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Abstract: Eliminating the phase deviation caused by object motion plays a vital role to obtain the
precise phase map to recover the object shape with phase-shifting-profilometry. Pixel-by-pixel phase
retrieval using the least-squares algorithm has been widely employed to eliminate the phase deviation
caused by moving object. However, pixel-level operation can only eliminate phase deviation within a
limited range, and will bring high computational burden. In this paper, we propose an image-level
phase compensation method with stochastic gradient descent (SGD) algorithm to accelerate the phase
deviation elimination. Since the iteration calculation is implemented at the image-level, the proposed
method can accelerate the convergence significantly. Furthermore, since the proposed algorithm
is able to correct the phase deviation within (−π, π), the algorithm can tolerate a greater motion
range. In addition to simulation experiments, we consider 2-D motion of the object, and conduct a
series of comparative experiments to validate the effectiveness of the proposed method in a larger
motion range.

Keywords: phase deviation elimination; phase-shifting-profilometry; three-dimensional reconstruc-
tion; surface measurement

1. Introduction

Fringe projection profilometry modulates the surface depth information of object
into the phase maps of fringe patterns, which has been extensively adopted in modern
industries to measure the 3D shape of object due to its high accuracy and non-contact char-
acteristics [1–3]. To obtain the precise wrapped phase maps, phase-shifting-profilometry
(PSP) is one of the most commonly used methods in fringe projection profilometry. In PSP,
the digital projector illuminates the stationary object by a series of fringe patterns with
equally spaced phase. Through the modulated fringe patterns and triangle relationship,
the accurate surface height of the object can be reconstructed. However, the rapid growth
of industrial inspection requires to recover the 3D shape of moving object is required to be
recovered [4–6], thus reconstructing the surface of moving object with PSP has become a
practical issue that should be considered [7–9].

When PSP based method is applied to recover the surface of moving object, the phase
deviation caused by object motion often results in severe artifacts [6,7]. In order to reduce
the phase deviation caused by motion, there are two main approaches. One is to capture
the fringe patterns with high-speed photography hardware. Zheng et al. [10] develop a
method based on PSP with projector defocusing for high speed 3D shape measurement and
analyze the phase deviation model. However, use of high speed equipment [10–14] implies
a significant increase in the cost and the complexity of system [15]. Another approach is to
reduce the phase deviation caused by motion through phase compensation.

Based on this consideration, Lu et al. [1] propose to use a set of marks on the object
surface to describe the rotation matrix and translation vector of the phase deviation, an
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iterative least-squares algorithm is presented to perform pixel-level phase compensation.
Lu et al. [16] also extend the method to the case of 3-D movement of the object. Feng et al. [6]
propose a robust motion-compensated method for three-step PSP, which corrects the phase
deviation with adjacent pixels. To estimate phase deviation caused by the object motion,
Wang et al. [17] apply the Hilbert transform to phase-shifted fringe patterns to generate
another set of fringe patterns. This method is less computationally expensive, but there is
an underlying assumption that requires the object to move slower than the camera speed.
Wang et al. [18] also propose a novel motion-induced method using additional samplings.
Given that the method needs to capture two fringe patterns in one cycle, the accuracy of the
external trigger will affect the quality of the reconstruction result. Duan et al. [19] propose a
method for 2-D moving objects by introducing an adaptive reference phase map and motion
tracking based on the composite image. However, the method encounters challenges when
objects perform a wide range of motion. Li et al. [20] redefine the order of the projected
stripe patterns and use the Hilbert transformation to compensate for the motion-induced
errors and improve the utilization of the stripe. Since these phase compensation methods
are developed on pixel-level, they still suffer from high computational amount [21]. In order
to reduce the computational burden, Guo et al. [22] develop a Fourier-based method using
dual-frequency composite phase-shifted grating patterns to achieve region-level phase
compensation. However, due to the limitations of FTP, the method might not be available
on case of dynamically deformable objects [8]. On the other hand, these algorithms are
effective only when the phase deviation is within a limited range. When the phase deviation
exceeds this range, these algorithms will not converge, which means the object with large
motion range could not be reconstructed by these algorithms.

In addition to the aforementioned methods, Spoorthi et al. [23] propose a phase
compensation method with deep learning to improve the accuracy of measurement, but it
requires a large number of actual phase values obtained by iterative method for learning.
Moreover, there are other methods [24–26] that use deep learning to correct phase deviation
caused by motion. In specific application scenario, a large amount of actual phase data
calculated through iterative method is difficult to acquire, it is impractical to use the deep
learning to calibrate the phase deviation caused by motion in industrial measurement right
now. Therefore, it is still necessary to develop the phase compensation method with high
efficiency and accuracy under common resources.

To our knowledge, the existing pixel-level iterative methods have been suffered by two
problems: limited motion range of object, and high computational burden. In this paper,
we propose an image-level phase compensation method with SGD algorithm to accelerate
phase deviation elimination. In this method, the difference among deformed fringe patterns
is used to construct the iterative expression, which can reduce the computational burden
of pixel-level based methods significantly. Furthermore, in the proposed SGD algorithm,
each update of the iteration will randomly select a gradient direction, so the algorithm
can escape from the saddle point to find the global optimum. Therefore, the large phase
deviation can be eliminated effectively, which means our proposed method can reconstruct
the object with larger motion range than existing methods.

2. Problem Formulation

PSP is one of the most promising approaches of 3-D shape reconstruction. Under the
N-step PSP scenarios, In(x, y) is the n-th deformed fringe patterns captured from the object,
it can be described respectively as:

In(x, y) = a(x, y) + b cos(ωy + Φ(x, y) +
2πn

N
) (1)

where {n|n ∈ {0, 1, . . . , N − 1}}; a(x, y) is the background ambient light intensity; b is the
amplitude of the intensity of fringe patterns; ω is the angular frequency of fringe projection;
ωy is the phase of the reference plane along the direction perpendicular to the fringe;
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Φ(x, y) is the phase under the modulation of object height information; 2πn
N is the n-th

preset phase shift of the fringe projection.
The direction of movement is shown in the Figure 1. A typical system consists of a

camera A, and a projector B. The height h of a point E on the object surface is calculated by
the modulated phase information. The distance between the camera and the projector is d,
and the distance from the camera to the reference plane is l + h.

l

h

A B

E

d

Camera Projector

y

x

Figure 1. Schematic diagram of object movement.

To simplify the analysis, we assume that the direction of the moving object is on the
y-axis direction. When the direction of the y-axis is perpendicular to the direction of the
fringe, we use ∆yn to describe displacement of the object in pixel on the n-th captured
pattern. Through coordinates transformation, we yield the following:

In(x, y− ∆yn) =a(x, y) + b cos(ωy + Φ(x, y) + (
2πn

N
−ω∆yn)) (2)

Since the pixels are discrete, the calculated result of ∆yn is an integer. We use ∆Φ
′
n =

2πn
N − ω∆yn = 2πn

N − ω[∆yn] to describe the actual phase to be calibrated. To further
simplify the expression, we let Φ

′
(x, y) as: Φ

′
(x, y) = ωy + Φ(x, y). The actual phase is

difficult to solve directly and accurately due to the rounding error of ∆yn.
In order to solve the actual phase, Lu et al. [1] propose a least-square iteration algo-

rithm, which constructs the iteration equation with the gray value difference between the
pixels with the same coordinate on different deformed fringe patterns. But this kind of
algorithm always suffers from high computational complexity and falling to local optimal
point due to its iterative operation at the pixel-level.

3. Derivation of the Proposed Algorithm

In order to accelerate the convergence, our proposed algorithm calculate the arith-
metic average value of the difference between the different deformed fringe gray scales
to construct the iteration equation, which reduces the computational complexity. The
iteration equation illustrates the distance between the deformed fringe patterns difference
and the actual phase. After obtaining an accurate deformed fringe patterns difference, we
compensate the actual phase under this distance. If the accuracy of iteration calculation
does not reach the stopping criterion, the actual phase to be calibrated is updated through
the random gradient descent method, the iteration stops until the accuracy requirement
is met.
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3.1. Calculation of Deformed Fringe Patterns Difference

We use Kij to describe the absolute average value
〈∣∣Ii(x, y)− Ij(x, y)

∣∣〉 of the difference
between the i-th deformed fringe patterns and the j-th deformed fringe patterns:

Kij =

〈∣∣∣∣∣∣2b sin(Φ
′
(x, y) +

∆Φ
′
i + ∆Φ

′
j

2
)

∣∣∣∣∣∣
〉
· | sin(

∆Φ
′
i − ∆Φ

′
j

2
)| (3)

where {i, j|i, j ∈ {0, 1, . . . , N− 1}, i 6= j}. Under grid motion,

〈∣∣∣∣∣2b sin(Φ
′
(x, y) +

∆Φ
′
i+∆Φ

′
j

2 )

∣∣∣∣∣
〉

will be a fixed quantify. c =

〈∣∣∣∣∣2b sin(Φ
′
(x, y) +

∆Φ
′
i+∆Φ

′
j

2 )

∣∣∣∣∣
〉

is the difference between the

deformed fringe patterns to be calculated, which reflects the macroscopic differences be-
tween the patterns. We can calculate c through least square method [27] in Equation (4).

∆K =
N−1

∑
i=1

i−1

∑
j=0

(
K′ij − Kij

)2

∂∆K
∂c

=
∂∆K

∂∆Φ′n
= 0

(4)

where K′ij is the actual value of difference between deformed fringe patterns, and Kij is the
value of difference between deformed fringe patterns, the actual value is the closest to the
theoretical value. When ∂∆K

∂c = ∂∆K
∂∆Φ′n

= 0 is satisfied, ∆K get the minimum value, c can be

calculated iteratively as follows:

c =
∑N−1

i=1 ∑i−1
j=0 K′ij| sin(

∆Φ
′
i−∆Φ

′
j

2 )|

∑N−1
i=1 ∑i−1

j=0 sin2(
∆Φ′i−∆Φ′j

2 )

=
4 ∑N−1

i=1 ∑i−1
j=0 K′ij| sin(

∆Φ
′
i−∆Φ

′
j

2 )|

N(N − 1)− 2 ∑N−1
i=1 ∑i−1

j=0 cos(∆Φ′i − ∆Φ′j)

(5)

With iterations, c will approach to the true value.

3.2. Differential Constrained Phase Compensation

After obtaining accurate c, we can calculate the actual phase ∆Φ
′
n under the constraints

of c. We can take {m|m ∈ {0, 1, . . . , N − 1}}, then the partial derivative ∂∆K
∂∆Φ′n

= 0 can be

converted to the following:

∂

∂∆Φ′m
[
m−1

∑
j=0

K′mj−c| sin(
∆Φ

′
m−∆Φ

′
j

2
)|

2

+
N−1

∑
i=m+1

(
K′im−c| sin(

∆Φ
′
i−∆Φ

′
m

2
)|
)2

] = 0

(6)
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where {i|i ∈ {m + 1, m + 2, ..., N− 1}} and {j|j ∈ {0, 1, ..., m− 1}}. Through simplification,
the solutions can be expressed as Equation (7).

K′mj−c| sin(
∆Φ

′
m−∆Φ

′
j

2
)|=0

K′im−c| sin(
∆Φ

′
i−∆Φ

′
m

2
)|=0

(7)

When c 6= 0, cos(∆Φi−∆Φm
2 ) 6= 0, Equation (7) can be expressed as:

∆Φ
′
m =∆Φ

′
j−2 arcsin(

K′mj

c
), ∆Φ

′
m < ∆Φ

′
j

∆Φ
′
m =∆Φ

′
j+2 arcsin(

K′mj

c
), ∆Φ

′
m ≥ ∆Φ

′
j

∆Φ
′
m =∆Φ

′
i−2 arcsin(

K′im
c

), ∆Φ
′
m < ∆Φ

′
i

∆Φ
′
m =∆Φ

′
i+2 arcsin(

K′im
c

), ∆Φ
′
m ≥ ∆Φ

′
i

(8)

We can calculate the arithmetic average of the actual phase to be calibrated as follows:

∆Φ′m =
1

N − 1
[

N−1

∑
i=0,i 6=m

∆Φ
′
i − 2 ∑

i∈G0

arcsin(
K′mi

c
)

+ 2 ∑
i∈G1

arcsin(
K′mi

c
)− 2 ∑

i∈G2

arcsin(
K′im

c
)

+ 2 ∑
i∈G3

arcsin(
K′im

c
)]

(9)

where G0 = {x|x ∈ {0, 1, ..., m− 1}, ∆Φ
′
m < ∆Φ

′
x}, G1 = {x|x ∈ {0, 1, ..., m− 1}, ∆Φ

′
m ≥

∆Φ
′
x}, G2 = {x|x ∈ {m + 1, m + 2, ..., N − 1}, ∆Φ

′
m < ∆Φ

′
x}, G3 = {x|x ∈ {m + 1, m +

2, ..., N − 1}, ∆Φ
′
m ≥ ∆Φ

′
x}.

3.3. Iteration Process

For the initial iteration, the actual phase to be calibrated is ∆Φ
′
n = 2πn

N −ω[∆yn]. In
subsequent iteration, the actual phase to be calibrated is the results obtained in the previous
iteration. In each iteration, we make a judgment whether the result of this iteration meets
the phase compensation accuracy requirement ε as:√√√√∑N−1

i=0

(
∆Φ

′(t)
i − ∆Φ

′(t−1)
i

)2

N
< ε (10)

where t is the number of iterations; ε is the preset accuracy requirement to stop iterations.
If the difference between two consecutive iterations satisfies Equation (10), we stop the
iteration. Otherwise, the SGD method is introduced to obtain the new actual phase to be
calibrated and proceed to the next iteration.

The reason for introducing SGD [28] is that the ordinary iteration process has no
exploration mechanism, and it is easy to fall into the local optimum, as shown in Figure 2.
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A

B

C

Figure 2. The exploration mechanism of stochastic gradient descent.

Before starting the SGD, we have precalculated the following parameters: the initial
value of the descending step length s; the direction parameter r; the Euclidean distance of
the actual phase compensation results of two consecutive iterations dis(∆Φ

′(t), ∆Φ
′(t−1));

and the gradient value between the actual phase compensation results of consecutive itera-
tions g(∆Φ

′(t), ∆Φ
′(t−1)). Finally, we can calculate the input phase of the next generation

∆Φ
′(t+1)
n .

We use Equation (11) to describe the updated descending step s
′
:

s
′
=

g(∆Φ
′(t), ∆Φ

′(t−1))

dis(∆Φ′(t), ∆Φ′(t−1))
s =

∆Φ
′(t), ∆Φ

′(t−1)

(t− (t− 1))dis(∆Φ′(t), ∆Φ′(t−1))
s

=

(
∆φ

′(t)
0 − ∆φ

′(t−1)
0 , ∆φ

′(t)
1 − ∆φ

′(t−1)
1 , · · · , ∆φ

′(t)
N−1 − ∆φ

′(t−1)
N−1

)T

dis(∆Φ′(t), ∆Φ′(t−1))
s

(11)

Similarly, specific to the n-th step size s
′
n:

s
′
n =

∆Φ
′(t)
n − ∆Φ

′(t−1)
n

dis(∆Φ′(t), ∆Φ′(t−1))
s (12)

Then, we use Equation (13) and a random function rand() to determine the gradient

descent direction dir(∆Φ
′(t)
n ):

dir(∆Φ
′(t)
n ) =

{
1, rand()≤ p0

−1, rand()> p0
(13)

where p0 = r
1+r reflects the probability along the fastest direction of the gradient. When

dir(∆Φ
′(t)
n ) = −1, the iteration direction is changed to the opposite direction, otherwise no

change will be made. Then, we can calculate ∆Φ
′(t+1)
n as follows:

∆Φ
′(t+1)
n = ∆Φ

′(t)
n + dir(∆Φ

′(t)
n )s

′
n (14)

The above derivation can also be extended to the object with 2D movement on the
x-axis direction. The point on the object surface only has translational motion as the height
is not changed with the movement. In the Figure 1, the phase deviation caused by the
object moving in different directions can be solved using the proposed algorithm.

Summarily, the improvement of the calculation time of the proposed method in this
paper can be explained by the calculation complexity. Obviously, the time complexity of
our method is O(MN2), the time complexity of the pixel-level approaches represented by
Ref. [16] is O(M2N), where the resolution of deformed fringe pattern is M, the number of
deformed fringe patterns is N.

4. Experiments

In this section, we compare the performance between our method and other methods
through experiments. The first experiment shows the time cost difference of the proposed
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method and method in Ref. [16]; the second experiment shows the performances the two
methods under different phase deviation; the third experiment shows the results of surface
reconstruction of object moving along the y-axis, and compared with the results of static
object surface reconstruction; the fourth experiment shows the effect of the proposed
method and method in Ref. [29] in different motion directions and step length on the
reconstruction results.

We built a fringe projection system comprised of a DLP projector (LightCrafter 4500,
TI) and a black and white industrial camera (Blackfly S BFS-U3-32S4M). We employed
such an approach using Matlab on LENOVO Y7000 computer with 2.7 GHz CPU and
16 G memory. The resolution of the camera is 948× 604, with a maximum frame rate of
30 frames per second. And we place different statues on the sliding rails to achieve the 2D
movement along the parallel or vertical stripes. In order to verify the effectiveness of the
proposed algorithm, four groups of experiments were carried out by differing the motion
step length and direction.

Take the Voltaire statue used in the experiment as an example to show the preprocess-
ing of captured fringe patterns, the statue is shown as Figure 3a. And the object image with
fringe patterns can be captured in three components(red component, blue component and
green component) as shown in Figure 3b. After background subtraction, the calculated
Figure 3c can accurately distinguish the object and the background. In order to further
eliminate the effect of holes and noise, by using the morphological filter, the Figure 3d can
be obtained.

(a) (b) (c) (d)

Figure 3. The preprocess of captured fringe patterns: (a) The plastic statue used in the experiment;
(b) The captured object fringe patterns; (c) The result after background subtraction; (d) The result
after morphological filter.

The ASIFT [30] algorithm is applied to track the object movement using the captured
images with the corresponding relationship. And the output of the ASIFT algorithm is the
coordinates of match points, as shown in Figure 4. According to the coordinates of match
points, the corresponding relationship can also found.

Figure 4. The feature points obtained by ASIFT algorithm and the corresponding relationship.

4.1. Quantitative Experiments Based on Computational Performance

This experiment discusses the performance comparison of the two methods at different
projection frequencies. In order to quantify the difference in accuracy of the two methods,
we first compared the phase compensation results of different methods with different preset



Photonics 2022, 9, 295 8 of 13

deformed phase. When the projection frequency is 30 Hz, the compensation results of
different methods are shown in Table 1.

Table 1. Phase compensation results of different methods.

Method
Preset Deformed Phase (◦)

0 10 20 30 40 50

method in Ref. [16] (◦) 0.9322 11.0005 21.3034 31.0420 41.3998 51.0328
Our method (◦) 1.2211 11.4410 20.9574 30.2873 40.6716 50.9693

60 70 80 90 100 110

method in Ref. [16] (◦) 61.3550 71.2935 80.9131 90.5499 100.3419 110.3698
Our method (◦) 62.1627 71.7829 81.0582 91.3023 101.4257 111.8201

120 130 140 150 160 170

method in Ref. [16] (◦) 120.0243 130.4847 140.5074 150.4744 160.3691 170.1656
Our method (◦) 120.8163 130.9091 140.5823 151.1774 160.4379 170.4528

180 190 200 210 220 230

method in Ref. [16] (◦) 180.0487 189.5176 200.1042 209.5452 219.5894 229.3869
Our method (◦) 180.3607 189.5218 200.5750 210.9659 220.6261 230.2743

240 250 260 270 280 290

method in Ref. [16] (◦) 238.8631 249.1729 258.6368 268.7223 279.1238 288.9783
Our method (◦) 239.1686 250.1688 258.9183 269.6454 279.5191 288.9242

300 310 320 330 340 350

method in Ref. [16] (◦) 298.6066 308.6045 319.1106 329.4160 339.4323 349.3838
Our method (◦) 299.0089 309.0647 319.4346 329.6236 339.4916 349.4996

In order to quantitatively evaluate the difference in phase compensation accuracy of
different methods, we use Equation (15) to calculate the mean square error (MSE) of the
two methods.

MSE =

√√√√∑N−1
i=0

(
∆Φ

′(0)
i − ∆Φ

′(1)
i

)2

N
(15)

where ∆Φ
′(0)
i is the phase compensation result of the i-th deformed fringe patterns in

Ref. [16], and ∆Φ
′(1)
i is the phase compensation result of the i-th deformed fringe patterns

in our method. As shown in Table 2, the MSE of the phase compensation results of the two
methods under different projection frequencies is controlled within 1◦.

Table 2. The MSE of the two methods.

Method
Frequency (Hz)

5 10 15 20 25 30

MSE of the two
methods (◦) 0.8864 0.5758 0.4801 0.8342 0.7471 0.6361

Next, we will compare the computational cost of the two methods for phase com-
pensation of 36 different preset deformed phase fringe patterns, the image resolution is
948× 604. The results are shown in the following table (Table 3):
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Table 3. The calculation time of different methods.

Method
Frequency (Hz)

5 10 15 20 25 30

method in Ref. [16] (s) 183.2324 193.2366 190.8281 183.0466 185.6055 184.1551
Our method (s) 37.3501 37.2767 37.4151 37.2874 37.3287 37.5048

And Table 3 shows the comparison of calculation time between two methods. And
the average computational cost of the method in Ref. [16] is 5.1857 seconds/frame, our
method is 1.0378 seconds/frame. The calculation cost of our method is only 20.0127% of the
calculation cost of the method in Ref. [16], which greatly reduces the calculation complexity.

4.2. Simulation Experiment of Phase Deviation Cancellation

We selected different phase deviation within (−π, π) to verify the convergence of
our method and the method in Ref. [16]. In order to facilitate quantitative analysis, we
also use Equation (15) to calculate MSE between the phase compensation results and the
actual phase.

At this time, ∆Φ
′(0)
i is the phase compensation result of the i-th deformed fringe

patterns, ∆Φ
′(1)
i is the actual phase of the i-th deformed fringe patterns. And we assume

that θ is the phase deviation, which can be calculated by the difference between the iteration

starting point ∆Φ
′(0)
i and the actual phase ∆Φ

′(1)
i .

When frequency is 30Hz, we set the θ = {−180◦,−170◦,−160◦, . . . , 160◦, 170◦, 180◦}.
The original result is shown in the Figure 5. In order to further illustrate the effect in details,
we conducted an experiment where θ ∈ [−10◦, 10◦].

Figure 5. The effect of different initial iteration points.

It can be seen from Figure 5 that our method can converge to the actual phase at
different iteration starting points within (−π, π). The MSE of our method is always
controlled within 0.4◦ and the average MSE is 0.2437◦. As θ increases, the MSE of the
method in Ref. [16] expands rapidly, indicating that this method is easy to fall into the local
iterative optima. In the partial enlarged view, the MSE of our method is always controlled
within 0.2◦, and the average MSE is 0.1370◦. When θ ∈ [−2◦, 2◦], the method in Ref. [16] is
more accurate because we greatly reduce the computational complexity while sacrificing
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part of the accuracy. And the MSE between two methods does not exceed 0.12◦. Once it
exceeds this range, the MSE of the method in Ref. [16] increases with the increase of θ.

4.3. Quantitative Experiment of Free-Moving Object

We applied the proposed method to the 3D surface reconstruction of scenarios where
the object is moving or stationary. For the bear statue that moves along the y-axis, we make
the moving length uncontrolled each step. The surface reconstruction results of our method
in different scenes are shown in Figure 6. The object moves at 3 (mm/step) between the first
two fringe patterns taken, and at 5 (mm/step) between the last two fringe patterns taken.
As shown in Figure 6, the proposed method has better performance in terms of details.

(a) 

(e) (g) (h) 

(b) (c) (d) 

(f) 

Figure 6. The comparison of reconstruction results in different scenarios: (a) The captured fringe
pattern of the low frequency; (b) Our method: stationary object; (c) Our method: uncontrolled
moving object; (d) Method in Ref. [16]: uncontrolled moving object; (e) The captured fringe pattern
of the high frequency; (f) Our method: stationary object (viewed from the side); (g) Our method:
uncontrolled moving object (viewed from the side); (h) Method in Ref. [16]: stationary object (viewed
from the side).

Due to the insignificant shape error assessment (in mm), we introduce average pixel
difference (APD) to calculate difference between the reconstruction results of different
scenarios:

APD =
1

hs,max

√
∑X

i=1 ∑Y
j=1(hd(i, j)− hs,max(i, j))2

|xmax − xmin| · |ymax − ymin|
(16)

where hd is the height of surface reconstruction result in dynamic scene; hs is the height
of our surface reconstruction result in static scene; hs,max is the height of the highest point
of surface reconstruction result in static scene (i.e., the highest point of the nose of the
Voltaire statue or bear statue); xmin and xmax are the minimum and maximum points of
reconstruction result projected onto the x-axis, which are the x coordinates of the leftmost
and rightmost points of the object; similarly, ymin and ymax are the minimum and maximum
points of reconstruction result projected onto the y-axis; APD shows the proportion of the
error to the whole reconstruction result and further illustrates the reconstruction quality.

Calculated by Equation (16), APD = 5.4896%. If we exclude the effect of cavity
area caused by changes in light and shadow, APD = 1.4205%, which means that the gap
between the surface reconstruction results of moving objects and static objects is controlled
in 0.1%.
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4.4. Quantitative Experiment of Different Speed

We verify the effectiveness of the proposed method by further expanding moving
distance in each step and changing the movement direction of the object to the x-axis.
The model used in the experiment and captured fringe pattern are shown in Figure 3a,b.
The reconstruction results from traditional PSP [29] are shown in Figure 7a–d, and the
reconstruction result from proposed method are shown in Figure 7e–h.

(a) (b) (c) (d) 

(e) (g) (h) (f) 

Figure 7. The comparison of reconstruction results in different motion step between the traditional
method and the proposed method: (a) Traditional PSP method [29]: stationary object; (b) Traditional
PSP method [29]: 10 (mm/step); (c) Traditional PSP method [29]: 20 (mm/step); (d) Traditional PSP
method [29]: 30 (mm/step); (e) Our method: stationary object; (f) Our method: 10 (mm/step); (g) Our
method: 20 (mm/step); (h) Our method: 30 (mm/step).

It can be seen intuitively that with the continuous expansion of the motion step length,
the quality of the reconstruction result gradually deteriorates, which is caused by the limited
shooting frame rate and viewing angle of the industrial camera used in the experiment.
When the object is stationary and moving with a step length of 10 (mm/step), the difference
between our method and traditional PSP in the reconstruction results is not intuitive.

In order to further illustrate the reconstruction quality, we use Equation (16) to calculate
APD, which indicates difference between different reconstruction results for each motion
step, and the results are shown in Table 4. As the motion step is expanded to 20 (mm/step),
the reconstruction result of traditional method produces obvious errors in the contours
of the statue, and our method still maintains good performance. When the motion step is
expanded to 30 (mm/step), the distance between the initial position and the final position
of the object has reached 30(N − 1) mm while using N-step PSP. When the range of
motion is expanded, the fringe patterns captured at different positions will have the
perspective difference shown in Figure 7, which will lead to the information loss during
the reconstruction of complex objects, such as the facial contours and nose of the Voltaire
statue. If the motion step length needs to be further expanded, the camera and projection
hardware used in experiments must be upgraded.
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Table 4. The APDs of reconstruction results with different motion steps.

Method
Motion Step (mm/step)

0 10 20 30

Traditional PSP method 0.0000 2.3860 4.4095 4.5851
Our method 0.0000 1.4045 2.5108 3.8553

Since the shooting frame rate of the industrial camera used in the experiment is
30 frames per second, the object movement speed allowed by the experimental hardware
is 400 mm/s, which can already meet the requirements of the measurement scene on the
industrial assembly lines.

5. Discussion

With the idea of employing object tracking to reconstruct moving objects, one of the
highlights of this paper is to significantly reduce the computational burden of traditional
pixel-level phase correction methods [16]. On the other hand, the Hilbert transform-based
methods [17,20] employ the Hilbert transform to shift the phase information. We will
compare the object tracking-based approach with the Hilbert transform-based approach (at
the principle level and in terms of performance) in future work.

Another highlight of this paper is the ability to maintain good performance even when
the motion range is extended. The commonly used iterative methods are highly sensitive to
the initial values and can not maintain good performance when the motion introduces large
phase changes. Therefore, we redefine the iterative process and introduce an exploration
mechanism to change the direction of gradient descent to find the global optimal solution
and avoid getting trapped in a local optimum. With the introduction of the SGD algorithm,
we have greatly improved the robustness of the method, which has been demonstrated by
simulation experiments and practical experiments.

6. Conclusions

In this paper, an image-level phase compensation method in N-step PSP is presented
to solve the phase deviation caused by motion. The difference among the deformed fringe
patterns is introduced to construct iterative expression, which can significantly reduce
the computational burden. The proposed algorithm adopts the SGD method to avoid
falling into the local optima and extends the phase deviation range over existing methods.
Experiments prove that the proposed method is effective when the object uses different
speeds for 2-D movement. The proposed method uses a smaller time cost to achieve a larger
allowable range of motion, and achieves a balance between computational complexity and
algorithm effective range.
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