# Thermal Stability Analysis of Surface Wave Assisted Bio-Photonic Sensor

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Structure Design and Methods

## 3. Results and Discussions

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Ciminelli, C.; Campanella, C.M.; Dell’Olio, F.; Campanella, C.E.; Armenise, M.N. Label free optical resonant sensors for biochemical applications. Prog. Quant. Electron.
**2013**, 37, 51–107. [Google Scholar] [CrossRef] - Goyal, A.K. Design Analysis of One-Dimensional Photonic Crystal Based Structure for Hemoglobin Concentration Measurement. Prog. Electromagn. Res. M
**2020**, 97, 77–86. [Google Scholar] [CrossRef] - Homola, J.; Yee, J.J.; Gauglitz, G. Surface plasmon resonance sensors review. Sens. Actuators B
**1999**, 54, 3–15. [Google Scholar] [CrossRef] - Zaky, Z.A.; Ahmed, A.M.; Shalaby, A.S.; Aly, A.H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Sci. Rep.
**2020**, 10, 9736. [Google Scholar] [CrossRef] - Seitz, W.R. Chemical sensors based on fiber optics. Anal. Chem.
**1984**, 56, 16A. [Google Scholar] [CrossRef] - Choi, C.J.; Belobraydich, A.R.; Chan, L.L.; Mathias, P.C.; Cunningham, B.T. Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal. Biochem.
**2010**, 405, 1–10. [Google Scholar] [CrossRef] - Karlsson, R.; Stahlebrg, R. Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities. Anal. Biochem.
**1995**, 228, 274–280. [Google Scholar] [CrossRef] - Saleh, E.A.; Teich, M.C. Fundamentals of Photonics; Wiley-Interscience: Hoboken, NJ, USA, 2007. [Google Scholar]
- Goyal, A.K.; Saini, J. Performance analysis of Bloch surface wave-based sensor using transition metal dichalcogenides. Appl. Nanosci.
**2020**, 10, 4307. [Google Scholar] [CrossRef] - Zaky, Z.A.; Aly, A.H. Modeling of a biosensor using Tamm resonance excited by graphene. Appl. Opt.
**2021**, 60, 1411–1419. [Google Scholar] [CrossRef] - Yeh, P.; Yariv, A.; Hong, C. Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am.
**1977**, 67, 423–438. [Google Scholar] [CrossRef] [Green Version] - Yeh, P.; Yariv, A.; Cho, A.Y. Optical surface waves in periodic layered media. Appl. Phys. Lett.
**1978**, 32, 104–105. [Google Scholar] [CrossRef] [Green Version] - Goyal, A.K.; Dutta, H.S.; Pal, S. Porous photonic crystal structure for sensing applications. J. Nanophotonics
**2018**, 12, 040501. [Google Scholar] [CrossRef] - Baghbadorani, H.K.; Barvestani, J.; Entezar, S.R. Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers. Appl. Opt.
**2017**, 56, 462–469. [Google Scholar] [CrossRef] [PubMed] - Baghbadorani, H.K.; Aurelio, D.; Barvestani, J.; Liscidini, M. Guided modes in photonic crystal slabs supporting Bloch surface waves. J. Opt. Soc. Am. B
**2018**, 35, 805–810. [Google Scholar] [CrossRef] - Vinogradov, A.P.; Dorofeenko, A.V.; Merzlikin, A.M.; Lisyansky, A.A. Surface states in photonic crystals. Physics-Uspekhi
**2010**, 53, 243. [Google Scholar] [CrossRef] - Abouti, O.E.; Boudouti, E.H.E.; Hassouani, Y.E.; Noual, A.; Djafari-Rouhani, B. Optical Tamm states in one-dimensional superconducting photonic crystal. Physics-Uspekhi
**2016**, 23, 082115. [Google Scholar] [CrossRef] - Bijalwan, A.; Singh, B.K.; Rastogi, V. Surface Plasmon Resonance-Based Sensors Using Nano-Ribbons of Graphene and WSe2. Plasmonics
**2020**, 15, 1015–1023. [Google Scholar] [CrossRef] - Jia, Y.; Li, Z.; Wang, H.; Saeed, M.; Cai, H. Sensitivity Enhancement of a Surface Plasmon Resonance Sensor with Platinum Diselenide. Sensors
**2020**, 20, 131. [Google Scholar] [CrossRef] [Green Version] - Goyal, A.K.; Pal, S. Design analysis of Bloch surface wave based sensor for haemoglobin concentration measurement. Appl. Nanosci.
**2020**, 10, 3639–3647. [Google Scholar] [CrossRef] - Gryga, M.; Ciprian, D.; Gembalova, L.; Hlubina, P. Sensing based on Bloch surface wave and self-referenced guided mode resonances employing a one-dimensional photonic crystal. Opt. Express
**2021**, 29, 12996. [Google Scholar] [CrossRef] - Luo, H.; Tang, X.; Lu, Y.; Wang, P. Low-Loss Photonic Integrated Elements Based on Bound Bloch Surface Wave in the Continuum. Phys. Rev. Appl.
**2021**, 16, 014064. [Google Scholar] [CrossRef] - Sfez, T.; Descrovi, E.; Yu, L.; Brunazzo, D.; Quaglio, M.; Dominici, L.; Nakagawa, W.; Michelotti, F.; Giorgis, F.; Martin, O.J.F.; et al. Bloch surface waves in ultrathin waveguides: Near-field investigation of mode polarization and propagation. J. Opt. Soc. Am. B
**2010**, 27, 1617–1625. [Google Scholar] [CrossRef] - Yu, L.; Barakat, E.; Sfez, T.; Hvozdara, L.; Francesco, J.; Herzig, H.P. Manipulating Bloch surface waves in 2D: A platform concept-based flat lens. Light Sci. Appl.
**2014**, 3, e124. [Google Scholar] [CrossRef] - Augenstein, Y.; Vetter, A.; Lahijani, B.V.; Herzig, H.P.; Rockstuhl, C.; Kim, M.S. Inverse photonic design of functional elements that focus Bloch surface waves. Light Sci. Appl.
**2018**, 7, 104. [Google Scholar] [CrossRef] [PubMed] - Dubey, R.; Lahijani, B.V.; Barakat, E. Near-field characterization of a Bloch-surface-wave-based 2D disk resonator. Opt. Lett.
**2016**, 41, 4867–4870. [Google Scholar] [CrossRef] - Rodriguez, G.; Aurelio, D.; Liscidini, M.; Weiss, S. Bloch surface wave ring resonator based on porous silicon. Appl. Phys. Lett.
**2019**, 115, 0111019. [Google Scholar] [CrossRef] - Safronov, K.R.; Gulkin, D.N.; Antropov, I.M.; Abrashitova, K.A.; Bessonov, V.O.; Fedyanin, A.A. Multimode interference of Bloch surface electromagnetic waves. ACS Nano
**2020**, 14, 10428–10437. [Google Scholar] [CrossRef] - Moreira, C.S.; Lima, A.M.N.; Neff, H.; Thirstrup, C. Temperature-dependent sensitivity of surface plasmon resonance sensors at the gold–water interface. Sens. Actuators B Chem.
**2008**, 134, 854–862. [Google Scholar] [CrossRef] - Yaremchuk, I.; Fitio, V.; Petrovska, H.; Bobitski, Y. The temperature impact on the characteristics of the surface plasmon resonance sensors element. Optik
**2019**, 192, 162969. [Google Scholar] [CrossRef] - Dhibi, A. Temperature effect on the performance of a 1D grating-based surface-plasmon resonance sensors. Opt. Quant. Electron.
**2019**, 51, 78. [Google Scholar] [CrossRef] - Chen, Y.; Shi, W.; Feng, L.; Xu, X.; Shang-Guan, M. Study on simultaneous sensing of gas concentration and temperature in one-dimensional photonic crystal. Superlattices Microstruct.
**2019**, 131, 53–58. [Google Scholar] [CrossRef] - Ratra, K.; Singh, M.; Goyal, A.K. Design and Analysis of Omni-directional Solar Spectrum Reflector using One-dimensional Photonic Crystal. J. Nanophoton.
**2020**, 14, 026005. [Google Scholar] [CrossRef] - Ratra, K.; Singh, M.; Goyal, A.K.; Kaushik, R. Design and Analysis of Broadband Reflector for Passive Radiative Cooling. In Proceedings of the 5th International Conference on Signal Processing and Communication (ICSC), Noida, India, 7–9 March 2019. [Google Scholar] [CrossRef]
- Goyal, A.K.; Dutta, H.S.; Pal, S. Development of uniform porous one-dimensional photonic crystal based sensor. Optik
**2020**, 223, 165597. [Google Scholar] [CrossRef] - Goyal, A.K.; Dutta, H.S.; Pal, S. Porous Multilayer Photonic Band Gap Structure For Optical Sensing. In Proceedings of the 13th International Conference on Fiber Optics and Photonic, Kanpur, India, 4–8 December 2016. [Google Scholar] [CrossRef]
- Zaky, Z.A.; Panda, A.; Pukhrambam, P.D.; Aly, A.H. The impact of magnetized cold plasma and its various properties in sensing applications. Sci. Rep.
**2022**, 12, 3754. [Google Scholar] [CrossRef] [PubMed] - Aly, A.H.; Zaky, Z.A.; Shalaby, A.S.; Ahmed, A.M.; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr.
**2020**, 95, 035510. [Google Scholar] [CrossRef] - Goyal, A.K.; Kumar, A. Recent advances and progresses in photonic devices for passive radiative cooling application: A review. J. Nanophoton.
**2020**, 14, 030901. [Google Scholar] [CrossRef] - Lourtioz, J.M.; Benisty, H.; Berger, V.; Gerard, J.M.; Maystre, D.; Tchelnokov, A. Optical Properties of Photonic Crystals. In Photonic Crystals: Towards Nanoscale Photonic Devices, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Gulsen, G.; Inci, M.N. Thermal optical properties of TiO
_{2}films. Opt. Mater.**2002**, 18, 373–381. [Google Scholar] [CrossRef] - Ghosh, G. Model for the thermo-optic coefficients of some standard optical glasses. J. Non-Cryst. Solids
**1995**, 189, 191–196. [Google Scholar] [CrossRef] - Aly, A.H.; Mohamed, D.; Mohaseb, M.A.; El-Gawaad, N.; Trabelsi, Y. Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv.
**2020**, 10, 31765. [Google Scholar] [CrossRef] - Dutta, H.S.; Goyal, A.K.; Pal, S. Analysis of Dispersion Diagram for High Performance Refractive Index Sensor based on Photonic Crystal Waveguides. Photonics Nanostruct. Appl.
**2017**, 23, 21–27. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Schematic representation of proposed devices, (

**b**) Corresponding BSW excitation analysis at different incident wavelengths.

**Figure 2.**Bloch surface wave excitation analysis for 632.8 nm wavelength at an incident angle of 42.25 degrees using (

**a**) Wavelength interrogation, and (

**b**) Corresponding surface electric field profile.

**Figure 4.**Effect of varying temperature on (

**a**) Reflection spectrum of Glass|(SiO${}_{2}$,TiO${}_{2}$)${}^{6}$|SiO${}_{2}$|air structure, and (

**b**) Excitation angle and normalized reflectivity for an incident wavelength of 632.8 nm.

**Figure 5.**Effect of increasing device temperature on excitation angle for incident wavelength of, (

**a**) 400 nm, (

**b**) Corresponding linear profile, (

**c**) 550 nm, and (

**d**) Corresponding linear profile.

**Figure 6.**(

**a**) Temperature dependent reflectivity spectrum for an incident wavelength on 400 nm at varying infiltrated analyte RI, and (

**b**) Comparison of temperature dependent sensitivity analysis at incident wavelengths of 400 nm, 550 nm and 632.8 nm.

**Figure 7.**Linear plot of temperature dependent sensitivity comparison at incident wavelengths of 400 nm, 550 nm and 632.8 nm.

**Table 1.**Effect of increasing temperature on excitation angle and sensitivity at different incident wavelengths of 400 nm, 550 nm and 632.8 nm.

Incident Wavelength | Temperature Variations ($\Delta \mathit{T}$) | Effective Refractive Index | Excitation Angle (Degree) | Sensitivity (Degree/RIU) | Excitation Angle Variations | Sensitivity Variation |
---|---|---|---|---|---|---|

400 nm | 0 $\xb0\mathrm{C}$ | 1.89546 | 58.08219 | 5.50975 | −0.0027 (Degree/$\xb0\mathrm{C}$) | 0.00231 ((Degree/RIU)/$\xb0\mathrm{C}$) |

5 $\xb0\mathrm{C}$ | 1.89122 | 58.06899 | 5.52432 | |||

10 $\xb0\mathrm{C}$ | 1.89051 | 58.05579 | 5.53118 | |||

15 $\xb0\mathrm{C}$ | 1.88978 | 58.04199 | 5.54404 | |||

20 $\xb0\mathrm{C}$ | 1.88907 | 58.02819 | 5.55775 | |||

550 nm | 0 $\xb0\mathrm{C}$ | 1.84284 | 46.48411 | 23.90073 | −0.0016 (Degree/$\xb0\mathrm{C}$) | 0.00389 ((Degree/RIU)/$\xb0\mathrm{C}$) |

5 $\xb0\mathrm{C}$ | 1.83921 | 46.47631 | 23.91959 | |||

10 $\xb0\mathrm{C}$ | 1.83861 | 46.46851 | 23.93587 | |||

15 $\xb0\mathrm{C}$ | 1.83798 | 46.46011 | 23.96159 | |||

20 $\xb0\mathrm{C}$ | 1.83738 | 46.45231 | 23.97702 | |||

632.8 nm | 0 $\xb0\mathrm{C}$ | 1.82569 | 42.24868 | 47.0266 | −0.00096 (Degree/$\xb0\mathrm{C}$) | 0.01046 ((Degree/RIU)/$\xb0\mathrm{C}$) |

5 $\xb0\mathrm{C}$ | 1.82227 | 42.24388 | 47.0788 | |||

10 $\xb0\mathrm{C}$ | 1.82171 | 42.23908 | 47.132 | |||

15 $\xb0\mathrm{C}$ | 1.82111 | 42.23428 | 47.18174 | |||

20 $\xb0\mathrm{C}$ | 1.82055 | 42.22948 | 47.2366 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Goyal, A.K.; Kumar, A.; Massoud, Y.
Thermal Stability Analysis of Surface Wave Assisted Bio-Photonic Sensor. *Photonics* **2022**, *9*, 324.
https://doi.org/10.3390/photonics9050324

**AMA Style**

Goyal AK, Kumar A, Massoud Y.
Thermal Stability Analysis of Surface Wave Assisted Bio-Photonic Sensor. *Photonics*. 2022; 9(5):324.
https://doi.org/10.3390/photonics9050324

**Chicago/Turabian Style**

Goyal, Amit Kumar, Ajay Kumar, and Yehia Massoud.
2022. "Thermal Stability Analysis of Surface Wave Assisted Bio-Photonic Sensor" *Photonics* 9, no. 5: 324.
https://doi.org/10.3390/photonics9050324