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Abstract

:

In the present work, graphene oxide (GO)–polyvinyl alcohol (PVA) composites thin film has been successfully synthesized and prepared by spin coating techniques. Then, the properties and morphology of the samples were characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and atomic force microscopy (AFM). Experimental FTIR results for GO–PVA thin film demonstrated the existence of important functional groups such as -CH2 stretching, C=O stretching, and O–H stretching. Furthermore, UV-Vis analysis indicated that the GO–PVA thin film had the highest absorbance that can be observed at wavelengths ranging from 200 to 500 nm with a band gap of 4.082 eV. The surface morphology of the GO–PVA thin film indicated the thickness increased when in contact with carbaryl. The incorporation of the GO–PVA thin film with an optical method based on the surface plasmon resonance (SPR) phenomenon demonstrated a positive response for the detection of carbaryl pesticide as low as 0.02 ppb. This study has successfully proposed that the GO–PVA thin film has high potential as a polymer nanomaterial-based SPR sensor for pesticide detection.
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1. Introduction


Sensors are becoming increasingly vital and have already dominated in everyday life. This is due to the fact that sensors provide numerous advantages such as improved medical diagnostics, health and safety, environmental monitoring, security for people, and the performance of energy sources [1,2,3,4,5,6,7,8,9,10]. Therefore, the selective identification of materials and methods is an important issue in the development of sensor technology to ensure that the sensor is adequately sensitive. In the past few decades, graphene oxide (GO) is one of the suitable nanoparticles that have received copious attention as a modish class of substance owing to its promising features in sensor application. GO contains functional groups such as carboxyl, epoxy, carbonyl, and hydroxyl [11,12,13,14,15,16,17,18,19,20], which possess special features such as the ability to disperse well in a wide range of polymers and organic solvents [21,22,23,24,25,26,27,28,29,30]. These properties mean that GO can be applied in nanoelectronics [31,32], catalysis [33,34,35,36,37,38,39], nanocomposites [40,41], sensor technology [42,43,44], water purification [45,46,47,48,49,50,51,52,53], and drug delivery [54,55,56,57,58,59,60,61]. However, to improve the properties of GO and increase its effectiveness in the field of sensor applications, GO needs to be modified with other materials. According to prior research, the composite materials employed for GO modification are metal, metal oxide, polymer, organic matter, and bio-composite materials (enzyme and antibody) [62,63,64,65,66,67,68,69,70,71,72,73,74]. This combination has been demonstrated to have a positive interaction within the various applications [75,76,77].



Recently, graphene oxide-based polymer composites have been shown to be the most interesting research area. The polymer which is composed of macromolecules has been reported to be used in a wide variety of sensor designs and applications due to its promising potential [78,79,80,81,82,83,84,85,86,87,88,89,90,91]. Additionally, this combination has been reported as an effective approach for achieving extraordinary performance and creating new functionalities in diverse applications due to its distinct shape, high surface area, and tiny size [92,93,94]. One of the polymers that are widely employed in a variety of applications is polyvinyl alcohol (PVA). This is due to its availability, dielectric strength, promising optical properties, being water-soluble, hydroxyl-rich, and bio-degradable [95,96,97,98,99,100,101,102]. Typically, polymer-graphene composites containing graphene oxide (GO) or graphene platelets were synthesized through exfoliation in the organic solvent [103,104,105,106,107,108]. In the matter of water-soluble polymers like PVA, GO would be the best choice due to its high amount of oxygenated groups making it hydrophilic and easily dispersed in water [31]. Another advantage is because of its high aspect ratio, meaning the large lateral size of sheets and minimal thicknesses [109]. Homogenous dispersion of GO in the PVA matrix at the molecule level can also enhance the properties of the mechanical characteristics, electrical conductivity, and thermal stability of the nanocomposites [110,111,112,113,114,115]. Inspired by preceding work, GO–PVA has been extensively reported to be an excellent material for memory devices, radiofrequency, bone tissue engineering applications, and humidity sensors [116,117,118,119,120,121,122,123,124,125,126,127]. Importantly, GO–PVA also offers simple implementation, it is economical, harmless, non-toxic, and easily degradable.



However, the characterization of this composite material-based thin film is rarely investigated, and the integration of PVA with low-concentration GO is not reported. Therefore, it is of interest to investigate further the structural and optical properties of this excellent composite thin film. To the best of our knowledge, the use of this material as a sensing element in an optical method for pesticide detection has not yet been reported. Surface plasmon resonance (SPR) spectroscopy is one of the powerful and label-free optical methods with high sensitivity [128,129,130,131,132,133,134]. This SPR approach is gaining interest among scientists in a wide range of analytical tools for tracing hazardous chemicals [135,136,137,138,139,140,141,142]. Prism coupler and a gold film are normally used to excite surface plasmon. To further increase the sensitivity of SPR, various active layers have been developed on the gold film [143,144,145,146,147,148]. In this study, the properties of GO–PVA thin film have been investigated and incorporation with SPR attempted for a potential sensing application in pesticide detection.




2. Experimental


2.1. Chemicals


PVA (87–89% hydrolyzed) and carbaryl stock solution 100 mg/mL (98%) were purchased from 3050 Spruce Street Saint Louis, MO 63103 USA. Graphene oxide (4.0 wt%) was purchased from Graphanea in Spain.




2.2. Preparation of GO–PVA and Pesticide Solution


PVA solution was prepared by dissolving 2.0 g of medium molecular weight PVA powder in 36 mL of deionized water and was stirred by a magnetic stirrer at 90 °C for 1 h. After that, GO (0.5 wt%) 5.0 mL was produced by diluting the stock solution (4.0 wt%) with deionized water. To produce the GO–PVA solution, 1.0 mL GO was added with 0.9 mL PVA and ultrasonicated for 30 min at room temperature. A series of standard solutions of 0.02 to 0.06 ppb of carbaryl pesticide were prepared by diluting the stock solution (100 mg/mL) with deionized water. In this preparation, the dilution formula M1V1 = M2V2 was used where M1 is the concentration of the starting solution and V1 is the volume of the starting solution. Meanwhile, M2 is the concentration of the final solution, and V2 is the volume of the final solution.




2.3. Deposition of Thin Films


Firstly, a thin layer of gold was deposited on a glass slip (24 mm × 24 mm × 0.1 mm, Menzel-Glaser, Braunschweig, Germany) using a SC7640 sputter coater. The coating process was continued by dropping 0.5 mL of GO–PVA solution on a gold-coated glass slip. To produce GO–PVA composite thin film, a specialty coating system, P-6708D (Inc. Medical Devices, Indianapolis, IN, USA) was used. In this process, the glass slip was spun for 30 s at 3000 rev min. Figure 1 shows the schematic of preparing gold and sensing layer on thin film.




2.4. Characterization and Potential Sensing


To identify the chemical properties of GO–PVA thin film, Fourier transform infrared spectroscopy (FTIR) was performed using a FTIR spectrophotometerALPHA Bruker with a wavelength range of 580–4000 cm−1. To determine the absorbance of the sample, UV–Vis-NIR spectroscopy (UV-3600 Shimadzu) was used and measured in the range of 230–500 nm. Then the optical band gap energy can be calculated using the absorption peak or maximum wavelength recorded. Bruker AFM multimode 8 (Quesant, CA, USA) was used to measure and observe the high topography of GO–PVA thin film in the range of 2 μm × 2 μm. To evaluate the potential sensing of the thin film, an optical instrument based on an SPR Kretschmann configuration was developed, as depicted in Figure 2 [149,150,151,152,153,154]. In this system, p-polarized light from the source of the He-Ne laser was directly focused on the prism that was attached to the GO–PVA thin film. Then, carbaryl pesticides at concentrations ranging from 0.02 ppb to 0.06 ppb were introduced into the SPR hollow under optimized experimental conditions. After that, the reflected beam was detected by a large area photodiode and subsequently processed by the lock-amplifier (SR 530) to produce the reflectance data.





3. Results


3.1. Structural Properties


To further observe the chemical structural properties of GO–PVA thin film, Fourier transform infrared spectroscopy (FTIR) appeared to be the preferred technique for studying the chemical structure. As shown in Figure 3, the FTIR characterizations for GO, PVA, and GO–PVA thin films were carried out at wavenumber ranging from 4000 to 560 cm−1.



According to the FTIR spectra, GO shows the structure can be simplistically assumed in the form of O–H stretching at 3673.81 cm−1, C=O carboxyl stretching at 1750.02 cm−1, C=C stretching at 1664.93 cm−1, C–O epoxy group stretching at 1664.93 cm−1, C–O alkoxy group stretching at 1249.39 cm−1, and C–H bending at 901.22 cm−1, respectively. This analysis is in good correlation with previous studies of GO [155]. Upon examining the PVA spectra, the width at 3771.67 cm−1 corresponded to the O–H stretching vibration, the peaks at 1591.18 cm−1 and 1194.79 cm−1 were due to -CH2 rocking symmetrical stretching, and the crystalline sequence of PVA on C–O stretching vibration. This finding is in good agreement with the result reported by Lizu et al. (2021) [111]. With the incorporation of GO with PVA, the FTIR spectra indicated the formation of common properties such as O–H, C=O, C=C, -CH2, C–O stretching, and C–H bending at 3741.18 cm−1, 1774.84 cm−1, 1689.04 cm−1, 1511.76 cm−1, 1182.03 cm−1, and 882.79 cm−1, respectively. It can be seen that the peak became more clear at C=O stretching and C=C stretching compared to the GO single element. The same goes for the -CH2 stretching, C–O stretching, and O–H stretching compared to the PVA single element. Therefore, these results have proved the existence of chemical interactions on GO and PVA.




3.2. Optical Properties


The optical properties of GO, PVA, and GO–PVA thin films can be evaluated through the UV-Vis results obtained in Figure 4. It can be seen that all thin films have different absorption values at a wavelength of 200 to 500 nm. Clearly, the absorption value on GO–PVA composites thin film is high compared to GO and PVA in single layers. The highest absorption wavelength was between 260 and 300 nm. The absorption peak of approximately 300 nm corresponded to π→π* transitions of C=O.



The absorbance data can be used to interpret information relating to the optical energy band gap of polymer nanocomposites. Then, Beer Lambert’s formula is used to calculate the absorbance coefficient [156]:


  α = 2.303  A t   



(1)




where t is the sample’s thickness in m and A is the absorbance value. Followed by the Tauc equation to evaluate the absorbance coefficient and optical band gap [156]:


  α =   k    (  h v −  E g   )     1 2      h v    



(2)




where hv represents the photon energy, h is the Plank’s constant, Eg is the optical band gap, and k = constant value. A rearrangement of Equation (2) becomes:


     (  α h v  )   2  = k  (  h v −  E g   )   



(3)







Then the band gap Eg of the GO, PVA, and GO–PVA thin films, was estimated by plotting the (αhv)2 against hv as presented in Figure 5, Figure 6 and Figure 7.



It is shown that the data produced for the optical band gap was different for each component. The highest band gap of 4.090 eV was obtained for GO thin film and the lowest of 4.039 eV was obtained for PVA thin film. The incorporation of GO and PVA gave the band gap value of 4.083 eV.




3.3. Surface Morphology


The microscopic characteristics of GO, PVA, and GO–PVA thin films were visualized well using atomic force microscopy (AFM) in tapping mode. These topographic parameters are measured using the root mean square (RMS) of surface roughness, which shows the relative roughness and the standard deviation of the surface height. In this investigation, the AFM images depict the topography of the composite materials on the gold thin film at a scan size of 2 μm × 2 μm in two-dimensional (2D) and three-dimensional (3D). Figure 8a–c and Figure 9a–c illustrated the 2D and 3D images of GO, PVA, and GO–PVA thin films, respectively. Meanwhile, the AFM result of GO–PVA thin film after being in contact with the carbaryl solution is demonstrated in Figure 8d and Figure 9d.



Based on the results obtained in Figure 8a,b, the RMS roughness for GO and PVA thin films were 6.7 nm and 7.9 nm, respectively. The 2D view of the AFM image of the GO thin film was relatively rough with the 3D view showing a lot of sharp peaks as compared to PVA thin film which displays a smoother appearance. The magnitude of immobilization of GO and PVA thin film increased in RMS roughness which was 8.5 nm as shown in Figure 8c. The presence of small white rod particles in the 2D image in Figure 8c was attributed to the GO immobilization of PVA. Subsequently, the RMS values of GO–PVA thin films were obtained at 9.7 nm when in contact with carbaryl, and the appearance displayed a homogenous lattice and grid surface as shown in Figure 8d. The significant increase in RMS roughness of GO–PVA thin film after being in contact with carbaryl proved to be attributed to the interaction of GO–PVA with carbaryl.




3.4. Potential Sensing of Pesticide


In this study, an optical sensor based on SPR spectroscopy with Kretschmann configuration was performed. Firstly, the SPR angle for deionized water was determined at 53.5624°. The angle obtained was used as a reference to compare with the SPR angle for the various concentration of carbaryl solution ranging from 0.02 to 0.06 ppb. As shown in Figure 10, the SPR curves of carbaryl solution shifted from 0.02 to 0.06 ppb when compared to the SPR curve of deionized water. The SPR angle for 0.02, 0.04, and 0.06 ppb of carbaryl solution were 54.3988°, 54.6750°, and 54.9501°, respectively. Overall, the SPR shifted to the right as the concentration of carbaryl solution increased. Therefore, this experimental data indicates that gold-GO–PVA thin film has high sensitivity in the detection of carbaryl pesticides.





4. Discussion


In the FTIR spectrum of GO–PVA thin film, the main functional group in GO and PVA elements such as C=O stretching, C=C stretching, -CH2 stretching, C–O stretching, and O–H stretching were obtained, which indicated the interaction for both elements. To further reinforce this point, the formation of hydrogen bonding in the GO–PVA thin film will be emphasized. Basically, O–H stretching bands are sensitive to hydrogen bonds [157,158]. Therefore, the results of this study can conclude that the presence of hydrogen bond interaction with oxygen-containing GO and hydroxyl groups on the PVA chain is detrimental to the hydrogen bond between the PVA chains. It can be seen in Figure 3, the peak for O–H stretching shifts from 3771.67 cm−1 in pure PVA to lower wavenumbers of 3741.18 cm−1, showing a decrease in hydrogen bonding among the hydroxyl groups in PVA chains.



In the following study, the UV-Vis spectroscopy result showed a high absorbance spectrum on the GO–PVA thin film in the range of 260 to 300 nm. It may be due to the homogeneous dispersion of GO in PVA, which allows for optimal UV light absorption. It could possibly be attributed to UV light scattered from the interface formed by hydrogen bonding between the GO and PVA on the gold thin film [159]. When GO was added to PVA, the band gap was reduced compared to the GO band gap. This could be related to the integration of GO’s new energy levels that form between the conduction and valance bands [160,161]. It also could interrupt the packing of polymer chains by GO resulting in a decrement of the crystallinity of the nanocomposites-polymer [162].



In order to visualize the GO, PVA, and GO–PVA thin films before and after contact with carbaryl, the AFM has been employed. Clearly, the thickness of immobilization GO and PVA thin film increased in RMS roughness which is 8.5 nm compared to a single element. This is attributed to the association of those two materials via hydrogen bonds formed between the oxygen-containing groups in GO and the hydroxyl groups in PVA [163]. This finding also shows that GO is well incorporated and dispersed in the PVA matrix and that it increases crystallinity by the increases the thickness. When the carbaryl was introduced to GO–PVA thin film, the RMS roughness was significantly increased to 9.7 nm. The combination of GO with PVA improved carbaryl adsorption, which increased the shift of resonance angle for this carbaryl solution. Hence, this result indicates that GO immobilized PVA can be used as a sensing element in the detection of carbaryl.



A better insight into the performance of the composite material to detect the carbaryl was accomplished by the SPR spectroscopy method. In this platform, the change in the resonance angle was observed for deionized water and various concentrations of carbaryl ranged from 0.02 ppb to 0.06 ppb. It can be seen that the SPR reflectance curve shifted to the right which indicated that the resonance angle increased with the increase of concentration carbaryl. This result is also attributable to analyte-ligand interaction, which is caused by changes in the refractive index and thickness of the GO–PVA sensing layer [164]. This is aligned with the AFM result, which shows that the presence of carbaryl alters the thickness of the sensing layer. Additionally, this study indicates that the sensitivity obtained is 13.78°/ppb. As a result, it is confirmed that GO–PVA thin film has a considerable positive correlation with carbaryl-based SPR optical sensor at a low concentration of 0.02 ppb.



The possible research directions for future work in this study may be considered in the selectivity of the composite material in the detection of carbaryl. This work also indicates that future work may be interested in carbaryl detection by using nanocomposites immobilization with a polymers-based SPR method without using any antibodies or enzymes in the fabrication of materials.




5. Comparison GO–PVA with Other Materials-Based Optical Methods to Detect Carbaryl


Thus far, most detection of carbaryl used antibodies and enzymes as the recognition element. There is no doubt that antibodies and enzymes have many advantages in various applications, especially in the field of biosensors [165,166]. However, they also have some drawbacks such as being expensive, complicated to prepare, requiring desirable storage properties, instability, and poor reproducibility [167,168,169]. To address the mentioned issues, this work for the first time proposes the use of GO–PVA thin film as a sensing element that is inexpensive, requires simple preparation, is easy to operate, more stable, repeatable, and, most importantly, has a high sensitivity. The comparison of the performance of this composite material compared to the previous study that used various materials to detect carbaryl based on the optical method is given in the table below. Based on Table 1, it can be concluded that the development of of a carbaryl pesticide detection-based optical method has attracted extensive research interest with the use of various materials including molecular imprinted polymer, metal oxide, and quantum dots. It also can be seen that the GO–PVA sensing layer has the lowest limit of detection compared to the others. Therefore, this work indicates that polymer nanocomposites prove to be a good candidate for carbaryl detection at a low level.




6. Conclusions


According to the results stated above, the characterization properties of the graphene oxide–polyvinyl alcohol (GO–PVA) thin film were successfully synthesized and investigated. These research results also represent the first milestone in sensing performance for GO–PVA thin film in the detection carbaryl-based-SPR method. From the investigation of structural properties by FTIR, the result confirmed that the surface interaction between GO and PVA thin film as the main functional group was obtained with the composite material. Then the UV-Vis was employed to investigate the optical properties. The UV-Vis result obtained high absorption and a lower band gap value in GO–PVA thin film compared to the GO single element. Next, the surface morphology was analyzed by AFM, which validates the interaction of the GO–PVA thin film and carbaryl based on the increment in the thickness. Meanwhile, the as-prepared GO–PVA thin film exhibited a good sensing performance-based SPR method when the reflected curve shifted to the right with the increased concentration of carbaryl. This result indicates the high sensitivity in the detection of carbaryl by the composite material. The high sensitivity of the SPR sensor makes this GO–PVA an appealing recognition element for carbaryl detection while also opening up a new path for pesticide sensor applications based on nanomaterials and polymers.
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Figure 1. Schematic of preparing gold and sensing layer on thin film. 
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Figure 2. Set-up of surface plasmon resonance (SPR) instrument for sensing performance of the graphene oxide–polyvinyl alcohol (GO–PVA) thin film. 
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Figure 3. Fourier transform infrared spectroscopy (FTIR) spectra of GO, PVA, and GO–PVA thin film. 
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Figure 4. UV-Vis absorbance spectrum of GO, PVA, and GO–PVA thin film. 
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Figure 5. Optical band gap of GO thin film. 
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Figure 6. Optical band gap of PVA thin film. 
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Figure 7. Optical band gap of GO–PVA thin film. 
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Figure 8. The 2D AFM images: (a) GO, (b) PVA, (c) GO–PVA thin films, and (d) GO–PVA thin film in contact with carbaryl. 
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Figure 9. The 3D AFM images: (a) GO, (b) PVA, (c) GO–PVA thin films, and (d) GO–PVA thin film in contact with carbaryl. 
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Figure 10. SPR reflectance curve for GO–PVA thin film in contact with various concentrations of carbaryl (0.02 ppb to 0.06 ppb). 
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Table 1. Comparison of the lowest detection carbaryl with various material-based optical sensors.
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	Materials
	Limit of Detection
	References





	4-acetamidobenzenesulfonyl azide-AuNPs
	50.00 ppb
	[170]



	acetylcholinesterase
	20.00 ppb
	[171]



	3,5-di(2′,5′-dicarboxylphenyl)pyridine
	6.70 ppb
	[172]



	idophenyl acetate-acetylcholinesterase
	2.01 ppb
	[173]



	silver reduced-graphene oxide
	1.50 ppb
	[174]



	monoclonal antibody
	1.41 ppb
	[175]



	monoclonal antibody
	1.38 ppb
	[176]



	flavourzyme-stabilized gold nanoclusters
	0.47 ppb
	[177]



	graphene quantum dots
	0.36 ppb
	[178]



	carbon quantum dots-AuNPs-acetylcholinesterase
	0.20 ppb
	[179]



	cadmium tellurite quantum dots
	0.12 ppb
	[180]



	monoclonal antibody
	0.05 ppb
	[181]



	cadmium selenide/zinc sulfide quantum dots
	0.03 ppb
	[182]



	graphene oxide-polyvinyl alcohol
	0.02 ppb
	This study
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