
����������
�������

Citation: Saif, W.S.; Ragheb, A.M.;

Nebendahl, B.; Alshawi, T.; Marey,

M.; Alshebeili, S.A. Machine

Learning-Based Optical Performance

Monitoring for Super-Channel

Optical Networks. Photonics 2022, 9,

299. https://doi.org/10.3390/

photonics9050299

Received: 23 February 2022

Accepted: 26 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Machine Learning-Based Optical Performance Monitoring for
Super-Channel Optical Networks
Waddah S. Saif 1,2,* , Amr M. Ragheb 1,2 , Bernd Nebendahl 3, Tariq Alshawi 1,2 , Mohamed Marey 4

and Saleh A. Alshebeili 1,2

1 Department of Electrical Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
aragheb@ksu.edu.sa (A.M.R.); talshawi@ksu.edu.sa (T.A.); dsaleh@ksu.edu.sa (S.A.A.)

2 KACST-TIC in Radio Frequency and Photonics for the e-Society, King Saud University,
Riyadh 11421, Saudi Arabia

3 Keysight Technologies, 71034 Boeblingen, Germany; bernd_nebendahl@keysight.com
4 Smart Systems Engineering Laboratory, College of Engineering, Prince Sultan University,

Riyadh 11586, Saudi Arabia; mfmmarey@psu.edu.sa
* Correspondence: waddah.alkhulidy@gmail.com

Abstract: In this paper, and for the first time in literature, optical performance monitoring (OPM) of
super-channel optical networks is considered. In particular, we propose a novel machine learning
OPM technique based on the use of transformed in-phase quadrature histogram (IQH) features and
support vector regressor (SVR) to estimate different optical parameters such as optical signal-to-noise
ratio (OSNR) and chromatic dispersion (CD). Two transformation methods, the two-dimensional (2D)
discrete Fourier transform (DFT) and 2D discrete cosine transform (DCT), are applied to the IQH
to extract features with a considerably reduced dimensionality. For the purpose of simulation, the
OPM of a 7 × 20 Gbaud dual-polarization–quadrature phase shift keying (DP-QPSK) is considered.
Simulations reveal that it can accurately estimate the various optical parameters (i.e., OSNR and
CD) with a coefficient of determination value greater than 0.98. In addition, the effectiveness of
proposed OPM scheme is examined under different values of polarization mode dispersion and
frequency offset, as well as the utilization of different higher order modulation formats. Moreover,
proof-of-concept experiments are performed for validation. The results show an excellent matching
between the simulation and experimental findings.

Keywords: super-channel based optical networks; optical performance monitoring; machine learning

1. Introduction

The demand for bandwidth is increasing exponentially due to the massive growth
in internet services such as internet of things (IoT), cloud computing, video conferencing,
etc. [1–3]. This requires further developments in the current optical communication net-
works. Currently, the dense wavelength-division multiplexing (DWDM) networks have
a fixed grid (i.e., 50 GHz), which leads to waste of resources especially in the case of low
bit rate transmission. On the other hand, novel network paradigms called elastic optical
networks (EONs) were proposed [4,5] to increase the spectral efficiency of next-generation
optical networks. In this regard, optical super-channel networks are an essential kind of ser-
vice provisioning in EONs [5]. In super-channel networks, a group of multiple channels is
treated as a single entity. These channels are co-generated, co-propagated, and co-detected.
In addition, super-channel eliminates the restriction of fixed grid DWDM technology using
a flexible grid with the aim of increasing the channel capacity. In addition, EONs will be
dynamic as each individual channel may experience different paths due to network recon-
figurability, enabled by optical add-drop multiplexers (ROADMs). Thus, fiber channels
will accumulate different types of transmission impairments [3,5]. For example, the optical
amplifiers in the signal route add noise to the signal, known as amplified spontaneous
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emission (ASE) noise. The amount of ASE noise in the optical signal is defined by the opti-
cal signal-to-noise ratio (OSNR) parameter. In addition, the fiber channel adds chromatic
dispersion (CD) and polarization mode dispersion (PMD) as well as fiber nonlinearity
impairments. Therefore, it is necessary to have continuous and real-time information about
the extent of channel impairments to make appropriate routing decisions, diagnose the
network, repair the damage, change modulation format, etc. In such a dynamic optical
network, OPM is an indispensable tool as it provides flexibility and improves networks’
controllability [6–9].

Over the past couple decades, several OPM techniques have been thoroughly stud-
ied. For example, to estimate OSNR, linear interpolation [10], polarization-nulling tech-
nique [11], and optical delay interferometer [12,13] were considered. However, the linear
interpolation method is not effective for dynamic re-configurable optical networks [14].
In addition, polarization nulling does not apply to dual polarization (DP) systems [14].
Additionally, the optical delay interferometer requires precise wavelength control [15].
On the other side, to monitor chromatic dispersion (CD), clock phase detection was used
in [16], which requires modifications at the transmitter side, hence increasing system cost.
Moreover, these techniques are limited to monitoring a single impairment. However, from a
practical perspective, the OPM system should be able to monitor multiple impairments
simultaneously.

Machine learning (ML) techniques are proposed as an alternative and efficient solu-
tion in different fields of communication networks e.g., see [17–20] and references therein.
Recently, there has been extensive research on the use of ML in optical communication
networks, particularly in OPM [21–24]. In contrast to the traditional OPM technologies, ML
algorithms manifest several benefits compared with the traditional OPM techniques [21].
For example, traditional OPM techniques do not work properly in simultaneous and inde-
pendent monitoring of multiple transmission impairments since the impacts of different
impairments are often physically inseparable [25]. However, ML algorithms can show
superior results in such scenarios. In addition, some of the traditional techniques make use
of training sequences, thus decreasing the spectral efficiency [26], which is not the case with
ML-based approaches. Furthermore, the latest advances in ML technology showed new
techniques (e.g., deep learning (DL)), which can help achieve excellent performance. DL
techniques can deal with complicated models without the need to build exhausted mathe-
matical models. This makes it suitable to face the challenges of the increasing complexity
and dynamism of future optical communications [22,27]. For instance, in [28], an artificial
neural network (ANN) in conjunction with parameters derived from signal eye diagram,
using synchronous sampling, was proposed to monitor OSNR, CD and polarization mode
dispersion (PMD). However, this technique needs accurate time clock recovery. In [29],
the authors proposed the asynchronous amplitude histogram (AAH) to overcome the need
for precise timing, where the monitoring of OSNR, CD, and PMD was considered. How-
ever, when the received signal is severely impaired by CD and PMD, it becomes difficult to
distinguish between different impairments. ML-based asynchronous delay-tap sampling
(ADTS) was proposed in [30] to monitor OSNR, CD, and PMD. Although the ADTS feature
expands the range of monitoring due to its ability to capture more details from the received
signal slope, the cost is high owing to using a pair of sampling clocks. Lately, multi-task
learning (MTL) was proposed to achieve OPM and modulation format identification (MFI)
simultaneously with joint training. The authors in [31] demonstrated MTL enabled OSNR
monitoring, baud rate identification (BRI), and MFI using AAH. However, they only con-
sidered the back-to-back transmission [32]. Joint MFI, BRI, CD, and OSNR monitoring
using MTL with AAH and adaptive ADTS were proposed in [32]. Unlike the traditional
ADTS, this flexible ADTS has adaptivity depending on the sampling rate, which makes
it transparent to the baud rate. Other OPM techniques based on transfer learning (TL),
which does not need a huge training dataset and requires low training time, were also
considered [21]. OSNR monitoring using a TL assisted deep neural network (DNN) algo-
rithm was proposed in [33]. However, this method is limited for OSNR. The authors of [34]
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proposed direct utilization of raw data to perform OSNR monitoring for dual polarization
(DP)-QPSK and DP-64QAM with 14/16 Gbaud in the presence of CD up to 30,000 ps/nm.
However, their technique requires a large dataset for training.

In this work, the problem of OPM in multiplexed optical channels is considered.
Specifically, this work provides novel contributions to the field of OPM, as described below.

(a) It is the first in literature, to the best of author’s knowledge, which considers the OPM
in super-channel optical networks. In contrast to the conventional WDM networks,
super-channel optical networks have an additional impairment arising from subcarrier
interference, which makes the OPM a challenging task.

(b) It proposes a novel ML-based OPM scheme using the discrete Fourier transform/discrete
cosine transform (DFT/DCT) of in-phase quadrature histogram (IQH) for features
extraction and the support vector regressor (SVR) for the estimation of the channel’s
impairments. IQH-based OPM for single carrier optical networks was originally
proposed in [35]. IQH has also been used for OPM in few mode fiber channels [24].
Here, we consider new features (transformed IQH) for monitoring a new type of
channels (super-channel). The advantages of proposed features are two-fold: (i) they
provide low feature size compared to the non-transformed IQH features, hence less
complexity; and (ii) they show excellent OPM results compared to the non-transformed
IQH and to the conventional 1D features (i.e., AAH), as demonstrated in Section 5.

(c) It evaluates the performance of IQH and transformed IQH features in the presence
of different channel impairments. In addition, it investigates the impact of PMD,
frequency offset (FO), and utilization of different modulation formats including the
DP-QPSK, DP-8QAM, and DP-16QAM, on the monitoring accuracy.

(d) It presents proof-of-concept experimental results for validation purposes.

The rest of this paper is structured as follows: Section 2 introduces the concept of
EONs. Section 3 introduces the proposed features and ML algorithm. The simulation setup
is presented in Section 4. The simulation results are discussed in Section 5. Proof-of-concept
experimental results are presented in Section 6. Finally, concluding remarks are given in
Section 7.

2. Elastic Optical Networks (EONs)

Unlike the traditional DWDM networks, which are static, EONs provide high man-
agement flexibility. In particular, EONs offer spectrum efficiency using what is called a
super-channel. The key component of EONs is the bandwidth-variable transponders (BVTs)
that provide high adaptivity. These transponders can adjust the networks parameters (i.e.,
wavelength channels, bandwidth, transmission format, data rate, etc.) according to the
channel conditions and their quality of service requirements. For example, if the channel
condition is excellent, it can decrease the optical power or increase the data rate by us-
ing higher-order modulation formats. However, these developments lead to increasing
network complexity and putting more challenges on the operation and management of
optical networks. Therefore, OPM becomes an imperative for such networks. Figure 1
illustrates the concept of using OPM in EON. The OPM modules are installed for each
node to monitor the physical states and provide feedback to the control plane to constantly
optimize the networks parameters. The BVTs and ROADMs are used to dynamically
adjust the bandwidth and adding/dropping wavelengths, respectively, according to the
commands coming from the control plane.
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Figure 1. Basic principle of OPM in next generation EONs. Here, BVT is the bandwidth-variable
transponder and ROADM is reconfigurable optical add/drop multiplexers.

Super-channels in EONs can achieve higher spectrum efficiency compared to DWDM
networks. In DWDM, the low-bandwidth services occupy less than a full wavelength caus-
ing waste in spectrum utilization as shown in Figure 2. However, super-channel networks
avoid this pitfall by first eliminating the gaps between channels, and then adjusting the
bandwidth using flex-grids according to fiber channel conditions.

Spectrum saving 

(a)

(b)

Wasted guard-bands

(b)

Figure 2. Optical spectrum for (a) DWDM and (b) super-channel networks.

3. Proposed OPM Techniques

In this section, we propose a new ML-based technique for OPM in super-channel-based
optical networks. Figure 3 shows the general structure of our new proposed ML-based
OPM. First, the optical signal is converted to an electrical signal. Second, the resulting I
and Q signals are sampled using an analog-to-digital converter (ADC). These samples are
used to construct 2D-IQH features [35]. These 2D IQH features are then transformed using
the 2D-DFT and 2D-DCT transforms. These transforms facilitate employing fewer samples
and thus transformed 2D IQH features can be truncated and concatenated in the form of
1D features’ vectors (more details are in Section 3.1). These 1D features are then used to
offline train the ML regressor (SVR in our case) to perform impairment estimation. Once
the offline training is complete, the developed model and the features are then used for
online OSNR and CD monitoring.
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Figure 3. Schematic diagram for our proposed OPM using ML techniques.

3.1. Transformed IQH Features

Previous studies [24,35] have demonstrated the effectiveness of utilizing the IQH
features in OPM of single and few mode fiber (FMF) optical channels. The IQH features
are built from the frequency of joint occurrence of in-phase and quadrature received
samples, as demonstrated in Figure 4 for the QPSK signal at different values of OSNR, CD,
and interference ratio (η), defined as the ratio of the subcarrier bandwidth to subcarriers
spacing. It is obvious from the figure that IQH features are sensitive to a change in the type
of impairment or its level, which is a desirable property in monitoring the performance of
optical channels.
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Figure 4. IQH-based features for QPSK signal at different OSNR values (i.e., left (12 dB), middle
(18 dB), and (24 dB)) at: (a) CD = 80 ps/nm and interference ratio = 1.1; (b) CD = 400 ps/nm and
interference ratio = 1.7; and (c) CD = 800 ps/nm and interference ratio = 2.3.

Here, we propose new features extracted from applying either the 2D-DFT or 2D-DCT
to the IQH samples. By doing so, fewer number of samples can be obtained to compactly
represent received signal features, thereby reducing redundancy and allowing efficient
utilization of ML algorithms with 1D features’ input vector. The new features are named
IQH-DFT and IQH-DCT. These features along with the SVR are utilized to tackle the
problem of OPM in super-channel networks. To the best of our knowledge, the problem of
OPM has never been studied before for such channels. Next, the two proposed IQH-DFT
and IQH-DCT features are discussed in more detail.

3.1.1. IQH-DFT Features

The 2D-DFT is widely used in image processing field; as in image filtering, image
de-noising, image reconstruction, and image compression [36]. The 2D-DFT transforms an
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image from spatial domain into frequency domain or, in other words, it decomposes an
image into components of different frequencies. Because removing some of the frequency
components does not produce a noticeable effect on the quality of the original image,
the 2D-DFT is often used to represent an image with a much reduced number of frequency
components [37]. Since the IQH is a 2D feature, the same concept can be applied to reduce
its dimensionality, and possibly to improve monitoring performance.

Let IQH(x, y), where x, y = 0, 1, . . . , N − 1, represents the IQH matrix. The IQH-DFT
feature is given as

IQH-DFT(m, n) =

∣∣∣∣∣N−1

∑
x=0

N−1

∑
y=0

IQH(x, y)e−j2π
xm+yn

N

∣∣∣∣∣ (1)

where m, n = 0,1, . . . K, and x, y = 0, 1, . . . , N − 1. In our development, N = 50 and K is a
design parameter whose value < N. The proposed features’ generation method is shown
in Figure 5, and can be summarized as follows:

(a) The IQH features, shown in Figure 5a, are transformed to the frequency domain using
the 2D-DFT according to (1) produce Figure 5b, where only the magnitudes of DFT
samples are considered. The IQH features displayed in Figure 5a are computed from
a QPSK signal.

(b) The transformed IQH features are truncated by choosing the value of K as small as
possible; see, for example, Figure 5c when K = 10. In the sequel, the value of K that
provides the best performance is considered. More details about the selection of value
of K will be discussed in Section 5.2.

(c) The truncated frequency domain features are concatenated in the form of a 1D vector
after removing the DFT value at the origin (i.e., DC component). The resultant 1D
features vector is denoted by V-DFT.
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Figure 5. The concept of generating the 1D features vector, V-DFT, from the IQH of the QPSK signal.
(a) IQH features, (b) IQH-DFT features, (c) Truncated IQH-DFT, (d) V-DFT features.
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3.1.2. IQH-DCT Features

The 2D-DCT is the favored tool utilized in image compression, whereby it can capture
more information from the image with fewer coefficients [38]. The 2D-DCT for the IQH
samples can be represented mathematically as [36]

IQH-DCT(m, n) = c(m, n)
N−1

∑
x=0

N−1

∑
y=0

IQH(x, y)cos
(
(2x + 1)mπ

2N

)
cos
(
(2y + 1)nπ

2N

)
(2)

where

c(m, n) =

{
2
N , m&n 6= 0
1
N , m&n = 0

(3)

The 1D features vector extracted from the DCT domain (denoted by V-DCT) can
be obtained in a similar manner to what has been done to generate the features vector
V-DFT. The only difference is that the true values (not the magnitude) of DCT samples
are considered. This is because the DCT samples are real-valued numbers (not complex).
Figure 6 illustrates the generation concept of the 1D features vector, V-DCT, from the IQH
of the QPSK signal.
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Figure 6. The concept of generating the 1D features vector, V-DCT, from the IQH of the QPSK signal.
(a) IQH features, (b) IQH-DCT features, (c) Truncated IQH-DCT, (d) V-DCT features.

3.2. Support Vector Regressor

SVR is one of the most popular ML regressors. For a given training dataset, X = {x1,
x2, . . . , xM} ⊂ RD and its corresponding scalar labels y = {y1, y2, . . . , yM} ⊂ R1, where D is
an integer ≥1 and M is the total number of samples in the training dataset. SVR attempts
to find a hyperplane that best fits the dataset. SVR algorithms exploit different types of
mathematical functions called kernels. Kernel functions can be either linear or nonlinear
such as radial basis function (RBF), polynomial and sigmoid functions, which map the data
into higher dimensional space. Comparing SVR with other kernel-based approaches, it
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is computationally efficient [39]. This is because it deals with a small subset of training
samples called support vectors. Furthermore, it is robust to over-fitting and has the ability
to reach the global minimum [40,41].

In this work, the SVR with a linear kernel is used to estimate the super-channel im-
pairments, including OSNR and CD. The input to the SVR is the original IQH features
concatenated in the form of 1D vector, V-DFT, or V-DCT. In this work, the sequential mini-
mal optimization (SMO) algorithm has been employed to determine the optimal regressors’
parameters [42]. More details about SVR and its optimization can be found in [43,44].

4. Simulation Setup

The simulation setup super-channel transceiver follows the work presented in [45]
and is shown in Figure 7. A 7 × 20 Gbaud subcarriers are generated at the transmitter
side. For each subcarrier, DP-QPSK at a symbol rate of 20 Gbaud is generated. The central
subcarrier is operating at 1550 nm, while the wavelengths of other subcarriers are adjusted
according to η. The subcarriers are combined using a WDM multiplexer before transmission
to an optical fiber channel. The fiber length is varied to obtain CD values in the range
of 80 to 800 ps/nm. At the receiver side, one subcarrier is chosen using an optical band
pass filter (OBPF). In order to add the effect of amplified spontaneous emission (ASE)
noise, an erbium-doped fiber amplifier (EDFA) with a variable optical attenuator (VOA) is
employed. The OSNR values are adjusted within the range of 12 to 24 dB. The received
optical signal is mixed with a local oscillator (LO) to demodulate the signal. Both the
received signal and LO are split into X and Y polarization components using polarization
beam splitters (PBSs). Then, 90° hybrid and balanced detectors (BDs) are used to convert
the mixed optical signals to electrical waveforms (IX and QX for X-Pol and (IY and QY for
Y-Pol). The electrical I and Q signals are sampled using four ADCs, where the proposed
OPM captures the samples directly at the output of the ADC stage. The captured samples
are stored for offline processing, where 50 × 50-bin IQH features are extracted. Then,
the V-DFT and V-DCT features are constructed from the transformed IQH, and used as
input to the SVR.

LD

RF input: IY & QY

90o polarization 
rotator

RF input: IX & QX

M
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X
-W

D
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LO

ADC

ADC
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-

-
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Figure 7. Simulation setup of the proposed OPM in super-channel networks. LD: laser diode, EDFA:
Erbium-doped fiber amplifier, VOA: variable optical attenuator, WDM: wavelength division multi-
plexing, MUX: multiplexer, OBPF: optical band pass filter, PBS: polarization beam splitter, OC: optical
coupler, ADC: analog to digital convertor, LO: local oscillator, SVR: support vector regressor, η: interfer-
ence ratio, OPM: optical performance monitoring.

5. Results and Discussion

In this section, we present the OPM results of the 7 × 20 Gbaud super-channel system.
We generated 100 realizations for each impairment, including OSNR within the range of
12 to 24 dB (using a step of 2 dB) and CD within the range of 80 to 800 ps/nm (using a step
of 80 ps/nm). The dataset is divided into 70% for training and 30% for testing, and the SVR
is used to perform impairments’ estimation. Since the system subcarrier is either in the
middle where it overlaps with two neighbor subcarriers, or on the side where it overlaps
with only one subcarrier, we limit our study to one of each type to avoid redundancy.
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The monitoring performance of three different types of features (i.e., the concatenated
IQH, V-DFT, and V-DCT) is compared with the AAH features, which is taken as a reference.
Note that AAH and IQH features are commonly used in literature [24,35,45–52], while
V-DFT and V-DCT are our new proposed features. The effectiveness of monitoring is evalu-
ated using visual inspection and quantitative measures. Visual inspection is performed
using a standardized method called boxplot. As the boxplot width decreases, this indicates
that the monitoring accuracy increases and vice versa. The coefficient of determination (ρ)
is utilized as a quantitative measure, which is given as [24,53,54]

ρ = 1− ∑N
n=1 (yn − ŷn)

2

∑N
n=1 (yn − ȳ)2 (4)

where yn represents the true impairment value, ŷ represents the estimate, N is the total
number of impairment samples, and ȳ is the sample mean. The higher the value of ρ
is, the better the estimation. If ρ = 1, this means a perfect match between the true and
estimated values.

5.1. OPM Using Concatenated IQH Features

The monitoring results of OSNR and CD of the side and middle sub-carriers for both
IQH and AAH features are depicted in Figure 8. The results reveal that the boxplot width
of IQH, for both middle and side subcarriers, is smaller than that of AAH. Therefore, IQH
features provide better estimation when compared to AAH features. These observations
are further confirmed by computing the coefficient of determination for the side and middle
subcarriers. For example, in the case of a side subcarrier, the coefficient of determination
of AAH (IQH) for OSNR and CD are 0.93 (0.99) and 0.98 (0.99), respectively. Similarly for
the middle subcarrier, the OPM accuracy of IQH features exceeds that obtained by the
AAH features.
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Figure 8. OPM results using AAH (1st column and 3rd column ) and IQH (2nd column and 4th
column) with SVR for side (1st column and 2nd column) and middle (3rd column and 4th column)
sub-carriers (a) OSNR and (b) CD.

The OPM scheme using IQH with SVR is also assessed on more challenging conditions,
where more than one impairment exists. Three cases for each impairment (denoted by
low, moderate, and high) have been considered, as outlined in Figure 9. The OPM results
are investigated in terms of ρ (y-axis) versus the impairment type (x-axis), as shown in
Figure 10.
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Figure 9. Monitoring scenarios for different impairments.
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Figure 10. OPM results using IQH with SVR of side and middle sub-carriers (a) OSNR monitoring
and (b) CD monitoring.

For OSNR monitoring, the value of ρ decreases from 0.99 and 0.98 (at η = 1.1 and
CD = 0 ps/nm) to 0.95 and 0.90 (at η = 1.7 and CD = 400 ps/nm) for side and middle
sub-carriers, respectively, as shown in Figure 10a). For high values of η (i.e., η = 2.3) and
CD (i.e., 800 ps/nm), the monitoring accuracy in terms of ρ decreases to 0.6 and 0.13 for
side and middle sub-carriers, respectively. The reason for such a decrease in performance
is owing to the high values of η and CD that cause the IQH features to become cloudier,
as shown in Figure 4c. Moreover, the performance of the side subcarrier is better than that
of the middle subcarrier. This is because the middle subcarrier overlaps with two neighbor
sub-carriers, while the side subcarrier only overlaps with one subcarrier. Similarly, for the
CD, the monitoring accuracy decreases as the values of other impairments increase; see
Figure 10b.

5.2. OPM Using V-DFT and V-DCT Features

The V-DFT and V-DCT features represent the IQH in a more compact form. As dis-
cussed in Section 3.1, the optimal value of parameter K, which provides the best monitoring
accuracy, needs to be selected. Towards that objective, the monitoring accuracy is evaluated
at different values of K, including K = 2, 3, 5, 10, 15, which correspond to V-DFT and V-DCT
features vectors of lengths 3, 5, 24, 99, 224, respectively. Figure 11 shows the monitoring
results of V-DFT and V-DCT features versus the length of features vector. The results show
that the monitoring accuracy almost remains unchanged as the value of K is equal to or
greater than 10. Therefore, the V-DFT and V-DCT features with length (K2 − 1 = 99) are
used in the rest of this work.
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Figure 11. Examples of monitoring results as a function of IQH-DFT and IQH-DCT features lengths:
(a) OSNR monitoring at η = 1.1 and CD = 0 ps/nm; (b) CD monitoring at η = 1.1 and OSNR = 24 dB.

Figure 12 shows the performance of the three types of features; IQH, V-DFT, and V-DCT.
It can be seen that, for OSNR and CD monitoring, and in the presence of low interference,
all three features achieve the same results. As the value of η increases, the V-DCT features
outperform the others.
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Figure 12. Comparisons between monitoring results using different feature types of both side (left)
and middle (right) sub-carriers: (a) OSNR monitoring and (b) CD monitoring.

Because V-DCT features provide excellent performance compared to the other two
features (i.e., IQH and V-DFT), they are used in what follows to investigate the effect of PMD,
FO, and changing the type of modulation format on the OPM process in super-channel
based networks. The investigation is conducted in the presence of multiple impairments,
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specifically, estimation of OSNR (at η = 1.7 and CD = 400 ps/nm) and CD (at OSNR = 18 dB
and η = 1.7).

We examine the monitoring accuracy of the 1st PMD with a differential group delay
(DGD) in the range of 10 to 70 ps, a state of polarization (SoP) angle of 45°, and FO ranging
from 0 to 1 GHz. It is noted from Figure 13a that the OSNR accuracy has values greater than
0.9 when the DGD = 40 ps and decreases to 0.65 when the DGD reaches 70 ps. However,
the CD monitoring accuracy remains greater than 0.9 even when the DGD reaches 70 ps.
On the other hand, the CD monitoring accuracy almost remains unchanged even when FO
reaches 1 GHz. However, the OSNR monitoring accuracy has values greater than 0.9 up to
1 MHz, and then starts decreasing and reaches 0.87 at FO = 1 GHz, as shown in Figure 13b.
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Figure 13. OPM results using V-DCT at different values of (a) FO and (b) PMD.

Figure 14 shows results displaying the effect of changing the modulation format on the
monitoring accuracy. In this investigation, the DP-QPSK and DP-MQAM (M = 8 and 16) are
considered. By virtue of Figure 14, it can be observed that, for OSNR, the accuracy decreases
as modulation order increases. However, for the CD, the monitoring accuracy rises from 0.97
for DP-QPSK to 0.99 for DP-8QAM, then decreases to 0.84 for DP-16QAM. This is because
the CD effect is more pronounced in DP-8QAM features than in QPSK features due to the
relatively larger number of dominant IQH values, as demonstrated in Figure 15 for the case
CD = 400 ps/nm. In this figure, the case of CD = 0 ps/nm is also considered for reference,
and IQH features are displayed in the form of images for visualization.
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Figure 14. OPM results using V-DCT features and different modulation formats.
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(a)

(b)

Figure 15. Images of IQH features of QPSK (1st column), 8QAM (2nd column), and 16QAM (3rd
column) at: (a) CD= 0 ps/nm; (b) CD = 400 ps/nm.

On the other hand, the CD greatly affects IQH features having a larger number of
dominant values as for the DP-16QAM. In this case, the features of DP-16QAM become
much noisier compared to those of other two modulation formats (DP-QPSK and DP-
8QAM), which in turn contributes negatively to the monitoring accuracy.

6. Experimental Validation

This section presents proof-of-concept experimental results to show the feasibility of
the proposed OPM scheme. Figure 16 shows the setup considered to generate the signals
of a super-channel transceiver, as in [45]. A narrow-linewidth distributed-feedback laser
(NKT-photonics) is employed to generate optical light centered at 1550 nm. An arbitrary
waveform generator (AWG) from Keysight (M8195A) with a sampling rate 64 GSa/s is
used to generate electrical DP-QPSK signal. The DP-QPSK signal is modulated using
the DP-IQ Mach–Zehnder modulator (DP-IQM). The modulated carrier is then applied
to a frequency comb source (FCS) with 25-GHz frequency spacing, which includes RF
signal source and phase modulator. A Finisar wave shaper is used to choose only seven
subcarriers. These subcarriers convey the same data. Therefore, they are decorrelated by
firstly separating the odd and even subcarriers, secondly delaying the even subcarriers,
and finally combining the odd and delayed even subcarriers. To control the OSNR, ASE is
added and adjusted using an EDFA and optical attenuator, respectively. The OSNR values
are varied in the range of 12–24, with a step of 2 dB. However, the effect of CD within
the range of 80 and 800 ps/nm (using a step of 80 ps/nm) is emulated electrically at the
transmitter side [49,55,56]. At the receiver side, a tunable optical bandpass filter is adjusted
to filter the middle subcarrier of received signal before connecting to an optical coherent
receiver (N4391AKeysight optical modulation analyzer (OMA)). The acquired samples are
taken directly after the analog to digital converter. These samples are used to construct the
IQH, and then V-DCT features, which are used as input to the SVR.

Figure 17 shows the monitoring results for OSNR (at η = 1.1 and CD = 0 ps/nm) and
CD (at η = 1.1 and OSNR = 20). As can be observed from the figure, the coefficient of
determination for both OSNR and CD is 0.97. In addition, in Figure 18, we observe excellent
agreement between the simulation and experimental results.
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Figure 16. Experimental setup of the proposed OPM in super-channel networks. LD: laser diode,
AWG: arbitrary waveform generator, RF: radio frequency, PM: phase modulator, EDFA: Erbium-
doped fiber amplifier, VOA: variable optical attenuator, OSNR: optical signal-to-noise ratio, OBPF:
optical band pass filter, OC: optical coupler, LO: local oscillator.
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7. Conclusions

In this paper, we demonstrated the OPM of 7 × 20 Gbaud DP-QPSK for transmission
over a super-channel optical network. Two types of 1D features, including the V-DFT and V-
DCT, have been proposed for the development of the OPM technique. In our development,
the SVR is used to estimate the OSNR and CD. The monitoring results using the proposed
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V-DFT and V-DCT features are compared with those of the IQH features. The results
revealed that OPM accuracy for side subcarriers outperforms that of middle subcarriers.
Moreover, the results showed that the OSNR and CD can be accurately estimated for values
of interference ratio up to 1.7. However, increasing the interference ratio by more than
1.7 makes the features indistinguishable for almost all different situations, which in turn
destructively affects the monitoring performance. Additionally, the V-DCT based OPM
scheme provides the best performance compared to the OPM techniques based on other
features (i.e., AAH, IQH, and V-DFT features) and can work well even in the presence of
PMD and frequency offset up 40 ps and 1 MHz, respectively. In addition, the proposed
V-DCT based OPM scheme showed reasonable robustness with respect to a change in
the modulation format, where its performance has been assessed using three types of
modulation schemes; DP-QPSK, DP-8QAM, and DP-16QAM. Therefore, the proposed
monitoring technique utilizing the V-DCT features and SVR is a promising candidate for
OPM in next generation optical networks.
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Abbreviations
The following abbreviations are used in this manuscript:

AAH Asynchronous amplitude histogram
ADTS Asynchronous delay-tap sampling
ANN Artificial neural network
ASE Amplified spontaneous emission
BD Balanced detector
BRI Baud rate identification
BVT Bandwidth-variable transponder
CD Chromatic dispersion
DCT Discrete cosine transform
DFT Discrete Fourier transform
DNN Deep neural network
DP Dual polarization
DWDM Dense wavelength-division multiplexing
EON Elastic optical network
FMF Few mode fiber
FO Frequency offset
IoT Internet of things
IQH In-phase quadrature histogram
LO Local oscillator
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MFI Modulation format identification
ML Machine learning
MTL Multi-task learning
OBPF Optical bandpass filter
OPM Optical performance monitoring
OSNR Optical signal-to-noise ratio
PBS Polarization beam splitter
PMD Polarization mode dispersion
RBF Radial basis function
ROADM Reconfigurable optical add-drop multiplexers
SMO Sequential minimal optimization
SVR Support vector regressor
TL Transfer learning
VOA Variable optical attenuator
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