodic P fixed to 400 nm. Yellow
pentagrams refer to the chosen two resonance wavelengths corresponding to a diameter of 220 nm.
(c) E-field distributions at resonances Mode i and Mode ii on the y = 0 and z = 0 plane. The structure
of LNNDMRs, comprising LN nanodisk and glass substrate, is denoted by the white dashed line.
The grey arrow lines give a schematic representation of the instantaneous electric field lines around
the resonator.
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On the other hand, for the above output colors, the simulations are performed under
the periodic boundary conditions of the lithium niobate nanodisk metasurface resonators
(LNNDMRs), that is, infinite arrays are assumed to extend in the x-direction and y-direction.
Meanwhile, the infinite arrays of nanodisks are impossible to fabricate, and the color pixels
display structural colors at a finite size [41]. Therefore, considering the possibility in
practical applications, we simulate the output colors of different array cells consisting of
single nanodisks with the same diameter and period, which provides a theoretical basis
for industrial production. Figure 4 depicts the output colors of a variety of array cells.
Perfect matching layer (PML) conditions are applied along the x-direction, y-direction, and
z-direction in the commercial software of Lumerical FDTD Solutions 2018a. The results
obtained for the array cells consisting of a single nanodisk with a diameter of 218 nm and a
period of 400 nm are shown in Figure 4I. The reflection spectra of the array cells of 4 × 4,
8 × 8, 16 × 16, and 32 × 32 are calculated in Figure 4I-a, respectively. Simultaneously,
Figure 4I-b plots the changes to the reflection peak and full width at half-maximum in the
case of the different array cells. With the increase of the number of single nanodisks in
the array cells on LNNDMRs, the reflection peak becomes stronger at full width and at
half-maximum (fwhm) becomes narrower. The result proves the previously mentioned
theory that periodic densely placed nanodisk array cells effectively increase the amplitude
of the resonant mode and create a so-called photonic band gap, which shall narrow fwhm
and inhibit other high-order resonant modes. On the basis of reflection spectra, colors are
calculated and shown in Figure 4I-c. The color of array cells at the dimension on LNNDMRs
gradually tends to red, in particular, at 32 × 32 array cells, the reflection peak is more than
50%, and the FWHM is also below 20 nm. To further ensure the ability of LNNDMRs to
generate other colors, the consequence of array cells consisting of a single nanodisk with
D = 202 nm, P = 370 nm and D = 140 nm, P = 280 nm are shown in Figure 4II,III, respectively.
Similarly, for the nanodisk structure with dimensions D = 202 nm and P = 370 nm, the
reflection peak is close to 50%, the FWHM is also lower than 20 nm (Figure 4II-d,e), and
the color is prone to develop towards green at 32 × 32 array cells. However, for the
size of D = 140 nm, P = 280 nm, the reflection peak is close to 35% at 46 × 46 array cells
(Figure 4III-g,h), and the LNNDMRs gradually show blue (Figure 4III-i). We believe that
the results are related to the period occupancy rate (POR) of each structure (as defined
above), because the POR of the structure in Figure 4III is smaller than that of the other two
structures. We obtain structural colors at finite sizes, demonstrating that LNNDMRs are
helpful and effective.
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D = 140 nm, P = 280 nm: (g) Reflection spectrum at 5 × 5, 10 × 10, 23 × 23, and 46 × 46 array cells.
(h) Reflection peaks and FWHM for different array cells. (i) Output colors with different array cells.

3. Conclusions

In summary, we designed an all-dielectric lithium niobate nanodisk metasurface res-
onators (LNNDMRs) to determine structural colors. Through numerical simulation and
analysis, the resonators generate very narrow and high-intensity reflection peaks, and out-
put colors of the RGB pixels are plotted in the CIE color map. Meanwhile, chartreuse, pink,
purple, wine color, and other output colors are obtained with the change of diameter in the
case of different periods, proving that the structure of the LNNDMRs produces abundant
structural colors. For this phenomenon, by analyzing the electric (E) field distribution of
the nanodisk on the y = 0 plane, it is explained that the reflection peaks of lithium niobate
nanodisk metasurface resonators are excited by Mie magnetic dipole and electric dipole
resonances. Moreover, we simulated the output colors of different array cells composed of
single nanodisks in finite size, which provides a theoretical basis for production. Therefore,
it has wide prospects in the practical application of high-efficiency and compact display
devices based on lithium niobate.
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