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Abstract: We report an experimental observation of radiation-induced optical absorption in undoped
congruent lithium niobate (LiNbO3) crystals between the 190 nm and 3200 nm wavelength range.
It was found that high-dose (up to 288 Gy) gamma rays did not significantly affect the optical
absorption of LiNbO3 during that wavelength range. However, upon the order of 1016 cm−2 neutron
irradiation, the change in the absorption coefficient was up to 0.6 cm−1 at a wavelength of 532 nm
and remained after 13 days in the dark at room temperature. The nonlinear optical performance
was characterized by conducting third-order quasi-phase-matched second harmonic generation
in neutron-irradiated periodically-poled LiNbO3, showing that the phase-matching condition was
altered, and the conversion efficiency was still comparable with a non-irradiated one.
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1. Introduction

The quasi-phase-matching (QPM) technique has drawn much attention due to its
promising applications in various areas in the field of photonics, such as nonlinear fre-
quency conversion and electro-optic modulation [1–3]. New solid-state laser light sources
employing QPM devices have also been developed in recent years [4]. Lithium niobate
(LiNbO3) covers a useful transparency range from the visible to infrared region and is
widely available in large homogeneous crystals. In addition, LiNbO3 has a comparably
large effective nonlinear coefficient, thus, is advantageous to many nonlinear optical appli-
cations. The domain-inverted LiNbO3, also known as periodically poled lithium niobate
(PPLN), has become an important QPM device in nonlinear frequency mixing processes due
to its high nonlinearity, artificial phase-matching condition, and repeatable fabrication [5,6].
The fabricating techniques are now well developed and device-quality PPLN crystals can
be routinely manufactured.

For many years, PPLN devices were extensively used for laser systems and integrated
photonic devices. Increasing interests have also been devoted to the applications of pho-
tonics technologies to space, including high-speed light modulation, laser remote sensing,
and so on. It is believed that PPLN devices should be one of the promising materials for
the application of photonics devices that can be applied in harsh radiation environments
such as space, aviation, high-energy accelerator facilities, and nuclear reactors. The interest
in the behavior of LiNbO3-based devices close to the core of a nuclear reactor started in
the 1970s [7]. Radiation damage to LiNbO3 upon neutron irradiation was found to be
significant with neutron fluences up to 1020 cm−2 and the loss of optical birefringence and
piezoelectric response was demonstrated [8]. For neutron fluences up to 4 × 1017 cm−2,
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there is an expansion along the c-axis and a shift towards longer wavelengths of the UV
absorption edge [7]. Irradiation of lower neutron fluences shows that the refractive index
of LiNbO3 changes with the neutron fluences [9,10]. Although previous studies provide
little detail on the actual neutron spectrum, intermediate fluences (1015~1016 cm−2) of
neutron irradiation alter some optical properties of LiNbO3 without massively destructing
the crystal and causing the loss of other advantageous characteristics. Studies concerning
the intermediate-fluence radiation effects on LiNbO3 have been concentrated on the crystal
properties themselves. The available experimental data focusing on the nonlinear optical
performance of PPLN devices are relatively rare. Tsing Hua Open-pool Reactor (THOR) at
National Tsing-Hua University (NTHU), Taiwan, is a 2-MW light-water nuclear reactor for
research in Taiwan. The vertical tubes near the edge of the reactor core of THOR provide
a neutron fluence rate of up to ~1012 cm−2s−1, which are suitable neutron sources for
examining the nonlinear optical performance of PPLN devices upon intermediate-fluence
neutron irradiation.

In this paper, we utilized the neutron source at THOR to irradiate several congruent
LiNbO3 samples (including unpoled LiNbO3 and PPLN crystals) and conducted third-
order QPM second harmonic generation (SHG) experiments. A 1064 nm laser was used as
the fundamental wave to examine the change in the phase-matching condition of SHG and
its efficiencies after neutron irradiation. Though THOR provides fission neutron irradiation
accompanied by gamma irradiation, additional test samples were also independently
irradiated by a Cobalt 60 (60Co) gamma-ray source at NTHU for comparison.

2. Experimental Methods and Results

We prepared four unpoled x-cut LiNbO3 crystals (namely sample #0, #1, #2, #3) for
the test of optical transmission for different irradiation conditions. The dimension of the
unpoled x-cut LiNbO3 crystals are 12 mm (y) × 8 mm (z) × 1 mm (x). The surfaces are
un-coated. To test the nonlinear optical performance, we also prepared four PPLN samples
(namely, sample #0A, #4, #5, #6) for irradiation. The four PPLN samples were cut from the
same LiNbO3 wafer after the poling process was completed and had the same QPM grating
period of 20 µm and the identical dimension of 15 mm (length) × 2 mm (width) × 0.5 mm
(thickness). This ensured that the optical properties of the four samples were identical. The
20-µm QPM period accounts for 1064 nm pumped third-order SHG with a phase-matching
temperature of 102.5 ◦C. All the PPLN samples have anti-reflection coatings on both their
end surfaces at 1064 nm, with a transmission of 99.6%.

The neutron irradiation experiments of the test samples were carried out at THOR,
which is a 2-MW light-water nuclear reactor for research in Taiwan. The test samples were
irradiated at the vertical tube, namely VT-4, of THOR. The vertical tube is located at the
edge of the reactor core, corresponding to approximate thermal and fast neutron with a
ratio of thermal-to-fast neutron around 3~5 [11]. Details on the conditions of the neutron
irradiation by the THOR neutron source are listed in Table 1. The fast and thermal neutron
fluences were determined according to the gold foil activation experiments, as reported in
ref. [11]. Test sample #0 and #0A, as reference, were not irradiated.

Table 1. Neutron/gamma irradiation conditions of the lithium niobate test samples.

Test Samples P (MW) tirrad (h) Φt (#/cm2) Φf (#/cm2) Dg (Gy)

#0 LN #0A PPLN - - - - -
#1 LN #4 PPLN - 350 - - 288
#2 LN #5 PPLN 1.5 1 4.4 × 1015 1.3 × 1015 144
#3 LN #6 PPLN 1.5 2 8.8 × 1015 2.6 × 1015 288

P: reactor power; tirrad: neutron irradiation time; Φt: thermal neutron fluence; Φf: fast neutron fluence; Dg: gamma
dose. LN: LiNbO3.

Since the irradiation experiments were performed near the fission reactor core, accom-
panying the emission of gamma rays from fission products with the neutron irradiation is
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expected. According to a calibration experiment in which a thermoluminescence dosimeter
was used, the dose rate of gamma rays near the THOR irradiation tube was found to be
about 0.04 Gy/s. We used the 60Co gamma-ray source to independently irradiate samples
#1 and #4 to obtain gamma-only results. The accumulated gamma-ray dose was controlled
to be the same as that being irradiated in the nuclear reactor for 2 h. Using the current 60Co
source, it took 350 h to reach the same gamma-ray dose.

It is known that the irradiation of neutrons and gamma rays would change the refrac-
tive index of LiNbO3 [9,10], so as to alter the phase-matching condition of the nonlinear
optical process within it. It is also necessary to know the change in optical transmission after
neutron and gamma-ray irradiation, since the nonlinear optical performance is strongly
affected by the intensities of interacting waves. Samples #0, #1, #2, and #3 are x-cut LiNbO3
crystals for measuring transmission spectra. The transmission spectra of the irradiated
samples were measured by a Shimadzu grating spectrophotometer (UV-3101PC). The
measurable wavelength range is from 190 nm to 3200 nm. The light sources are switched
automatically in conjunction with wavelength scanning. To efficiently measure the full
wavelength range, we initialized the configuration to have a scanning speed of 100 nm/min
with a 2 nm sampling interval. Some unexpected spikes near the 850 nm wavelength in the
measured transmission spectra during the switching of light sources occurred and were
neglected for the broad range measurement.

2.1. Gamma Energy Spectrum of Neutron Activation Products

In order to see neutron-activated products in neutron-irradiated LiNbO3, sample #3
was sent to a gamma energy spectrum analyzer after irradiation. After 24 h of cooling,
the sample was measured using a high-purity germanium detector (GC3020, Canberra
Industries, Inc., Meriden, CT, USA) coupled with a multichannel analyzer and a software
package (Genie 2000, Canberra Industries, Inc., Meriden, CT, USA). The measured gamma-
ray spectrum of the chip irradiated by neutrons is shown in Figure 1. The prominent
gamma rays (935 keV) were emitted from 92mNb (half-life 10.15 d), which is produced
through 93Nb (n,2n) 92mNb reaction. The measured activity of 92mNb was about 2000 Bq.
Some interfering gamma rays emitted from 24Na, 82Br, 122Sb, etc. were also observed.
Those nuclides were formed by neutron capture reactions with impurities in the sample.
The LiNbO3 sample is optical-grade and contains a very small number of impurities. The
remaining activity was insignificant after cooling. The radiation dose rate on the sample
surface after 24 h of cooling was only 0.5 µSv/h, which mean that it was not necessary to
use a lead container for radiation shielding while retrieving the sample from the neutron
irradiation facility. Seven days after the first gamma spectrum measurement, the sample
was measured again. It was found that most of the short-lived radio nuclides had decayed.
92mNb can still be measured, but the activity is significantly reduced in accordance with its
10.15-day half-life. In-crystal gamma emission should not affect the following experiments.
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Figure 1. Gamma energy spectrum of a neutron-irradiated LiNbO3 sample. A LiNbO3 sample
(12 mm × 8 mm × 1 mm; 0.45 g) was prepared and irradiated by neutrons for 2 h by THOR, where
neutron fluence rate is about 1012 cm−2s−1. After 24 h of cooling, the sample was measured using a
high-purity germanium detector coupled with a multichannel analyzer and a software package.

2.2. Change in Absorption after Irradiation

Figure 2 shows the absorption coefficient change for neutron and gamma-irradiated
LiNbO3 as a function of wavelength. The absorption coefficient change, ∆α, is the relative
change in absorption coefficient with respect to that of sample #0 and is defined by

∆α#1,2,3 = − 1
L

ln
(

T#1,2,3

T#0

)
where L is the thickness of the sample, T#0 is the original transmission of sample #0, and
T#1,2,3 are the original transmission of samples #1,2,3. The change in absorption coefficient
for the gamma-irradiated sample (#1) is very small, showing that congruent LiNbO3 is less
susceptible to gamma irradiation in optical transmission during the measured wavelength
region. However, the neutron-irradiated samples (#2 and #3) showed a significant change
in optical absorption, especially during the visible region. From the actual photo of the
four samples, the neutron-irradiated samples are apparently “brown”, demonstrating the
increased absorption in the shorter visible region. This broad band absorption in the visible
region is primarily due to the oxygen vacancies induced by radiation, as the displacement
damage is related to the oxygen vacancies and their corresponding interstitials trapped
within the lattice [12–14]. The radiation-induced change in absorption was not smoothly
changed with the wavelength in Figure 2. This was due to changes in the light sources
in the spectrophotometer and the etalon effect of the 1-mm-thick sample. Since sharply
decreased transmission occurs in the cut-off wavelength region (200~300 nm), the deduced
radiation-induced changes in absorption during that region was very sensitive to tiny
measurement instabilities and could be ignored.
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Figure 2. Absorption coefficient change for neutron and gamma-irradiated LiNbO3 as a function
of wavelength. The data curves in the figure are the absorption coefficient changes relative to the
reference sample #0. Sample #1 was irradiated with 288-Gy gamma rays and its absorption coefficient
changes by almost zero. Samples #2 and #3 were irradiated with neutrons and showed significant
changes in absorption. The absorption coefficient change was continuously occurring after the
neutron-gamma irradiation. The right photo shows the appearance of the four samples 13 days
after irradiation.

Figure 3 shows the room-temperature dark change in absorption (for sample #3) as a
function of days after neutron irradiation for four specific wavelengths (532 nm, 1064 nm,
1550 nm, and 3200 nm). At room temperature, the absorption continuously increased from
day 2 to day 7 after irradiation, and then slightly decreased from day 7 to day 9, ending
stationary after day 13. The change in absorption after neutron irradiation was more
significant for the 532 nm wavelength and was much smaller for the 1064 nm, 1550 nm,
and 3200 nm wavelengths. The dark change in absorption was not obvious for 1550 nm.

Thermal neutrons produce displacement damage mostly through (n, γ) reactions,
while fast neutrons produce displacement damage through elastic collisions due to the
recoil induced by the emission of the gamma photons [15,16]. The 6Li (n, α) 3H nuclear
reaction also needs to be considered for LiNbO3 since α and 3H also produce displacement
damage [17]. In fact, the 6Li (n, α) 3H reaction is the main source of damage, since the
thermal cross section for this reaction is larger than the absorption cross sections of all
other constituents. In addition, the damage production due to the charged MeV reaction
products is high [17]. The displacement damage alters the optical characteristics of LiNbO3
and continuously relocates after neutron irradiation under room temperature until the
whole structure becomes stable several days after irradiation.
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Figure 3. Dark change in absorption (for sample #3) as a function of days after neutron-gamma irra-
diation for four specific wavelengths. The absorption increased from day 2 to day 7 after irradiation
and slightly decreased from day 7 to day 9. The change in absorption reached stationary since day 13.
The dark change in absorption is not obvious for 1550 nm.

2.3. QPM SHG Performance after Irradiation

After radiation-induced absorption was confirmed, we conducted a third-order QPM
SHG experiment for radiation-irradiated PPLN samples to examine their nonlinear optical
performance. The schematic experimental setup is shown in Figure 4. A pulsed laser
was used as the fundamental source. It is a 1064 nm passively Q-switched Nd:YAG laser,
generating 1-ns pulses with a pulse energy of 9 µJ and a 3.76-kHz repetition rate. The peak
power is 9 kW and the average power is 34 mW. An attenuator-isolator set, consisting of
a Faraday rotator following a half-wave plate, controls the pump energy and eliminates
the optical feedback. The focusing mirror focuses the pump laser beam to the PPLN
crystal. The oven, containing the PPLN crystal, maintains the temperature at the SHG
phase-matching temperature. The SHG temperature tuning curve acts as a sinc function
and can be measured by recording the SHG power while tuning the PPLN temperature.
The phase-mismatch caused by neutron irradiation can thus be determined in terms of the
changes in the phase-matching temperature.

Due to radiation-induced absorption, it was expected that the SHG conversion effi-
ciency would be decreased, as would the effective nonlinear coefficient after irradiation.
However, the high-peak power of the fundamental laser would still result in high-efficiency
SHG, even if significant radiation-induced absorption exists. Thus, the focusing condition
was intentionally not optimized and the conversion efficiency was less than 10% to avoid
running into a highly depleted regime. The SHG power at 532 nm was measured by a
calibrated thermal detector. The response time of the thermal detector eliminated the effect
of the ~10% Q-switch energy jitter and precisely measured the average SHG power.
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Figure 4. The schematic experimental setup of third-order SHG in radiation-irradiated PPLN. A
1064 nm high reflector was used to remove the un-depleted 1064 nm laser power. The PPLN was
in a temperature-controlled oven. A power meter was used to measure the 532 nm laser power.
Temperature tuning curves were recorded.

Owing to the dark recovery observation, we conducted the SHG experiments 13 days
after irradiation (at the 14-th day). Figure 5 shows the phase-matching temperature tuning
curve obtained for the neutron-irradiated PPLN samples. Sample #0A was a reference PPLN
crystal without any irradiation. Samples #5 and #6 were irradiated by THOR for 1 h and 2 h,
respectively. The gamma-irradiated PPLN crystal (sample #4) had a similar temperature
tuning curve as sample #0A and was not shown in Figure 5 for a clearer presentation. Notice
that the discrepancy between the measured phase-matching temperature and the theoretical
value for sample #0A is due to the temperature gradient between the temperature sensor
and the PPLN crystal and the possible fabrication error of the PPLN gratings.
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Figure 5. Phase-matching temperature tuning curve obtained for neutron-irradiated PPLN. Sample
#0A is a reference PPLN crystal without any irradiation. Sample #5 and #6 are irradiation by THOR
for 1 h and 2 h, respectively. The 60Co gamma-irradiated sample (#4) has a similar temperature tuning
curve with respect to sample #0A and is not shown in this figure.

The experimental results showed that gamma rays did not affect the optical absorption
of LiNbO3 with the radiation dose up to 288 Gy. The SHG phase-matching condition was
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also not altered. However, the irradiation of neutrons caused strong absorption during
some specific wavelength regions, especially in the visible and the mid-infrared region.
According to the Kramers–Krönig relations in nonlinear optics, the strong absorption should
result in the dispersion of optical materials. Nonlinear optical processes in a neutron-
irradiated LiNbO3 crystal would have a different phase-matching condition. Figure 5
demonstrates that the phase-matching temperature was down-shifted by ~1 ◦C and ~3 ◦C
for the 1-h- and 2-h-neutron-irradiated PPLN samples, respectively. Additionally, as shown
in Figure 5, the SHG conversion efficiencies for the two neutron-irradiated PPLN samples
were comparable to that of the non-irradiated one. It is known that the absorption loss of
the interacting waves dramatically decreases the conversion efficiency of a second-order
nonlinear process. In our experiment, the increased absorption coefficient (~0.55 cm−1)
for 532 nm corresponded to a ~50% transmission loss for the 1.5-cm-long PPLN crystal.
For the neutron-irradiated PPLN crystals, we expected to obtain SHG efficiencies which
are significantly lower than the non-irradiated one. However, we found that the SHG
efficiencies are still comparable to the non-irradiated one. Even though the measured SHG
efficiencies for the two irradiated samples seem to be only slightly smaller, the result still
demonstrated that the nonlinearity of LiNbO3 after irradiation would be increased. It is
evident that neutron irradiation not only introduced optical absorption but also caused
increased effective nonlinearity in LiNbO3 crystals. Further investigation needs to be
carried out for this observation.

Photorefractive distributed feedback (DFB) grating in PPLN is reported in our previous
experiment, in which the preliminarily results of DFB optical parametric oscillation (DFB
OPO) in PPLN were demonstrated [18]. During the experiment in ref. [18], we found that
UV-induced infrared absorption (UVIIRA) is an issue for laser application. Investigations on
UVIIRA have been conducted and reported [19]. Ultra-long lifetime UVIIRA in congruent
LiNbO3 was observed, showing that absorption coefficient change in congruent LiNbO3
is significant if UV light is used for creating photorefractive grating in a LiNbO3 crystal.
This makes UV photorefractive scheme inefficient for DFB OPO. Irradiation of gamma rays
with a suitable dose would greatly introduce index change in bulk LiNbO3 crystals [9]
without affecting optical absorption and nonlinearity. This could be an alternative way of
producing DFB grating for DFB OPO if an appropriate method of spatially distribution
of gamma rays is utilized; for example, the periodic deposition of lead upon the surface
of PPLN. Neutrons could be also useful for creating non-volatile index changes in bulk
LiNbO3 crystals, despite the disadvantage of introducing optical absorption. According to
our experimental results, the nonlinear optical performance in neutron-irradiated PPLN
crystals for third-order QPM SHG was not susceptible after neutron irradiation. Irradiation
of neutrons could also be useful for nonlinear optical applications that require non-volatile
changes in the refractive index for phase adjusting or modulation.

3. Conclusions

In conclusion, we have demonstrated the observation of radiation-induced absorption
and phase-mismatch for third-order QPM SHG in congruent LiNbO3 crystals. It was found
that gamma rays up to 288 Gy did not affect the optical absorption and the phase-matching
of QPM SHG in LiNbO3. On the other hand, with a ~1016-cm−2 neutron fluence, the
induced optical absorption was up to 0.6 cm−1 for 532 nm and 0.2 cm−1 for 1064 nm.
Observations of dark recovery for optical absorption showed 13-day recovery time at room
temperature. The 2-h-neutron-irradiated PPLN crystal has a lower phase-matching temper-
ature for third-order QPM SHG. The increase in nonlinearity after neutron irradiation was
observed and seemed to compensate for the radiation-induced optical absorption, which
would dramatically decrease the SHG efficiency. LiNbO3 devices with photonic structures
such as waveguides or gratings can be potentially engineered by the use of gamma rays
or neutrons. In addition, the radiation-induced optical absorption in LiNbO3 crystals and
phase-mismatching in PPLN crystals can be an indication of the dose of neutron irradiation.
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An alternative method could be to measure and calibrate the neutron fluence inside a
nuclear reactor or for other neutron sources.
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