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Abstract: The existence of an anisotropic tensor part of atomic states with an angular momentum
greater than 1/2 causes their dynamic polarizabilities to be very sensitive to the polarization direction
of the laser field. Therefore, the magic wavelength of the transition between two atomic states also
depends on the polarization angle between the quantized axis and the polarization vector. We perform
a calculation of the magic conditions of the 6S1/2 ↔ nP3/2 (n = 50–90) Rydberg transition of cesium
atoms by introducing an auxiliary electric diople transition connected to the target Rydberg state and
a low-excited state. The magic condition is determined by the intersection of dynamic polarizabilities
of the 6S1/2 ground state and the nP3/2 Rydberg state. The dynamic polarizability is calculated by
using the sum-over-states method. Furthermore, we analyze the dependence of magic detuning on
the polarization angle for a linearly polarized trapping laser and establish the relationship between
magic detuning and a principal quantum number of the Rydberg state at the magic angle. The magic
optical dipole trap can confine the ground-state and Rydberg-state atoms simultaneously, and the
differential light shift in the 6S1/2 ↔ nP3/2 transition can be canceled under the magic condition. It is
of great significance for the application of long-lifetime high-repetition-rate accurate manipulation of
Rydberg atoms on high-fidelity entanglement and quantum logic gate operation.

Keywords: Rydberg atoms; dynamic polarizability; optical dipole trap; magic trapping; polarization
angle

1. Introduction

Rydberg atoms in highly excited states have many exaggerated properties [1], such
as a long radiation lifetime, a large electric dipole moment, and so on, which make it
an attractive medium for scalable quantum simulation and quantum computing [2–4].
On account of the strong controllable interactions among Rydberg atoms, researchers have
successfully realized single-photon sources [5,6], single-photon transistors [7], two- and
three-bit quantum gates [8,9], and quantum simulations of spin models in optical lattices.
In the above most experiments about the optical trapping and coherent manipulation of
cold Rydberg atoms, the conventional red-detuned optical dipole traps (ODTs) can only
capture the ground-state atom to realize spatial localization [10], but it is a barrier to eject
Rydberg atoms out of the trap. Therefore, it is necessary to turn off the light trap during the
preparation and manipulation of Rydberg atoms. Due to the limited atomic temperature,
the fidelity of the quantum state and the available time of coherent dynamics are only tens
of microseconds, which is much lower than the spontaneous radiation lifetime of hundreds
of microseconds of the Rydberg state. It will result in a low experiment repetition rate,
especially in the quick decoherence by atomic thermal diffusion.
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For the applications of quantum technology based on Rydberg atoms, it is crucial that
the atoms can be trapped and manipulated precisely. Although it has been demonstrated
that Rydberg atoms can be effectively captured by a magnetic field-induced Zeeman
effect [11,12] and an electric-field-induced Stark effect [13], the structure of these potential
wells is relatively complex and difficult to operate, and the manipulation of atoms can
only be achieved at the millimeter level. In recent years, researchers have attempted
to manipulate Rydberg atoms by means of the light trap with micron-level precision.
Since the highly excited Rydberg atomic size is larger than the conventional optical lattice
constants in general, the nearly free valence electrons undergo a pondermotive potential.
Therefore, Rydberg atoms can be captured by trapping its electrons due to the coulomb
interaction between electrons and nuclei. In 2011, the trapping of 87Rb Rydberg atoms was
experimentally demonstrated in a one-dimensional pondermotive optical lattice by rapidly
reversing the potential [14]. However, the experimental configuration is complicated and
the confined Rydberg atoms have a short lifetime. Recently, the three-dimensional trapping
of the nS1/2 (n = 60–90) Rydberg state [15] and the Rydberg circular state [16] of 87Rb
atoms in a bottle light trap have been realized by taking full advantage of the repulsive
potential of conventional light trap to Rydberg atoms. The trapping lifetime of Rydberg
atoms is extended because the atoms are confined in the minimum light intensity and the
photon scattering is smaller. However, the simultaneous trapping of ground-state and
Rydberg-state atoms has not be achieved in the above experiments.

Magic-wavelength ODT is constructed by the so-called magic-wavelength laser beam
in pre-cooled atoms [17], at which the light shifts of the ground state and the target excited
state are exactly the same. Therefore, the ground-state and excited-state atoms can be
simultaneously trapped in the magic-wavelength ODT, and the spatial position-dependent
differential light shift of the transition between the two states can be completely eliminated.
At present, it has become a powerful tool for the manipulation of cold atoms, especially the
coherent manipulation of atomic states. Additionally, it plays an important role in the fields
of ultra-stable optical lattice clocks, long-life quantum memory, and precise manipulation of
ultra-cold molecules. Since the application of magic-wavelength ODT trapping technology
in Rydberg states of alkali metal atoms is challenging [18–21], the ordinary magic-wavelength
ODTs are mainly used to the trapping of ground-state and low excited-state atoms [22,23].

In this paper, we investigate a magic ODT for the 6S1/2 ↔ nP3/2 single-photon
Rydberg transition of Cs atoms, which can cancel the differential light shift of the transition
by introducing an auxiliary state. The magic condition is determined by the intersect
point of dynamic polarizabilities of the 6S1/2 ground state and the nP3/2 Rydberg state.
Furthermore, we analyze the dependence of magic detuning on polarization angle. At magic
angle, the magic detuning is independent of the magnetic levels, and the contribution of
tensor polarizability is zero. Then, we study and obtain the relationship between magic
detuning and principal quantum number of the Rydberg state under the conditions of the
magic angle.

2. Calculation Methods

With an external electric field, the atomic energy levels split, which is known as the
Stark effect. According to the second-order Stark effect [24], the dynamic Stark shift ∆E of
atoms can be written as

∆E = −1
2

αi(ω)F2 (1)

where F is the alternating electric field; αi(ω) is the dynamic polarizability, which describes
the degrees of deviation from the normal distribution of electron clouds of atoms and
molecules due to the effect of external fields. When the energy level shifts of the ground
state and the excited state are the same at a certain laser frequency, the differential light
shift of the transition between the two states is canceled. The trapping laser wavelength at
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this time is called the magic wavelength. When ω 6= 0, the static polarizability becomes
dynamic polarizability, as follows [25]:

αi(ω) = αS
i (ω) + A cos θk

mji
2ji

αV
i (ω) +

(
3cos2θp − 1

2

)
3m2

ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω) (2)

where A represents the degree of circular polarization. j and mj represent the total angular
momentum quantum number and magnetic quantum number, respectively. As shown in
Figure 1, θk represents the angle between the direction of wave vector k̂ and the quantized
axis êz, which satisfies the relation cos θk = k̂ · êz. θp, is related to the direction of polarization
vector ε̂ and quantization axis êz. θp is determined by the geometric relations

cos2θp = cos2ψcos2θmaj + sin2ψcos2θmin (3)

where θmaj is the angle between the major axis of the ellipse and the quantized axis, and
θmin is the angle between the minor semi-axis of the ellipse and the quantized axis. At the
same time, θp and θk are required to satisfy the geometric relation cos2θk + cos2θp 6 1. ψ is
related to the degree of polarization and satisfies the relation of A = sin 2ψ.

θk

êz

θmin

θmaj

ψ 

 

 

Figure 1. The geometrical parameters of electromagnetic plane waves. k̂, êz, and ε̂ are the unit wave
vector, the quantized axis, and the laser polarization vector, respectively. The parameters θmaj, θmin,
and θk are the angles between each unit vector and the quantized axis.

For the expressions of dynamic polarizability in Equation (2), αS
i (ω), αV

i (ω), and αT
i (ω)

represent scalar, vector, and tensor polarizabilities, respectively, which are expressed as

αS
i (ω) = ∑

n

fin

∆E2
ni −ω2

αV
i (ω) = −3

√
6ji(2ji + 1)

ji + 1 ∑
n
(−1)jn+ji

{
1 1 1
ji ji jn

}
fin

∆E2
ni −ω2

· ω

∆Eni

αT
i (ω) = 6

√
5ji(2ji − 1)(2ji + 1)

6(ji + 1)(2ji + 3) ∑
n
(−1)jn+ji

{
1 1 2
ji ji jn

}
fin

∆E2
ni −ω2

(4)

The oscillator strength is defined as

fin =
2∆Eni

3(2ji + 1)

∣∣∣〈Ψi

∥∥∥rC1(r̂)
∥∥∥Ψn

〉∣∣∣2 (5)



Photonics 2022, 9, 303 4 of 11

where ∆Eni = En − Ei and
〈
Ψi
∥∥rC1(r̂)

∥∥Ψn
〉

are the transition energy and the reduced
matrix element from the |Ψ(n)〉 state to the |Ψ(i)〉 state, respectively. C1(r̂) is the first-order
spherical tensor. These values can be found from Reference [26].

Here, we utilize the sum-over-states method [27] to determine the atomic polarizability.
The sum-over-states method uses a straightforward interpretation of Equation (4) with
the contribution from each state n, which is determined individually. For Equation (2),
when the total angular momentum is less than 1, the tensor polarizability does not exist.
When A = 0 corresponds to the linearly polarized light, the dynamic polarizability can be
expressed as

αi(ω) = αS
i (ω) +

(
3cos2θp − 1

2

)
3m2

ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω) (6)

3. Results and Discussion
3.1. Magic Condition for Cs 6S1/2 Ground State and 70P3/2 Rydberg State

In an ODT formed by a single-mode Gaussian beam, the trapping potential depth U is
proportional to the atomic polarizability αi(ω) with opposite signs, as follows:

U = − I(r)
2ε0c

αi(ω) (7)

where I(r), ε0, and c are the laser intensity profile, the permittivity, and the speed of light
in a vacuum, respectively. When the frequency of the laser field is red-detuned to the
atomic resonant transition, the polarizability of the ground state is greater than zero, so the
atoms are attracted to the maximum light intensity. On the contrary, the loosely bound
Rydberg-state electron is almost “free”, and its polarizability αnP3/2(ω) ≈ −e2/

(
meω2)

is negative [28], so Rydberg atoms will be pushed towards the minimum light intensity.
Therefore, the conventional far-off-resonance red-detuned ODT is a potential well for
the ground state but is a potential barrier for the Rydberg state, which will accelerate
the Rydberg atom away from its original position, as shown in Figure 2a. However, the
trapping potential of the |g〉 and |r〉 states can be equalized when an ODT laser is tuned to
the blue side of the |r〉 ↔ |a〉 auxiliary transition, where the trap are the attractive potential
for the ground and Rydberg states, as shown in Figure 2b.

(a) (b)

|r〉

|g〉

I(r)

ωODT

nP3/2

6S1/2

|r〉

|g〉

|a〉
319nm

I(r)

ωmagic

ωmagic

Figure 2. Trapping of Rydberg atoms. (a) The conventional far-off-resonance red-detuned ODT is
attractive for ground states but usually repulsive for highly excited Rydberg states. (b) The direct
single-photon transition from |g〉 = |6S1/2〉 to |r〉 = |nP3/2〉 coupled by a 319-nm ultraviolet laser. The
trapping potential of the |g〉 and |r〉 states can be equalized when an ODT laser is tuned to the blue
side of the |r〉 ↔ |a〉 auxiliary transition.
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First, we consider two particular cases for linearly polarized light, the polarizability
contains only scalar and tensor parts from Equation (6). One of them is

∣∣cos θp
∣∣2 = 1, which

means the êz axis is perpendicular to the wave vector but parallel to the polarization vector
(êz⊥k̂ and êz ‖ ε̂). Thus, Equation (6) is written as

αi(ω) = αS
i (ω) +

3m2
ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω) (8)

Another case is
∣∣cos θp

∣∣2 = 0, which means the êz axis is perpendicular to the wave
vector and the polarization vector (êz⊥k̂ and êz⊥ε̂). Thus, Equation (6) can be written as

αi(ω) = αS
i (ω)−

3m2
ji
− ji(ji + 1)

ji(2ji − 1)
αT

i (ω) (9)

Figure 3 is the dynamic polarizabilities of 6S1/2 (red dashed lines) and 70P3/2 (blue
and black solid lines) states in the case of linearly polarized light, where the quantized
axis is parallel to the polarization plane (êz ‖ ε̂). In the range of 600–2000 nm, there are six
magic wavelengths corresponding to the following auxiliary transitions of 70P3/2 ↔ 7S1/2,
70P3/2 ↔ 6D5/2,3/2, 70P3/2 ↔ 8S1/2, and 70P3/2 ↔ 7D5/2,3/2. For the 70P3/2 ↔ 7S1/2
auxiliary transition, the potential is repulsive for the ground and Rydberg states in the
crossing point of the dynamic polarizabilities, so it is not considered.
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Figure 3. Dynamic polarizabilities of Cs 6S1/2 ground state (red dashed lines) and 70P3/2 Rydberg
state (blue and black solid lines) between 600 nm and 2000 nm.

The dynamic polarizabilities of 6S1/2 ground state and 70P3/2 Rydberg state near the
70P3/2 ↔ 7D5/2 auxiliary transition are shown in Figure 4. The upper part is quantized
axis in the plane of the vertical polarization, the lower part is quantized axis parallel to
the polarization plane (A partial enlargement of Figure 3). The polarizability curves of
the 6S1/2 ground state and 70P3/2 Rydberg state intersect at two points, corresponding
to the transitions of 6S1/2 ↔ 70P3/2 (

∣∣mj
∣∣ = 1/2) and 6S1/2 ↔ 70P3/2 (

∣∣mj
∣∣ = 3/2). The
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wavelength at the intersection point is called the magic wavelength, where the potential
depth of the magic-wavelength ODT is equal for the ground-state and Rydberg-state atoms.
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Figure 4. The dynamic polarizabilities of the ground state and the Rydberg state in the case of
linearly polarized light in the range from 1882.220 to 1882.245 nm near the auxiliary transition of
70P3/2 ↔ 7D5/2. (a) The quantization axis is perpendicular to the plane of polarization and (b) the
quantization axis is parallel to the plane of polarization.

Figure 4 shows that the dynamic polarizability of the 6S1/2 ground state is almost the
same, but that of the 70P3/2 excited state is not the same in different polarization angles
θp. Specifically, its change is very dramatic near the resonance position. Therefore, it is
necessary to study the magic wavelength as the change in polarization angle. Because the
difference between the magic wavelength and the auxiliary transition wavelength is only
a few picometers to tens of picometers, it is more intuitive to exhibit a change in magic
detuning with the polarization angle.

In Figure 5, the simulation results show that the magic detuning as the change
in polarization angle is a linear near magic wavelength for all auxiliary transitions of
70P3/2 ↔ 7D5/2, 70P3/2 ↔ 8S1/2, and 70P3/2 ↔ 6D5/2, and the range is finite, not
exceeding 1 GHz. For the 6S1/2 ↔ 70P3/2 (

∣∣mj
∣∣ = 1/2) transition, the magic detuning

increases with an increase in the polarization angle, but for the 6S1/2 ↔ 70P3/2 (
∣∣mj
∣∣ = 3/2)

transition, the magic detuning decreases with the increase in polarization angle. Therefore,
the magic condition is very sensitive to the polarization angle due to the contribution of
anisotropic tensor polarizability. For any magic condition of the auxiliary transitions of
70P3/2 ↔ 7D5/2, 70P3/2 ↔ 8S1/2, and 70P3/2 ↔ 6D5/2, different curves intersect at one
point. At this point, the magic detuning is independent of the magnetic levels, and the
contribution of tensor polarizability is zero. In this case, the polarization angle satisfies
the condition of

∣∣cos θp
∣∣2 = 1/3 for linearly polarized light. This polarization angle θp is

referred to as a “magic angle” and is given by [29]

θp = arccos
(

1/
√

3
)
= 54.7◦ (10)
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Figure 5. The dependence of magic detuning for the 6S1/2 ↔ 70P3/2 transition near different auxiliary
transitions on

∣∣cos θp
∣∣2 in the case of linearly polarized light. (a) 70P3/2 ↔ 7D5/2 auxiliary transition;

(b) 70P3/2 ↔ 8S1/2 auxiliary transition; (c) 70P3/2 ↔ 6D5/2 auxiliary transition.

To be specific, the magic detunings at the magic angle are 302.67 MHz for the 70P3/2 ↔
7D5/2 auxiliary transition, 77.08 MHz for the 70P3/2 ↔ 8S1/2 auxiliary transition, and
134.48 MHz for the 70P3/2 ↔ 6D5/2 auxiliary transition, and the corresponding magic
wavelengths are 1882.229946, 1415.535736, and 1142.866537 nm for the 6S1/2 ↔ 70P3/2
transition, which are listed in Table 1. These magic ODTs can be implemented by combining
an ultra-stable optical cavity and a master oscillator power-amplifier (MOPA) system, which
consists of a rare-earth-doped (Thulium, Erbium, and Ytterbium) distributed feedback
fiber laser and a corresponding fiber amplifier with watt-level output power. When the
watt-level single-mode Gaussian laser beam produced by the MOPA system is strongly
focused to the micrometer waist spot, it is easy to form an ODT with mK potential well
depth. According to Equation (7), when the atomic polarizability is constant, the potential
well depth is proportional to the light intensity. Therefore, when an ODT laser is tuned to
the blue side of any auxiliary transition in Figure 6b, the 6S1/2 ground-state and 70P3/2
Rydberg-state atoms will be confined in the waist spot of a strongly focused single-mode
Gaussian laser beam, as shown in Figure 6a.

Table 1. At magic angle, magic detunings and magic wavelengths of the 6S1/2 ↔ 70P3/2 transition
near the 70P3/2 ↔ 7D5/2, 70P3/2 ↔ 8S1/2, and 70P3/2 ↔ 6D5/2 auxiliary transitions.

Auxiliary Transition Magic Detuning (MHz) Magic Wavelength (nm)

70P3/2 ↔ 7D5/2 302.67 1882.229946
70P3/2 ↔ 8S1/2 77.08 1415.535736
70P3/2 ↔ 6D5/2 134.48 1142.866537
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Figure 6. (a) A magic ODT formed by a strongly focused single-mode Gaussian laser beam. (b) The
involved energy level diagram of magic ODTs for the 6S1/2 ↔ 70P3/2 single-photon transition
coupled by a 318.65798 nm ultra-violet laser. The brown double arrow lines are auxiliary transitions
from 70P3/2 to 7D5/2, 8S1/2, and 6D5/2, and the corresponding magic wavelengths are 1882.229946,
1415.535736, and 1142.866537 nm, respectively.

3.2. Magic Trapping Condition for Cs nP3/2 Rydberg States

Considering that magic detuning is independent of the magnetic levels at the magic
angle, we calculate the magic detuning of the 6S1/2 ↔ nP3/2 transition for different
principal quantum numbers from n = 50 to 90 at that point, as shown in Figure 7. Here,
the black squares represent the magic detuning for the nP3/2 ↔ 7D5/2 auxiliary transition.
The red circles and blue triangles are the magic detuning for the auxiliary transitions of
nP3/2 ↔ 8S1/2 and nP3/2 ↔ 6D5/2, respectively. In order to establish the relationship
between the magic detuning ∆magic and the principal quantum number n, these data are
fitted by

∆magic = a · nb + c (11)

where the coefficients of a, b, and c are constants, which are determined by fitting the
calculated results in Figure 7. Since the atomic polarizability is proportional to n7, the
polarizability of the atomic state with higher principal quantum number is greater than that
of low-excited states, which make it more sensitive to the external electric field. It will result
in a larger blue light shift in the higher Rydberg states by the same trapping laser field. In
order to compensate for the light shift, it is necessary to increase the coupling intensity
between the trapping laser and the auxiliary transition, that is, to reduce the detuning
between them. Therefore, to make the target Rydberg state and the ground state reach
the same light shift, the larger the principal quantum number is, the smaller the magic
detuning is, as shown in Figure 7. The coefficients of a, b, and c for the auxiliary transitions
of nP3/2 ↔ 7D5/2, nP3/2 ↔ 8S1/2, and nP3/2 ↔ 6D5/2 obtained by fitting the calculated
results with Equation (11) are listed in Table 2. It can be seen that for any auxiliary transition,
the magic detuning decreases exponentially with the principal quantum number, and the
exponent b is basically the same, about 3.324(10). Thus, combined with Equation (11) and
Table 2, we can obtain the magic detuning of the 6S1/2 ↔ nP3/2 transition corresponding
to any auxiliary transition at magic angle, which provides more theoretical basis and
support for the subsequent experimental research [30–34] on coherent manipulation of Cs
ground-state and Rydberg-state atoms in the magic ODT.
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Figure 7. In the vicinity of different auxiliary transitions, the magic detuning at magic angle varies
with the principal quantum number from 50 to 90. The solid lines are the fitted results.

Table 2. The coefficients a, b, and c of Equation (11) for the auxiliary transitions of nP3/2 ↔ 7D5/2,
nP3/2 ↔ 8S1/2, and nP3/2 ↔ 6D5/2 which are determined by fitting the results in Figure 7.

Auxiliary Transition a (MHz) b c (MHz)

nP3/2 ↔ 7D5/2 3.881(6) × 108 3.324(5) 16.6(5)
nP3/2 ↔ 8S1/2 1.050(2) × 108 3.337(5) 3.9(1)
nP3/2 ↔ 6D5/2 1.653(5) × 108 3.312(8) 6.1(4)

4. Conclusions

In summary, we performed a calculation about the dynamic polarizabilities of Cs
6S1/2 ground state and nP3/2 Rydberg state using the sum-over-states method. Due to the
existence of anisotropic tensor parts of atomic states with an angular momentum greater
than 1/2, the atomic dynamic polarizabilities are very sensitive to the polarization direction
of the laser field. Therefore, the magic wavelength of the transition between two atomic
states, at which the differential light shift of the 6S1/2 ↔ nP3/2 transition can be canceled,
also depends on the polarization angle between the quantized axis and the polarization
vector. By introducing an electric diople auxiliary transition connected the target Rydberg
state and the low-excited state, the magic condition of the 6S1/2 ↔ nP3/2 transition of
Cs atoms is determined by the intersection of dynamic polarizabilities of the two states.
Because the frequency difference between the auxiliary transition and the magic laser field
is relatively small, only a few hundred MHz, we analyze the dependence of magic detuning
on the polarization angle. There exists a magic angle where the magic detuning does not
depend on the magnetic levels, and the contribution of tensor polarizability is zero. Under
the condition of the magic angle, the relationship between magic detuning and the principal
quantum number of the Rydberg state has been established. It will provide more theoretical
basis and support for the subsequent experimental research on the trapping and coherent
manipulation of the ground-state and Rydberg-state atoms in the magic light trap.
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