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Abstract: The study of entanglement between discrete and continuous variables is an important
theoretical and experimental topic in quantum information processing, for which entanglement
swapping is one of the interesting elements. Entanglement swapping allows two particles without
interacting with each other in any way, to form an entangled state by the action of another pair
of entangled particles. In this paper, we propose an experimentally feasible scheme to realize
deterministic entanglement swapping in the hybrid system with discrete and continuous variables.
The process is achieved by preparing two pairs of entangled states, each is formed by a qubit and
two quasi-orthogonal coherent state elements of a cavity, performing a Bell-state analysis through
nonlocal operations on the continuous variable states of the two cavities, and projecting the two
qubits into a maximally entangled state. The present scheme may be applied to other physical
systems sustaining such hybrid discrete and continuous forms, providing a typical paradigm for
entanglement manipulation through deterministic swapping operations.

Keywords: entanglement swapping; discrete variables system; continuous variables system

1. Introduction

Since the theory of quantum mechanics was proposed, it has never ceased exploring
the physical properties of the world. As revealed by Einstein, Podolsky, and Rosen in their
seminal paper [1], when two subsystems are prepared in an entangled state, their properties
exhibit nonlocal correlations even if they are separated in space. This feature is in sharp
contrast with local realism, which assumes that the observable of an object has definite
values no matter whether they are measured or not, and they are not affected by events
taking place sufficiently far away. The nonlocal correlation can be captured by the violation
of Bell’s inequalities [2,3]. Besides being central to the fundamentals of quantum mechanics,
entanglement is also of great importance in the work of many quantum information tasks
such as quantum teleportation [4] and measurement-based quantum computation [5]. Due
to such nonlocal properties, two particles initially without any interaction could be put into
an entangled state through certain ways of nonlocal manipulation, for which entanglement
swapping is one of the unique ways [6]. The sketch of entanglement swapping is shown in
Figure 1.

Quantum information processing has been carried out in different types of informa-
tion encoding, depending on observable variables (the degree of freedom), which can be
discrete or continuous [7]. Conditional entanglement swapping has been experimentally
demonstrated in photonic qubits [8–17]. In these experiments, swapping of entanglement
succeeded probabilistically based on the fact that only a small portion of experimental runs
were detected due to photon loss on optical components. Up to 2008, Riebe et al. reported
the first experimental demonstration of deterministic, high-fidelity entanglement swapping
in ionic qubits [18]. Recently, an experiment has been performed to demonstrate the deter-
ministic entanglement swapping with qubits in a superconducting circuit [19], and further
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revealed the striking features of quantum mechanics by using the delayed-choice man-
ner [20]. Experimental demonstrations of unconditional entanglement swapping have
been reported in photonic continuous variables [21,22], but the entanglement after the
swapping was quite incomplete due to the limitation of entanglement degree of freedom in
the initial entangled pairs. Entanglement swapping utilizing hybrid discrete and continu-
ous variables has also been proposed or demonstrated in optical systems [23,24], where
the progress has been made to bridge the two approaches that took advantage of their
respective intrinsic superiority.
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𝑪𝟏
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entangled

state
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state
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Figure 1. Sketch of entanglement swapping. Initially, Q1 is entangled with C1 and Q2 with C2.
Bell state measurement on the cavities C1 and C2 will project Q1 and Q2 to one of four orthogonal
maximum entangled states.

In this paper, we propose a scheme for the realization of deterministic swapping with
hybrid discrete- and continuous- variable systems, embodied, respectively, with qubits and
two quasi-orthogonal coherent state elements of two cavity modes. This work is divided
into the following steps: (i) Preparation of two pairs of maximally entangled states of hybrid
subsystems. (ii) Realization of nonlocal operations on two cavities through the controlled
phase gate (CPHASE gate) operation assisted by an ancilla qubit plus two displacement
operations on each cavity before and after the CPHASE gate, to convert the entangled
type of the quasi-orthogonal coherent state elements involved in the whole system state
to the direct product of even and odd cat state elements, before being mapping into two
states of the ancilla qubit. (iii) Measurement of the cavity states by first coupling them with
the ancilla qubit in succession and then mapping the even (odd) cat state elements of the
cavities to the ground (excited) state of the ancilla qubit; the successive twice measurement
of the ancilla’s states finally projects the two qubits to one of four maximally entangled
states. This work can be extended to kinds of physical systems for such or other types
of entanglement manipulation [25–31], enriching the ways of quantum state control in
hybrid systems.

The paper is organized as follows. In Section 2, we describe the preparation of two
pairs of hybrid entangled states of the qubits and the cavity modes. In Section 3, we discuss
the Bell state measurement by use of an ancilla qubit, to perform CPHASE gate operation
on the two cavities which are entangled with the qubits in the form of the quasi-orthogonal
coherent state elements involved in the whole system state, to convert them to the direct
product of even or odd cat state elements. In Section 4, we show how these different cat
state elements of the cavities can be distinguished by mapping them to the ancilla qubit’s
states. In Section 5, we give the conclusion.

2. Preparation of Hybrid Entangled States in Two Subsystems

In order to get the hybrid qubit–cavity entangled state, we initialize each qubit–cavity
subsystem state as

|ψ0〉 =
1√
2
(|g〉+ |e〉)|α〉. (1)

The coupling between the qubit and the cavity in this subsystem is described by the
Hamiltonian [32–35]

H0 = −χQC|e〉〈e|a†a, (2)
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where χQC is the effective qubit–cavity coupling strength, which describes the strength
of the Stark shifts induced by the dispersive qubit–cavity coupling; a† and a denoting the
raising and lowering operators for the cavity’s quantum number.

Under the control of H0 in Equation (2), the state element |g〉|α〉 keeps constant,
while |e〉|α〉 evolves as |e〉

∣∣∣αeiχQCt
〉

. For an interaction time t = π/χQC, the initial state
in Equation (1) transforms into the target hybrid entangled state, which we write down,
respectively, for (Q1, C1) and (Q2, C2) as

|ψ〉Q1C1
=

1√
2

(
|g〉Q1

|α〉C1
+ |e〉Q1

|−α〉C1

)
(3)

and

|ψ〉Q2C2
=

1√
2

(
|g〉Q2

|α〉C2
+ |e〉Q2

|−α〉C2

)
. (4)

Obviously, in each subsystem the qubit is maximally entangled with the cavity field
sustaining the continuous variable coherent state element:

|±α〉 = e−|α|
2/2

∞

∑
n=0

(±α)n
√

n!
|n〉. (5)

Thus, the state of the whole system can be written as

|ψ〉 =
1
2
(
|Φ+〉Q1Q2 |Φ

+〉C1C2 + |Φ
−〉Q1Q2 |Φ

−〉C1C2

+|Ψ+〉Q1Q2 |Ψ
+〉C1C2 + |Ψ

−〉Q1Q2 |Ψ
−〉C1C2

)
, (6)

with

|Φ±〉Q1Q2 =
1
2
(
|g〉Q1 |g〉Q2 + |g〉Q1 |e〉Q2 ± |e〉Q1 |g〉Q2 ∓ |e〉Q1 |e〉Q2

)
,

|Ψ±〉Q1Q2 =
1
2
(
|g〉Q1 |g〉Q2 − |g〉Q1 |e〉Q2 ± |e〉Q1 |g〉Q2 ± |e〉Q1 |e〉Q2

)
,

|Φ±〉C1C2 =
1
2
(
|α〉C1 |α〉C2 + |α〉C1 | − α〉C2 ± | − α〉C1 |α〉C2 ∓ | − α〉C1 | − α〉C2

)
,

|Ψ±〉C1C2 =
1
2
(
|α〉C1 |α〉C2 − |α〉C1 | − α〉C2 ± | − α〉C1 |α〉C2 ± | − α〉C1 | − α〉C2

)
, (7)

where {|Φ+〉Q1Q2 , |Φ−〉Q1Q2 , |Ψ+〉Q1Q2 , |Ψ−〉Q1Q2} and {|Φ+〉C1C2 , |Φ−〉C1C2 , |Ψ+〉C1C2 ,
|Ψ−34〉C1C2} represent two groups of orthogonally entangled state subspaces formed by
the qubits and the cavity modes, respectively.

3. The State Conversion of the Two Cavities: From the Entangled State Elements to the
Direct Product Elements

To realize entanglement swapping in this hybrid system, we need to perform a Bell-
state measurement on the two cavities, achieved by coupling dispersively to them with a
driven ancilla qubit (Qa), to induce a geometric π-phase [36]. The interaction Hamiltonian
for describing the dispersive coupling between the two cavities and the ancilla qubit can be
modeled by [37,38]

H = −χQaC1 |e〉Qa〈e|a
†
C1

aC1 − χQaC2 |e〉Qa〈e|a
†
C2

aC2 (8)

where χQaC1 (χQaC2 ) is the dispersive coupling strength between Qa and C1 (C2).
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To realize the geometric CPHASE gate for the two cavity states, we use a microwave
field to address the ancilla qubit. The interaction Hamiltonian for the ancilla qubit reso-
nantly coupling to the driven microwave field is written as

Hd =
1
2

ε(eiφ|e〉Qa〈g|+ e−iφ|g〉Qa〈e|), (9)

where ε and φ are the Rabi frequency and phase of the driven field, respectively. The validity
of the Equation (9) is conditional on the vacuum states for the two cavities. As the ancilla
qubit is simultaneously coupling to the two cavities, the validity of the geometric CPHASE
gate operation should be guaranteed by the condition that the Rabi frequency ε is much
smaller than n̄Cj χQaCj , where nCj (j = 1, 2) is the average photon number for the cavity Cj.
When there are photons in any cavity, the dispersive coupling to the ancilla qubit produces
stark shifts to the naked frequency of resonance, disabling the geometric CPHASE gate
operation. The effective Hamiltonian considering such a conditional constraint can be
written as

He f f =
1
2

εeiφe−iχQaC1
a†

C1
aC1 e−iχQaC2 a†

C2
aC2 |e〉Qa〈g|+ H.c.

≈ 1
2

εeiφ|e〉Qa〈g| ⊗ |0〉C1〈0| ⊗ |0〉C2〈0|+ H.c.. (10)

Under the action of the Hamiltonian in Equation (10) for an operation time t = 2π/ε,
the joint qubit–cavity state element |e〉Qa |0〉C1 |0〉C2 transforms to −|e〉Qa |0〉C1 |0〉C2 , while
with all other elements remaining unchanged, which is key to the CPHASE gate operation
for the two cavities.

In order to use such a CPHASE gate for the Bell-state measurement on the two cavities,
we need to sandwich such a gate operation with two mutually inverse displacement opera-
tions DCj(α) and D†

Cj
(α) (j = 1, 2) to each cavity. The combination of such displacement

operations and CPHASE gate operations can be unified as

Pπ
Cj

= DCj(α)Rπ D†
Cj
(α), (11)

with
DCj(α) = eαa†−α∗a (12)

being the cavity displacement operator.
After the transformation of Pπ

Cj
, the entangled state elements |Φ±〉C1C2 and |Ψ±〉C1C2

in Equation (7), respectively, change to

|Φ′±〉C1C2 =
1
2
(
|α〉C1 |α〉C2 + |α〉C1 | − α〉C2 ± | − α〉C1 |α〉C2 ± | − α〉C1 | − α〉C2

)
≡ 1

2
(|α〉 ± | − α〉)C1

(|α〉+ | − α〉)C2
,

|Ψ′±〉C1C2 =
1
2
(
|α〉C1 |α〉C2 − |α〉C1 | − α〉C2 ± | − α〉C1 |α〉C2 ∓ | − α〉C1 | − α〉C2

)
≡ 1

2
(|α〉 ± | − α〉)C1

(|α〉 − | − α〉)C2
. (13)

Thus, the hybrid entangled states |ψt〉 can now be expanded as

|ψt〉 =
1
2
(
|Φ+〉Q1Q2 ⊗ |C+〉C1 |C+〉C2 + |Ψ

+〉Q1Q2 ⊗ |C+〉C1 |C−〉C2

+ |Φ−〉Q1Q2 ⊗ |C−〉C1 |C+〉C2 + |Ψ
−〉Q1Q2 ⊗ |C−〉C1 |C−〉C2

)
, (14)
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where

|C+〉 = Ne(|α〉+ | − α〉),
|C−〉 = No(|α〉 − | − α〉), (15)

represent the even and odd Schrödinger cat states, respectively, and

Ne,o =
1√
2
(1± e−2|α|2)−1/2 (16)

are the normalization coefficients.
Obviously, the four Bell-state elements of the two qubits are, respectively, correlated

with four combinations of direct product of even or odd cat state elements of the two cavities.

4. Distinguishing the States of the Two Cavities

The next step is to distinguish the four combinations of the cavity state elements as to
collapse the two qubits to a specific Bell state.

We begin by coupling the cavity C1 with the ancilla qubit Qa and write down the state
elements for C1 and Qa involved in the whole system state as

|ψ′+〉 =
1√
2
|g〉Qa |C+〉C1 ,

|ψ′−〉 =
1√
2
|g〉Qa |C−〉C1 , (17)

where the parity combination of the two cavity state elements determines the four different
entangled states of the qubits. We then apply a Hadamard gate on the qubit Qa to turn
these elements to

|ψ′′+〉 =
1√
2
(|g〉+ |e〉)Qa

|C+〉C1 ,

|ψ′′−〉 =
1√
2
(|g〉+ |e〉)Qa

|C−〉C1 . (18)

Under the evolution of the Hamiltonian of Equation (8) with t = π/χQaC1 , these
elements in (18) further change to

|ψ′′+〉 =
1√
2
(|g〉+ |e〉)Qa

|C+〉C1 ,

|ψ′′−〉 =
1√
2
(|g〉 − |e〉)Qa

|C−〉C1 . (19)

We then apply a second Hadamard gate to the qubit, which projects the even/odd
cat element of the two cavities to the qubit’s |g〉 and |e〉 state. Thus, the measurement
of the qubit’s state distinguishes the state of the cavity C1. Note here that when we use
the dispersive interaction between the ancilla qubit and the cavity C1 described by the
Hamiltonian in Equation (8), we should disable the dispersive interaction between the
ancilla qubit and the cavity C2, which can be solved by minor improvement of the recently
demonstrated circuit quantum electrodynamics techniques [36–38]. The same case is
applied to the second time for this cavity parity information analysis (C1 ↔ C2).
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Recycling the qubit and repeating the same operations for the second time, we can
further distinguish the parity information of the state of the cavity C2. The whole mapping
process is given as follows:

|g〉1st|g〉2nd → |C+〉C1 |C+〉C2 ,

|g〉1st|e〉2nd → |C+〉C1 |C−〉C2 ,

|e〉1st|g〉2nd → |C−〉C1 |C+〉C2 ,

|e〉1st|e〉2nd → |C−〉C1 |C−〉C2 . (20)

Thus, the twice qubit’s state measurements get exactly the parity combination of
the two cavities and collapse the two qubits to a specific entangled state as described
in Equation (7). For the purpose of intuition, we further apply a Hadamard gate on Q2:
(|g〉 → (|g〉+ |e〉)/

√
2; |e〉 → (|g〉 − |e〉)/

√
2), and change these qubits’ entangled states to

the following standard Bell states:

|Φ+〉Q1Q2 =
1√
2
(|g〉Q1 |g〉Q2 + |e〉Q1 |e〉Q2),

|Ψ+〉Q1Q2 =
1√
2
(|g〉Q1 |e〉Q2 + |e〉Q1 |g〉Q2),

|Φ−〉Q1Q2 =
1√
2
(|g〉Q1 |g〉Q2 − |e〉Q1 |e〉Q2),

|Ψ−〉Q1Q2 =
1√
2
(|g〉Q1 |e〉Q2 − |e〉Q1 |g〉Q2). (21)

Note that this local single-qubit operation does not alter the entanglement degree of
the two qubits’ state. The operation sequences are figured out and shown in Figure 2.
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Figure 2. Simulated experimental sequences. The procedure consists of four parts: (I) Generation
of entangled states for Q1,C1 and Q2,C2 through the Stark shifts induced by dispersive qubit–cavity
interaction; (II) application of a CPHASE gate operation on the two cavities to transform the entangled
coherent state elements into the direct product of even or odd cat elements; (III) distinguishing
the four combinations of cat states of the two cavities to collapse the two qubits into a specific
entangled state; and (IV) reconstruction of the density matrices for Q1 and Q2, which can be achieved
by standard process of quantum state tomography, as reported in the previously demonstrated
experiments [19,39,40].

After the analysis of the states of cavities, we extract the density matrix of joint 2-qubit
state for Q1 and Q2, which is achieved through the standard process of quantum state
tomography [19,39,40]. The measured density matrices of Q1 and Q2, conditional on the
measurement outcomes |g〉1st|g〉2nd, |g〉1st|e〉2nd, |e〉1st|g〉2nd, and |e〉1st|e〉2nd of the twice
measurement of Qa corresponding to |C+〉|C+〉, |C+〉|C−〉, |C−〉|C+〉, and |C−〉|C−〉 of C1
and C2, are displayed in Figure 3, where the black wire frames denote the matrix elements
of the ideal states.

We perform numerical simulations to check the availability of the proposed entan-
glement swapping scheme utilizing the Markovian master equations [41]. Our numerical
calculations aim to quantitatively characterize the validity of the proposed scheme by
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considering the dissipation factors (qubits’ energy relaxation and dephasing, and cavity
photon’s loss and dephasing) and the CPHASE gate operation’s errors, but ignoring the
possible imperfections in the single-qubit operations and the pulses’ time. We adopt the
recently demonstrated experimental parameters as reported in [36], which are shown in
Table 1. We find that the fidelities for the four Bell states of the qubits are FΦ+ = 0.8509,
FΨ+ = 0.8848, FΦ− = 0.8917, and FΨ− = 0.7891, respectively, with the corresponding con-
currences of CΦ+ = 0.7323, CΨ+ = 0.7808, CΦ− = 0.7937, and CΨ− = 0.6735, respectively.
The success probabilities for getting these Bell state are P(Φ+) = 0.2554, P(Ψ+) = 0.2481,
P(Φ−) = 0.2463, and P(Ψ−) = 0.2502, respectively. The errors accumulate during the
process of the CPHASE gate operation (the fidelity of which is individually calculated to be
0.9261) mainly result from the qubits’ energy relaxation and dephasing and the non-ideal
CPHASE gate condition (ε << n̄Cj χQaCj ). All the errors thus result in the deviation of
the two qubits’ density matrix elements from the ideal case through the entanglement
swapping, as shown in Figure 3. For the improved qubits’ parameters: T1 = Tϕ/2 = 50 µs,
the fidelities of these Bell states will be FΦ+ = 0.8801, FΨ+ = 0.8843, FΦ− = 0.9438,
and FΨ− = 0.8695, respectively. For a perfect CPHASE gate operation and the experi-
mental parameters in Table 1, the fidelities of the entangled states will improve to 0.9281,
0.8913, 0.9356, and 0.8064, respectively. It must be mentioned that inaccuracies in both
the single-qubit control and the pulses’ time will also reduce the effect of entanglement
swapping. For instance, when dealing with the CPHASE gate operation, if there exists a
fluctuation of −10% (+10%) of the whole duration time during the gate operation process,
it will lead to 2% (3%) reduction in the gate fidelity. Notice that according to the recently
demonstrated techniques in the superconducting circuit [36,38], the influences caused by
these two aspects could be limited to the minimum range.

(a)

(c) (d)

(b)

Real Imaginary
g e

Figure 3. Simulated tomography of Q1 − Q2 density matrices conditional on the four double-
measurement outcomes of Qa, which distinguish the states of the two cavities in order to
project (Q1, Q2) to a specific entangled state. (a) |g〉1st|g〉2nd → |C+〉C1 |C+〉C2 → |Φ+〉Q1Q2 ;
(b) |g〉1st|e〉2nd → |C+〉C1 |C−〉C2 → |Ψ+〉Q1Q2 ; (c) |e〉1st|g〉2nd → |C−〉C1 |C+〉C2 → |Φ−〉Q1Q2 ;
(d) |e〉1st|e〉2nd → |C−〉C1 |C−〉C2 → |Ψ−〉Q1Q2 .
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Table 1. The characteristics of the qubits and cavities. T1 and Tϕ are the energy relaxation time
and the dephasing time, and χC1Qi (χC2Qi ) are the dispersive coupling strength between cavity C1

(C2) and qubit Qj. Data are taken from [36].

Qubit 1 Qubit 2 Qubit a Cavity 1 Cavity 2

T1 (µs) 35 20 25 480 692
Tϕ (µs) 39 17 50 1338 402

χC1Qj /2π
(MHz) 1.599 0.524

χC2Qj /2π
(MHz) 2.670 1.494

5. Conclusions

In summary, we have proposed a scheme for the realization of deterministic entan-
glement swapping for hybrid discrete- and continuous- variable systems. The process
mainly includes three steps: (1) Preparing two pairs of qubit–cavity entangled states, each
is formed by a qubit and two quasi-orthogonal coherent state elements of a cavity; (2)
performing a Bell-state measurement by the CPHASE gate operation on the continuous
variable elements of the two cavities; (3) mapping the cavities’ parity information to an
ancilla qubit for measurements, which projects the two qubits into one of the four max-
imally entangled state. Our numerical simulations show that entanglement swapping
with considerable fidelity can in principle be accomplished with the recently available
experimental parameters. The scheme may be extended to other physical systems for
entanglement swapping or other types of entanglement manipulation, using such hybrid
discrete and continuous variables [7,23,24,42,43].
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