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Abstract: Solving the time-dependent power flow equation (PFE) provides a useful method to study
the transmission bandwidth of step-index silica photonic crystal fibers (SI SPCFs). The transmission
bandwidth of these kinds of fibers is determined for different air-hole structures (different numerical
apertures (NAs)) and different distribution widths of the Gaussian launch beam. The results indicate
that the lower the NA of SI SPCFs, the higher the bandwidth (for example, for a lower NA of SI SPCFs,
a bandwidth that is eight times larger is obtained at a fiber length of 3500 m). The narrower launch
beam at short fiber lengths results in a wider bandwidth. The longer the fiber (>300 m), the much less
the effect of the launch beam width on the bandwidth. The bandwidth becomes independent of the
width of the launch beam distribution at the fiber length at which a steady-state distribution (SSD) is
reached. These results are useful for some potential applications, such as high capacity transmission
optical fiber systems.

Keywords: photonic crystal fiber; bandwidth; multimode optical fiber; step-index fiber; power
flow equation

1. Introduction

The communication system based on optical fibers provides more reliability and
flexibility than the wireless communication medium, which is the backbone of the modern
telecommunication network [1]. The PCF first investigated by the Russell group is a specific
optical fiber technology (optical fiber with micro-structure) for light guiding [2]. The light
passing through PCFs follows two principles: the first one is light passing through a high
refractive index (RI) medium surrounded by a lower RI medium, and the other one is light
passing through a low RI medium surrounded by a higher RI medium. For some kinds
of PCFs, a high RI material, such as silica material, is implemented as the background
material, which is doped in a periodic manner with air holes. The hole pattern has lowered
the effective RI of the fiber cladding and allows the optical fibers to guide light [2–7].
Choosing this cladding hole pattern allows one to adjust the RI profile of the optical fiber
during the design process. PCFs exhibit excellent performance as the microstructure of the
fibers provides additional flexibility to influence the cross-section during the design phase.
The “end-less” PCF [2] has been shown to work only in fundamental mode over a wide
range of wavelengths. On the other hand, a PCF may have an empty core. Photonic gap
guidance [8–11] allows the “air center” of hollow fibers to have a lower RI than the RI of
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the cladding material [12,13]. In practice, optical dispersion and birefringence of PCFs is
often investigated [14–17]. Nowadays, PCFs are important since they can be implemented
for many applications, such as supercontinuum light generation [18–20], light wavelength
conversion [21,22], optical fluids [23], and different sensing area [24]. The width of the
PCF material between the holes of the cladding determines the NA of the PCF, which is
normally limited to NA ' 0.5–0.6 [25–27]. Sometimes, PCFs considered include heavy
metal oxide glass fibers [28] and liquid-filled hollow-core fibers for specific applications [29].
Additionally, high NA PCFs demonstrated excellent resolution in lensless focusing [30].

PCFs show high bandwidth performance and flexibility, making them useful for
transmission and sensing technology. The propagation characteristics of PCFs are important
parameters for their practical applications, which are affected by mode attenuation, mode
coupling, and modal dispersion. The main cause of mode coupling lies in light scattering
due to intrinsic perturbations in the fiber (micro-bend, changes in diameter, and changes
in density and RI distribution). One of the most efficient approaches in modeling the
transmission characteristics of multimode optical fibers is based on the employment of the
PFE [31–36]. In this work, by solving the time-dependent PFE, we determine the bandwidth
of a multimode SI SPCF with a solid core for two different launch beam distribution widths
and two different air-hole sizes (two different NAs), which have a great potential for
applications in optical fiber communication. The central part has the highest RI; holes with
diameter d and pitch Λ in the cladding reduce the effective value of RI in the cladding.

2. The Design of the PCF

Here, we present a SI PCF design in which the air holes are uniform in size and form
an equilateral triangular network in the cladding, as shown in Figure 1. Despite the fact that
the material properties are uniform throughout the optical fiber, the hole-free central part
has the highest RI; holes with diameter d and pitch Λ in the cladding reduce the effective
value of RI in the cladding.

Figure 1. (a) Lateral end-face of a solid-core multimode SI PCF, where Λ is the pitch and d is the
diameter of the air holes. (b) RI profile of a multimode SI PCF.

3. The Time-Dependent PFE

We used the time-dependent PFE for the bandwidth simulation, which is presented in
the following form [31]:

∂p(θ, z, t)
∂z

+ τ(θ)
∂p(θ, z, t)

∂t
= −α(θ)P(θ, z, t) +

1
θ

∂

∂θ

[
D(θ)

∂p(θ, z, t)
∂θ

]
(1)

where t is the time, θ is the angle, z is the optical fiber length, p(θ, z, t) is the power
distribution, τ(θ) is the modal delay, D(θ) is the coupling coefficient (usually assumed
constant [31,32]), and α(θ) ' α0 (it does not have to be accounted when solving (1)) [32].
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The Fourier transformation of Equation (1) is:

∂P(θ, z, ω)

∂z
+ jωτ(θ)P(θ, z, ω) = −α(θ)P(θ, z, ω) +

1
θ

∂

∂θ

[
θD(θ)

∂P(θ, z, ω)

∂θ

]
(2)

where ω = 2π f is the angular frequency, and we obtain:

P(θ, z, ω) =

+∞∫
−∞

p(θ, z, t) exp(−jωt)dt (3)

The boundary conditions are presented in the following form:

P(θm, z, ω) = 0, D(θ)
∂P(θ, z, ω)

∂θ

∣∣∣∣
θ=0

= 0 (4)

Since P(θ, z, ω) has the real part Pr(θ, z, ω) and imaginary part Pi(θ, z, ω), Equation (2)
can be rewritten as:

∂Pr(θ,z,ω)
∂z = −α(θ)Pr(θ, z, ω) + D

θ
∂Pr(θ,z,ω)

∂θ + D ∂2Pr(θ,z,ω)
∂θ2 + ωτPi(θ, z, ω)

∂Pi(θ,z,ω)
∂z = −α(θ)Pi(θ, z, ω) + D

θ
∂Pi(θ,z,ω)

∂θ + D ∂2Pi(θ,z,ω)
∂θ2 −ωτPr(θ, z, ω)

(5)

where
P(θ, z, ω) = Pr(θ, z, ω) + jPi(θ, z, ω) (6)

We obtained Pr(θ, z, ω) and Pi(θ, z, ω) by numerically solving Equation (5) using
the explicit finite difference method (EFDM). The frequency response H(z, ω) is then
obtained as:

H(z, ω) =

2π
θm∫
0

θ[Pr(θ, z, ω) + jPi(θ, z, ω)]dθ

2π
θm∫
0

θ[Pr(θ, 0, ω) + jPi(θ, 0, ω)]dθ

(7)

This equation can be used to determine the change of the transmission bandwidth
with the transmission length.

4. Simulation Results

The bandwidth for various launch beam distribution widths in the multimode SI SPCF
was investigated. For a PCF with triangular lattice air holes, the effective parameter V is
presented as:

V =
2π

λ
ae f f

√
n2

0 − n2
f sm (8)

where n0 is the RI of the core, nfsm is the effective RI of the cladding, and ae f f = Λ/
√

3 [33].
The effective RI of the cladding n1 ≡ nfsm, can be obtained from Equation (8), using the
following equation [33]:

V
(

λ

Λ
,

d
Λ

)
= A1 +

A2

1 + A3 exp(A4λ/Λ)
(9)

where the parameters for fitting Ai (i = 1 to 4) are presented as:

Ai = ai0 + ai1

(
d
Λ

)bi1

+ ai2

(
d
Λ

)bi2

+ ai3

(
d
Λ

)bi3

(10)

where the coefficients ai0 to ai3 and bi1 to bi3 (i = 1 to 4) are supplied in Table 1.
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Table 1. Fitting coefficients in Equation (10) [33].

i=1 i=2 i=3 i=4

ai0 0.54808 0.71041 0.16904 −1.52736
ai1 5.00401 9.73491 1.85765 1.06745
ai2 −10.43248 47.41496 18.96849 1.93229
ai3 8.22992 −43.750962 −42.4318 3.89
bi1 5 1.8 1.7 −0.84
bi2 7 7.32 10 1.02
bi3 9 22.8 14 13.4

Figure 2 shows the cladding’s effective RI n1 ≡ nfsm as a function of λ/Λ, for Λ = 3µm
and for two values of the hole diameter d. The design parameters of the investigated SI
SPCF are presented in Table 2.

Figure 2. Effective RI of the inner cladding as a function of λ/Λ.

Table 2. Effective RI of the cladding n1, relative RI difference ∆ = (n0 − n1)/n0, where n0 = 1.45,
and the critical angle θm for the varied air-hole diameter d at wavelength 850 nm.

d (µm) 1.0 2.0

n1 1.443717 1.423679
∆ = (n0 − n1)/n0 0.00433 0.01815

θm (deg) 5.34 10.93

The Equation (5) are solved using the EFDM [34], where the coupling coefficient
was D = 2.3× 10−6rad2/m (typical value of D for glass core fibers [35]). The cases with
diameter of air holes d = 1 µm (n1 = 1.443717, ∆ = 0.00433) and d = 2 µm (n1 = 1.423679,
∆ = 0.01815) and launch beam distribution with (FWHM)z=0 = 1◦ and 5◦ are analyzed.

For illustration purposes, Figure 3 shows the bandwidth expansion over the fiber
length. This was calculated for the beam distributions with (FWHM)z=0 = 1◦ and 5◦, in
the case of ∆ = 0.00433 and ∆ = 0.01815. From Figure 3, we can observe that a lower NA
(smaller ∆) yields a higher bandwidth. For shorter fiber lengths, the smaller the Gaussian
launch beam width, the wider the bandwidth. This is due to the narrow launch beam of
(FWHM)z=0 = 1◦, which reduces the modal dispersion. The effect of the (FWHM)z=0 of
the launch beam distribution on the bandwidth vanishes with increasing the optical fiber
length. Initial mode excitation has less effect on the bandwidth of longer fibers, because
mode coupling affects the redistribution of energy between guide modes. Figure 3 shows
a linear decrease in the bandwidth over short fiber lengths before switching to a 1/z1/2

functional dependence. For the larger widths of the Gaussian launch beams and lower
NAs, this change, and therefore the equilibrium mode distribution, occurs at shorter fiber
lengths. For (FWHM)z=0 = 1◦, the length is Lc ' 500 m for n1 = 1.443717 and Lc ' 1650 m
for n1 = 1.423679. For (FWHM)z=0 = 5◦, the length is Lc ' 300 m for n1 = 1.443717 and
Lc ' 1450 m for n1 = 1.423679 [36]. The shorter the length Lc, the slower the bandwidth
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decrease. The bandwidth tends to be length-independent for certain fiber lengths. This
length marks the onset of an SSD. This length is zSSD ≈ 1150 m for n1 = 1.443717 and
zSSD ≈ 3800 m for n1 = 1.423679 [36]. Finally, one can conclude that the examined PCFs
seem to be suitable for short-haul rather than long-haul applications.

Figure 3. Bandwidth as a function of the optical fiber length for the Gaussian launch beams with
(FWHM)z=0 = 1◦ and 5◦ for ∆ = 0.00433 ∆ = 0.01815.

It is worth noting that the proposed method for the investigation of the bandwidth in
SI SPCFs by employing the time-dependent power flow equation has already been proven
as effective and accurate in several previously published works, including the theoretical
and experimental investigation of bandwidths in graded-index plastic optical fibers and SI
plastic optical fibers [34,37]. A block diagram that illustrates the procedure applied in this
work for the calculation of the bandwidth in SI SPCFs is shown in Figure 4.

Figure 4. Block diagram for the calculation of the bandwidth in SI SPCFs.

5. Conclusions

To conclude, by solving the time-dependent PFE, an approach for estimating the
bandwidth of multimode SI SPCFs is proposed. From the obtained results, we conclude that
lower NA enables a higher fiber bandwidth (e.g., for lower NA of SI SPCFs, a bandwidth
that is eight times larger is obtained at a fiber length of 3500 m). Additionally, a narrower
Gaussian launch beam leads to a higher bandwidth at short fiber lengths. The bandwidth
decreases with increasing the fiber length and tends to be launch-beam independent for
a certain fiber length. This length marks the onset of the SSD. One can conclude that the
examined PCFs seem to be suitable for short-haul rather than long-haul applications. Finally,
we show that these tuning parameters provide additional flexibility in the construction of
photonic crystal fibers for high bandwidth optical fiber transmission.
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