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Abstract: A low-cost Si-based optical nano-sensor that monitors traditional water pollutants is
introduced in this paper. The introduced sensor works in the near-infrared region, 900 nm to
2500 nm spectral range. The proposed structure consists of a Si layer with an optimized thickness
of 300 nm on the top of the Al layer acting as a back reflector. On the top of the Si layer, the
water pollutants are modeled as nanoparticle materials of different sizes. The finite difference time
domain method is utilized to optimize the thicknesses of the Si layer by analyzing the optical light
absorption considering different Si layer thicknesses and different pollutant nanoparticles’ sizes.
Different interpolation techniques, including polynomials with various degrees and locally weighted
smoothing quadratic regression, are used to find the best fitting model representing the simulated
data points with goodness of fit analysis. Three features are proposed to identify the water pollutant
with its size, peak absorption wavelength, relative amplitude, and a full width at half maximum.
The device’s performance in detecting six different pollutants, silver, aluminum, copper, chromium,
selenium, and ammonia, is evaluated. Sensitivity, a figure of merit, and a quality factor are used to
evaluate the proposed sensor. The obtained maximum sensitivity is 11,300 nm/RIU, FOM of 740, and
quality factor of 670.

Keywords: near-infrared optical sensors; Si-based sensor; water pollution screening; plasmonic
nanoparticles; absorption spectrum; FDTD

1. Introduction

Human daily activities have increased water pollution, and water sources deteriorate
yearly [1]. Common water pollutants include nitrate (NO3

−, and NH3
+), fluoride (F−),

and heavy metals “iron (Fe), Pb (lead), Cd (cadmium), Cr (chromium), Ni (nickel), Zn
(zinc), Sb (antimony), As (arsenic), Hg (mercury), etc.” [2]. As the concentration of these
pollutants increases, they severely affect human health. This attracts researchers’ attention
to develop techniques to monitor and treat water pollutants. There are several techniques
used to detect water pollutants. One of the old methods is the separation of pollutants
using the chromatography technique. It is a very sensitive method for the detection of
pollutants but a very expensive technique and needs complicated tools [3,4]. Furthermore,
electrochemical techniques are also used to detect pollutants, especially those that are
non-UV-absorbing analytes. This technique detects an electric current in a cell generated
by a chemical oxidation or reduction process [5,6]. With the rapid progress in the field of
semiconductor optical devices, another technique that depends on fluorescence has been
adopted because of its high sensitivity, fast detection, and low cost [7,8]. Additionally,
graphene quantum dots with gold plasmonic particles are used in the pollutant detection
process using localized surface plasmon resonance (LSPR) interaction between graphene
and the plasmonic particles [9,10]. Gold nanoparticles with ZnO nanoparticles on the
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surface of tapered optical fiber are utilized to detect p-cresol in water. ZnO is a direct
bandgap semiconductor material and is used to improve the biocompatibility of the sensor
as it helps in binding the enzyme over the sensor [11].

Moreover, silver nanoparticles in optical sensors are used for water pollutant detection
by measuring the changes in the peak wavelength and shape of the spectrum curve due
to the presence of the pollutants [12]. Silver nanoparticles have a lower cost and higher
extinction coefficients than gold nanoparticles. The high molar extinction coefficient of
silver nanoparticles leads to improved visibility based on the difference in optical brightness
and increased sensitivity of UV-visible spectroscopic detection [13].

Nanostructure-based devices are used as SPR sensors. Si-based sensors that use layers
of Si, silver (Ag), and aluminum oxide (Al2O3) grating are reported to be a highly sensitive
device (sensitivity of 477 nm/RIU, and FOM of 38) in an optical communication band
from 1400 to 1550 nm [14]. Additionally, Si nanowire Field Effect Transistor (FET) sensors
with gold nanoparticles are reported to have enhanced NH3-sensing characteristics and
long-term reliability [15].

In this work, we introduced a highly sensitive Si-based water pollutant ultra-thin
optical nano-sensor that operates in the NIR region, 11,300 nm/RIU. The following sections
are organized as follows: first, the sensors’ performance metrics are introduced; second,
the proposed sensor for water pollutant detection is presented; and finally, the simulation
results, optimizing the sensor design and its performance evaluation, are discussed.

2. Sensor Performance Excellence Indicators and the Proposed Structure

As reported in the literature, the performance indicators for sensor evaluation are the
refractive index sensitivity (RIS), full width at half maximum (FWHM), and figure of merit
(FOM). The RIS of a sensor is defined in terms of the shift in peak wavelength (∆λ) per the
change in the surrounding medium refractive index ‘refractive index (n) unit’ (RIU) [16].
The refractive index sensitivity is given by:

RIS =
∆λ

∆n
(1)

Another characterization factor to determine the quality of sensors is the spectral
resolution. The resolution is determined by the linewidth and the intensity of the spectral
peak and is represented by the FWHM of the spectral peak. A narrow peak helps recognize
a peak shift and enhances detection accuracy. Another performance indicator is the figure
of merit, which indicates the sensor’s performance by combining sensitivity and FWHM of
sensing spectrum [17,18], calculated using Equation (2).

FOM =
RIS

FWHM
(2)

One more parameter is the quality factor (Q-factor) which is defined as the ratio of
peak wavelength (λmax) to the FWHM [16–18]. Large Q-factor values represent the high
selectivity of the sensor. The quality factor is given by:

Q =
λmax

FWHM
(3)

The peak wavelength (λmax) depends on the dielectric of the surrounded medium and
relative permittivity of the nanoparticles and is given by:

λmax =
P
n

(
εPεm(λmax)

εm + εP(λmax)

)1/2
(4)

where εm is the permittivity of the surrounding medium, εP is a plasmonic NP dielectric
constant at corresponding λmax, n is an integer, and P is structural periodicity.
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The dielectric permittivity can be expressed by using a multi-oscillator Drude–Lorentz
model [19] as given in Equation (5):

εplasmonic = ε∞ −
ω2

D
ω2 + jωγD

−
6

∑
k=1

δkω2
k

ω2 − ω2
k + 2jωγk

(5)

where ε∞ is the plasmonic high frequency dielectric permittivity, ωD and γD are the plasma
and collision frequencies of the free electrons, δk is the amplitude of Lorentz oscillator, ωk
is the resonance angular frequencies and γk is the damping constants (k = 1,2, . . . , 6).

On the other hand, the proposed structure is designed, optimized, and analyzed
using an electromagnetic wave solver, Lumerical Finite Difference Time Domain (FDTD)
solutions software in the near-infrared region. The proposed model contains a single unit
cell parametrized by a Si layer of a varying cross-section area from 1 × 104 nm2 to 1 ×
106 nm2 and thickness, d, optimized to 300 nm. A thick Al layer is used on the bottom
of the Si layer, acting as a back reflector and ohmic contact. The back reflector layer is
used to enhance light trapping and reflects the transmitted light from the silicon layer
to the structure for more light absorption [20,21]. The schematic diagram is shown in
Figure 1. The Si layer is the platform for the water pollutants nanoparticle modeled as
spherical nanoparticles (NPs) with a radius varying from 50 nm to 500 nm. The spherical
shape has some advantages over other shapes as they are highly symmetrical particles with
mono-dispersity and synthetic reproducibility. It is reported that the spherical shape gives
the best absorption properties [22].
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Figure 1. Proposed sensor structure schematic diagram.

In the simulation of a unit cell, the boundary conditions are considered as a periodic
structure in x and y directions, and the layers are perfectly matched in z-direction. A
plane wave source with a wavelength band 500–3000 nm is used as a light source, and the
minimum mesh size is 0.5 nm in all directions with an offset time of 7.5 fs used for the
light source. The absorption of the nanoparticles is measured at different wavelengths. We
started the optimization process by adding plasmonic Au NPs on the Si platform layer.
Plasmonic NPs such as Au and Ag have shape- and size-dependent optical properties,
so they are widely used to fabricate water pollutant sensors [23–25]. The absorption
spectrum is measured, and accordingly, the Si layer thickness maximizing the absorption
is recorded. In the results section, optimizing the layer thickness is detailed. As a result
of optimization, the thickness is selected to be 300 nm, and this thickness maximizes the
variation in maximum absorption wavelength shift as a function of the particle radius. The
sensor’s performance depending on the absorption spectrum peak wavelength, FWHM,
and absorption intensity is characterized and illustrated below.

Then, the performance of the designed sensor is studied in detecting other common
water pollutants such as Ag, Al, Cu, Cr, Se, and NH3. Furthermore, the quality indicators,
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which are sensor sensitivity (RIS), the figure of merit (FOM), and quality factor (Q) are
calculated.

The refractive indices of plasmonic NPs used in the simulation are summarized in
Table 1 [26]. They are calculated using Equation (5). The refractive index of silicon is a
function of the wavelength and is characterized by the Aspnes and Studna model [27],
while selenium is characterized by Ciesielski et al.’s model [28]. Chromium follows Rakić
et al.’s model [29], and NH3 refractive index is characterized by Clive Cuthbertson and
Maude Cuthbertson’s model [30].

Table 1. Plasmonic parameters used for the metallic nanoparticle.

Material Term Strength Plasma
Frequency

Resonant
Frequency

Damping
Frequency

Ag

0 0.8450 1.36884 × 1016 0.000000 × 100 7.29239 × 1013

1 0.0650 1.36884 × 1016 1.23971 × 1015 5.90380 × 1015

2 0.1240 1.36884 × 1016 6.80775 × 1015 6.86701 × 1014

3 0.0110 1.36884 × 1016 1.24351 × 1016 9.87512 × 1013

4 0.8400 1.36884 × 1016 1.37993 × 1016 1.39163 × 1015

5 5.6460 1.36884 × 1016 3.08256 × 1016 3.67506 × 1015

Au

0 0.7600 1.37188 × 1016 0.000000 × 100 8.05202 × 1013

1 0.0240 1.37188 × 1016 6.30488 × 1014 3.66139 × 1014

2 0.0100 1.37188 × 1016 1.26098 × 1015 5.24141 × 1014

3 0.0710 1.37188 × 1016 4.51065 × 1015 1.32175 × 1015

4 0.6010 1.37188 × 1016 6.53885 × 1015 3.78901 × 1015

5 4.3840 1.37188 × 1016 2.02364 × 1016 3.36362 × 1015

Cu

0 0.5750 1.64535 × 1016 0.000000 × 100 4.55775 × 1013

1 0.0610 1.64535 × 1016 4.42101 × 1014 5.74276 × 1014

2 0.1040 1.64535 × 1016 4.49242 × 1015 1.60433 × 1015

3 0.7230 1.64535 × 1016 8.05202 × 1015 4.88135 × 1015

4 0.6380 1.64535 × 1016 1.69852 × 1016 6.54037 × 1015

Al

0 0.5230 2.27583 × 1016 0.000000 × 100 7.14047 × 1013

1 0.2270 2.27583 × 1016 2.46118 × 1014 5.05910 × 1014

2 0.0500 2.27583 × 1016 2.34572 × 1015 4.74006 × 1014

3 0.1660 2.27583 × 1016 2.74680 × 1015 2.05251 × 1015

4 0.0300 2.27583 × 1016 5.27635 × 1015 5.13810 × 1015

3. Results and Discussion

In this section, the optimization of the Si layer thickness is given, then the device’s
performance in detecting various water pollutants is evaluated. Furthermore, the ability of
the device to detect more than one water pollutant existing simultaneously is discussed.

3.1. Optimizing Si Layer Thickness

The device has been simulated for different thicknesses of the Si layer, d, and with
different Au NP sizes. The Si layer has been changed from 100 nm to 500 nm in a step of
100 nm, while the Au NP radius, r, takes the following values (50 nm, 100 nm, 200 nm,
300 nm, 400 nm, and 500 nm). In the simulation, it is assumed that the Au spherical NPs
are touching each other with no separation between them. The absorption spectrum of the
device is measured, and the peak wavelength (λmax), peak amplitude (I), and the FWHM
of the absorption curve have been recorded for each case.

The absorbed light spectrum is shown in Figure 2 with Au NP of radius 50 nm, 200 nm,
and 400 nm when the Si layer is 300 nm thick. This is a sample of the measured spectrum
where only three full-spectrum curves are selected to display the obtained absorption
behavior. The absorption spectral shapes reveal that each NP size has size-dependent
absorption characteristics, considering that the NP absorption cross-section depends on
the Au NP size. Changing the NP size does not only change the peak wavelength but also
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changes the FWHM and relative intensity of the absorption spectrum. Figure 3 shows a
sample of the absorbed power distribution around the Au NP and in the Si layer for NPs of
radius 500 nm at its maximum absorption wavelength (λmax = 2.1 µm) and at a minimum
absorption wavelength. It is clear from Figure 3a that the absorption power increases at the
resonance wavelength of the Au NP, which increases the overall absorption of the sensor.
The peak wavelength variation depending on the Au NP’s size (50 nm, 100 nm, 200 nm,
300 nm, 400 nm, and 500 nm) is shown in Figure 4 for unoptimized Si layer thickness that
varies from 100 to 500 nm. The observed absorption peak wavelength (λmax) is redshifted
as the size of the Au NP increases for all Si layer thickness values. This behavior is expected
as the resonance wavelength of the Au plasmons is tunable depending on the particle
shape, size, and number [31]. When irradiated with electromagnetic waves, the metal NPs
oscillate with size-dependent Eigen frequencies. This feature results from the confinement
of the electron cloud at the metal-Si layer boundary. Using the Drude–Sommerfeld model
of the dielectric function of the NP metal shows that plasmons resonance wavelength shifts
to a longer wavelength as the size of the NP increases [32,33]. This NP behavior eventually
leads to the size-dependent optical and electronic properties that could be optimized to
suit devices applications by varying the nanoparticle size.
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The dependence of the FWHM and absorption intensity on the size of the Au NPs
and the thickness of the Si layer is shown in Table 2. The data shows that the shape of the
absorption curve varies depending on both the nanoparticle size and the thickness of the
Si layer.

Table 2. FWHM, and peak amplitude for different nanoparticle size, and Si layer thickness.

r (nm)
d = 100 nm d = 200 nm d = 300 nm d = 400 nm d = 500 nm

FWHM
(nm)

Peak Am-
plitude

FWHM
(nm)

Peak Am-
plitude

FWHM
(nm)

Peak Am-
plitude

FWHM
(nm)

Peak Am-
plitude

FWHM
(nm)

Peak Am-
plitude

50 16 0.99 18 0.97 10 0.92 30 0.84 26 0.75
100 47 0.93 40 1 36 0.44 31 0.2 35 0.13
200 47 0.82 28 1 39 0.87 26 0.313 40 0.12
300 23 1 19 0.96 55 0.85 29 0.76 50 0.26
400 50 1 38 0.95 170 0.69 30 0.93 37 0.43
500 47 0.96 23 0.91 41 0.98 31 0.8 77 0.26

For all Si layer thickness values, FWHM and relative intensity seem to be distinct
for each particle size, i.e., each particle size has a spectral shape that varies depending on
the size. From the obtained data and encouraged by the systematic variation of the peak
absorption wavelength, we elected the peak absorption wavelength as the parameter that
will be used to optimize the Si layer thickness to maximize the shift in λmax as a function of
the particle radius. This will increase the sensitivity of the sensor to NP size variations.

To optimize the Si layer thickness, an equation governing the peak absorption wave-
length as a function of nanoparticle radius and Si layer thickness needs to be generated.
Different interpolation techniques are adopted, including polynomials with various degrees
and locally weighted smoothing quadratic regression (LOESS) to generate the required
equation [34]. These techniques have been utilized to find the best fitting models of the
simulated data points shown in Figure 4. The optimum model is selected based on the
goodness of fit criterion considering the following statistics:

1. Sum of squares due to error (SSE)

SSE measures the deviation in the fitted model as defined by Equation (6):

SSE =
n

∑
i=1

wi(yi − ŷi)
2 (6)

where wi is the weights while yi and the ŷ are the actual data and the interpolated ones,
respectively [35]. A model with good fitting is when SSE is close to 0.

2. R-Square
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The metric indicates how well the fit describes the variability. It is defined as the
proportion of the sum of squares of the regression (SSR) and the total sum of squares (SST).
SSR is defined as:

SSR =
n

∑
i=1

wi(ŷi − yi)
2 (7)

SST is defined as the sum of squares that deviated from the mean and is defined as

SST =
n

∑
i=1

wi(yi − yi)
2 (8)

where SST = SSR + SSE. R-square is defined as:

R − Square =
SSR
SST

= 1 − SSE
SST

(9)

R-Square can take values between 0 and 1, with a value close to 1 representing a good
fitting model.

3. Adjusted R-Square

The adjusted R-Square is defined by:

Adjusted R − Square =
1 − SSE(n − 1)

v
(10)

where n is defined as the number of response values and v is the residual degrees of freedom
defined by the difference between n and the number of fitted coefficients estimated from
the response values. The static can take any value between 0 and 1, with a value close to 1
representing a good fitting model.

4. Root Mean Squared Error (RMSE)

It is defined as the square root of the mean square error (MSR). Again, a model with a
value close to zero will represent a good fitting model.

Applying the previously mentioned interpolation techniques, the peak location of the
maximum light absorption as a function of Si layer thickness d and the Au NP radius, r, is
modeled by a polynomial of degree 5 as given by Equation (11):

λmax(d, r) = p00 + p10 × d + p01 × r + p20 × d2 + p11 × d × r + p02 × r2 + p30 × d3 + p21 × d2 × r
+p12 × d × r2 + p03 × r3 + p40 × d4 + p31 × d3 × r + p22 × d2 × r2 + p13 × d × r3 + p04 × r4

+p41 × d4 × r + p32 × d3 × r2 + p23 × d2 × r3 + p14 × d × r4 + p05 × r5
(11)

where d is normalized by a mean of 300 nm and standard deviation (std) of 143.8 nm and
r is normalized by a mean of 258.3 nm and std of 161.9 nm. The goodness of fit metrics
is given in Table 3. The recorded goodness of fit is the best result obtained when trying
different interpolation techniques. The goodness of fit parameters is in the acceptable range,
which indicates the high accuracy of the fitting equation.

Table 3. λmax fitting model goodness of fit.

Goodness of Fit Statistics Measure

SSE 0.02711
R-Square 0.9955

Adjusted R-square 0.9868
RMSE 0.05207

The coefficients of the fitted polynomial using the adjusted R-square method with 95%
confidence bounds are given in Table 4. The coefficients shown are selected in the middle
of the 95% confidence interval shown.
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Table 4. λmax fitting polynomial coefficients.

Coefficients (95% Confidence Bounds) Coefficients (95% Confidence Bounds)

p00 = 1.408 (1.338, 1.478) p40 = 0.0106 (−0.06008, 0.08128)
p10 = 0.006189 (−0.1024, 0.1148) p31 = 0.01223 (−0.0263, 0.05076)

p01 = 0.3939 (0.2278, 0.56) p22 = 0.05302 (0.0147, 0.09135)
p20 = −0.09504 (−0.2524, 0.06231) p13 = 0.02815 (−0.01941, 0.07572)
p11 = −0.07371 (−0.1678, 0.0204) p04 = −0.0769 (−0.1421,−0.01173)
p02 = 0.0749 (−0.05588, 0.2057) p41 = 0.0732 (0.001308, 0.1451)
p30 = 0.0634 (0.003355, 0.1234) p32 = −0.02954 (−0.07834, 0.01927)

p21 = −0.1131 (−0.2866, 0.06051) p23 = −0.02858 (−0.07774, 0.02059)
p12 = −0.007015 (−0.1565, 0.1424) p14 = 0.02178 (−0.03917, 0.08274)
p03 = −0.01361 (−0.2847, 0.2575) p05 = 0.04427 (−0.06033, 0.1489)

The fitted surface of λmax (d, r) shown in Figure 5 depicts that λmax is monotonically
increasing as a function of both the radius and the Si layer thickness. The residuals plot in
Figure 5 indicates small interpolation errors between the actual data points and the fitted
surface.
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surface; and bottom right: the residuals of the fitted surface).

The gradient of the fitted surface, δλmax/δr is calculated and plotted in Figure 6.
The optimized thickness of the Si layer is determined from the maximum of the gradient.
This optimum point is marked in Figure 6, and it is found that the optimum thickness is
285 nm. This is the optimum thickness to detect the smallest used Au NP, r = 50 nm with
size sensitivity δλmax/δr = 8.36. So, the proposed structure Si layer thickness was set to
300 nm. By maximizing the size sensitivity of the device, the absorption peak wavelength
could be used to detect the particle size with high sensitivity as there is no overlap between
the different peaks.
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Figure 6. The gradient δλmax/δr as a function of d and r.

The spectral peaks shown in Figure 7 are obtained using the optimum Si layer thickness.
These spectral peaks are truncated from the full absorption spectrum shown in Figure 2 to
illustrate the different features of the spectral peaks for all Au NPs sizes. There is a suitable
wavelength span between each spectral peak as we maximized the size sensitivity of
the device.

Photonics 2022, 9, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 7. Absorption peaks for different Au NP radius at a Si layer thickness of 300 nm. 

The effect of the concentration of Au NP on the peak wavelength is investigated, and 

it is observed that the peak wavelength redshifts as the number of Au NP increases. Ad-

ditionally, the spectrum broadens as the concentration of the Au NP increases. Figure 8 

shows the dependence of the peak wavelength on the number of nanoparticles for the case 

where the Au NPs are of radius 200 nm and the Si layer thickness is 300 nm. The redshift 

of the spectrum with the increase of the number of nanoparticles is due to the coupling 

between different particles, which changes the electric field intensity on the surface. This 

causes a change in the oscillation frequency of the electrons, generating different cross-

sections for the optical properties, including absorption and scattering [36–38]. The in-

creased broadening in the absorption spectrum is attributed to both the surface scattering 

of electrons as well as increased radiation damping [33,39,40]. 

 

Figure 8. Peak wavelength as a function of the number of Au NPs. 

3.2. Sensitivity, FOM, and Q-factor 

Equations (1)–(3) are utilized to calculate the sensitivity of the sensor, its FOM and 

Q-factor for different Au NP sizes. Maximizing the size selectivity of the device 

𝛿𝜆𝑚𝑎𝑥 𝛿𝑟⁄ = 8.36, i.e., with a 300 nm thick Si layer, maximum sensitivity, FOM, and Q-

factor are 3010 nm/RIU, 300, and 32, respectively. This sensitivity is higher than the 

Figure 7. Absorption peaks for different Au NP radius at a Si layer thickness of 300 nm.

The effect of the concentration of Au NP on the peak wavelength is investigated, and it is
observed that the peak wavelength redshifts as the number of Au NP increases. Additionally,
the spectrum broadens as the concentration of the Au NP increases. Figure 8 shows the
dependence of the peak wavelength on the number of nanoparticles for the case where the Au
NPs are of radius 200 nm and the Si layer thickness is 300 nm. The redshift of the spectrum
with the increase of the number of nanoparticles is due to the coupling between different
particles, which changes the electric field intensity on the surface. This causes a change in
the oscillation frequency of the electrons, generating different cross-sections for the optical
properties, including absorption and scattering [36–38]. The increased broadening in the
absorption spectrum is attributed to both the surface scattering of electrons as well as
increased radiation damping [33,39,40].
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3.2. Sensitivity, FOM, and Q-factor

Equations (1)–(3) are utilized to calculate the sensitivity of the sensor, its FOM and
Q-factor for different Au NP sizes. Maximizing the size selectivity of the device δλmax/δr =
8.36, i.e., with a 300 nm thick Si layer, maximum sensitivity, FOM, and Q-factor are
3010 nm/RIU, 300, and 32, respectively. This sensitivity is higher than the reported values
for the sensitivities of Au NP sensors [12,14,41,42]. The high value of the sensitivity enables
the sensor to detect very small variations in the refractive index, and the high values of the
FOM and Q-factor indicated that the device has good selectivity as it has a narrow FWHM.

3.3. Detecting Water Pollutants Using the Designed Optimized Sensor

The designed Si-based sensor’s performance in detecting different sizes of water
pollutants is investigated. The Au NPs on the top of the Si layer are replaced with six
common water pollutants, Ag, Al, Cu, Cr, Se, and NH3. As in the case of Au NPs, the
absorption spectra are measured for different sizes ranging from 100 nm to 500 nm in a
step of 100 nm. The spectrum curve’s peak wavelength, FWHM, and relative intensity are
observed. Figure 9 shows that the peak wavelength redshifts with the increase of the size
of the pollutants. All the six pollutants’ absorption spectrum show the same behavior but
with different size selectivity δλmax/δr, this is indicated by the different gradients of the six
shown curves. The selectivity, δλmax/δr, takes the values from 2 to 7, which indicates the
good selectivity of the sensor.

The FWHM and peak amplitude of the spectral absorption curves are shown in
Table 5a,b. The results for the six pollutants show that the absorption spectral shapes
have a wide variation in FWHM values that are size dependent. These variations could
be favorable as pollutants could be detected depending on the peak wavelength and the
shape of the absorption spectrum, FWHM, and peak relative amplitude.
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Figure 9. Peak wavelength for all particles as a function of particle size.

Table 5. (a) FWHM, and peak amplitude for different NP size, for Ag, Al, and Cu pollutants.
(b) FWHM, and peak amplitude for different nanoparticle size, for Cr, Se, and NH3 pollutants.

(a)

r (nm)
Ag Al Cu

FWHM (nm) Peak Amplitude FWHM (nm) Peak Amplitude FWHM (nm) Peak Amplitude

100 92 1 184 1 200 1
200 180 0.98 361 1 240 0.98
300 50 0.8 236 1 100 0.85
400 130 0.82 46 0.92 115 0.8
500 40 0.25 193 0.65 343 0.9

(b)

r (nm)
Cr Se NH3

FWHM (nm) Peak Amplitude FWHM (nm) Peak Amplitude FWHM (nm) Peak Amplitude

100 400 0.96 49 0.78 11 0.99
200 100 1 32 0.84 19 0.96
300 310 0.97 85 0.8 7 0.93
400 189 0.98 46 0.88 3 0.9
500 210 0.96 33 0.61 5 0.83

Figure 10 allocates all the simulated particles with different materials and different
sizes. A good separation between the detected particles with different sizes is demonstrated,
and the proposed structure can differentiate between these different cases. The zooming on
the plotted graph shows that there is a potential that the particles can be detected efficiently.
Additionally, we have normalized the features to be from 0 to 1 and plot the 3D feature
space of the detected particles along with different sizes in Figure 11. Again, it still shows a
good separation between the different particles.
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The sensor detection parameters are then calculated from Equations (1)–(3). The
calculated values for the sensitivity, FOM, and Q-factor are presented in Table 6. Our
Sensitivity is comparable with the reported value for Ag, which is about 5000 nm/RIU,
but our maximum sensitivity (11,300 nm/RIU) is much higher [43]. Sharp spectral curves
accompany this ultimate value of sensitivity in the case of Se that is indicated from the low
values for FWHM in Table 5 and large FOM values (750) in Table 6.

Table 6. Sensitivity analysis for the detection of different pollutants.

Pollutant Sensitivity (nm/RIU) FOM Q-Factor

Ag 5300 105 30
Al 820 5 30
Cu 1550 14 15
Cr 760 3.5 5
Se 11,300 740 24

NH3 3000 150 670
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3.4. More Than One Pollutant at a Time

The performance of the sensor in detecting more than one pollutant when they exist
simultaneously in the water sample is studied. Pollutants are added as a couple on the
surface of the Si layer, and the absorption spectral parameters, peak wavelength, FWHM,
and peak wavelength relative amplitude are observed. The radius of each particle is set to
200 nm. The obtained selectivity parameters are shown in Table 7.

Table 7. Selectivity parameters (peak location, FWHM, and peak amplitude) in case of couple
elements existing on the surface of the sensor.

Pollutants Couple Peak Location (nm) FWHM Peak Amplitude

Au-Ag 996 and 1130 29 nm and 33 nm 1 and 0.96
Au-Al 986 and 1126 45 nm and 48 nm 1 and 0.97
Au-Cu 994 and 1130 35 nm and 41 nm 0.97 and 0.94
Au-Cr 580 and 1100 240 nm and 46 nm 0.95 and 0.97
Au-Se 998 and 1100 63 nm and 59 nm 1 and 0.98

Au-NH3 1330 and 1120 20 nm and 5 nm 0.8 and 0.82

As the table shows, two distinct peaks at different wavelengths are observed for each
couple. Each peak represents the location of one of the impurities, and each impurity has
its own curve characteristics (peak location, FWHM, and peak amplitude). The first row
in Table 6 shows that the peak wavelength of Au blueshifts a little from 1250 nm (peak
location when Au was alone) to 1130 nm, while the Ag peak remains almost at the same
location. This indicates that the peak locations could be used in the detection of pollutants
even if more than one pollutant exists simultaneously.

3.5. Performance Comparision of the Proposed Sensor to Other Reported Sensors

A comparison of the performance of our sensor with the reported SPR sensors’ perfor-
mance is listed in Table 8. The listed performance indicators show that the proposed sensor
has much higher sensitivity than the reported values. Beside high sensitivity, the proposed
sensor structure has a low cost, and it is easily fabricated.

Table 8. Comparison of sensing performance indicators of refractive index change sensors.

Technique Sensitivity
(nm/RIU) FOM Q-Factor Ref.

Si-based sensor 11,300 740 24 This work (Se detection)
Si-based sensor 3010 300 32 This work (Au detection)
Si-based sensor 477.54 38.16 N/A [14]

Gold nanoring Array 544 6 N/A [41]
Si photonic Crystal 5018 1477 2149.5 [43]

Graphene silver Coated
nanocolumns 8860.9 N/A N/A [44]

Si resonator 636 211.3 N/A [45]

4. Conclusions

A low-cost optical Si-based optical sensor for water pollutant detection is introduced
in this paper. The device performance is optimized by maximizing the size selectivity
of the device for Au NP. The optimum Si layer thickness, 300 nm, results in maximum
size selectivity δλmax/δr = 8.36. The performance parameters of the device, sensitivity,
FOM, and Q-factor, are calculated. This is done for Au NP as well as other common
water pollutants, Ag, Al, Cu, Cr, Se, and NH3. The optical Si-based sensor has a high
sensitivity, FOM, and Q-factor of 11,300 nm/RIU, 740, and 670, respectively. These ultimate
values indicate the ability of the sensor to differentiate between different nanoparticles of
different sizes.
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