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Abstract: The topological charge of an optical vortex is a quantity rather stable against phase
distortions, for example, turbulence. This makes the topological charge attractive for optical com-
munications, but for many structured beams it is unknown. Here, we derive the topological charge
(TC) of a coaxial superposition of spatially coherent Laguerre–Gaussian beams with different colors,
each beam with its own wavelength and its own TC. It turns out that the TC of such a superposition
equals the TC of the LG beam with a longer wavelength, regardless of the weight coefficient of this
beam in the superposition and regardless of its TC. It is interesting that the instantaneous TC of such
a superposition is conserved on propagation, whereas the time-averaged intensity distribution of
the colored optical vortex changes its gamut; if, in the near field, the colors of the light rings arrange
along the radius according to their TCs in the superposition from lower to greater, then, on space
propagation, the colors of the light rings in the cross-section are arranged in reverse order from the
greater TC to the lower TC. We also demonstrate that, by choosing appropriate wavelengths (blue,
green, and red) in a three-color superposition of single-ringed LG beams, it is possible to generate,
at some propagation distance, a time-averaged light ring of the white color. If all the beams in a
three-color superposition of single-ringed LG beams have the same TC, then there is a single ring of
nearly white light in the initial plane. Then, on propagation in space, light rings of different colors
acquire different radii: a smaller ring radius for a shorter wavelength.

Keywords: coherent multi-color beam; colored beam; white beam; Laguerre–Gaussian beam; optical
vortex; phase singularity; topological charge

1. Introduction

Vortex beams, or optical vortices, have been known in optics since the 1980s, but many
fundamental, theoretical issues about these beams still have not been addressed. Some of
these unsolved problems are related to the important quantity of the optical vortices, their
topological charge (TC) [1], although, due to its discreteness, it demonstrates a significant
stability when coherent vortex beams propagate in turbulence [2–4] and can be used for
identifying incoming optical signals. For instance, it was only recently discovered [5] that
the TC of a superposition of two parallel, monochromatic Laguerre–Gaussian (LG) beams
with their azimuthal indices of different parity can be different depending on which of
these two beams is on the left and which is on the right. If these beams are swapped in
the superposition, their common TC changes by 1. At the same time, there is an interest in
multi-color light fields, including those with optical vortices [6]. However, while the TC
of monochromatic optical vortices was discussed in some works, there are relatively few
works about the TC of “colored”, or polychromatic, optical vortices. Below, we analyze
briefly what is known about the TC of multi-color vortices. It is known that, near the
intensity null, the multi-color beam behaves anomalously [7]. In the work by M.V. Berry [8],
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the peculiarities of a multi-color beam were studied near the singularity point (intensity
null). Interesting chromatic effects were observed near a white-light vortex in [9]. In [9], a
white-light vortex was generated when a forked grating was illuminated by white light
from a point source. The fork grating was recorded on a SLM. Generation of optical vortices
in incoherent light is also possible by using uniaxial birefringent crystals [10]. In [11],
multi-color vortices were investigated by interference with a plane wave. Both interfering
beams were spatially coherent. In work [12], a spiral phase plate (SPP) was illuminated by
a white-light beam, and it was demonstrated that a rainbow is generated since the different
wavelengths in the white-light beam generate, after passing through the SPP, light rings
of different radii. In [13], by illuminating uniaxial crystals by polychromatic light, first-
and second-order optical vortices were generated. Their TC was measured experimentally
by using a cylindrical lens. Using filters to select different spectral components out of
the white vortex, it was shown that the TC of each color component in the beam was
the same and equaled either 1 or 2 [10,13]. In [14], white light illuminated a multisector
spiral-reflecting metasurface, fabricated on a surface of a golden film and composed of
binary subwavelength gratings that rotate the polarization vector of the incident beam. As
was demonstrated experimentally, when the beam is reflected from such a metasurface,
first-order optical vortices are generated in the whole visible range with almost equal
effectiveness (nearly 60%). In [15], colored optical vortices were generated by a forked
Bragg grating in a cholesteric liquid crystal. Such a Bragg grating acted as a “thick”
hologram, which has a significant angular selectivity. Changing the incidence angle of the
white light onto a surface of the liquid crystal, colored (red and blue) first- and second-
order optical vortices were obtained at the output. In [16], white light from the LED
was directed onto a reflecting light modulator that implemented a spiral phase pattern
embedded into a blazed grating. The grating reflected light of different wavelengths by
different angles. Thus, colored (red, green, and blue) optical vortices with the topological
charge of 3 were generated experimentally. The white vortex was obtained in [16] (as in [9])
by adding a prism into the optical setup, which compensated the dispersion of the grating
in the modulator. In works [17,18], supercontinuum optical vortex pulses were studied
experimentally (bandwidth from 500 nm to 800 nm). As in [9], the optical vortex in [17,18]
was generated by forked diffraction grating, synthesized on a reflective SLM.

There are few works on the multi-color optical vortices (COV) and even fewer (or
almost no) works which derive the TC of a superposition of COVs. In this work, we study,
as an example, a spatial coherent coaxial superposition of single-ringed (i.e., with zero radial
index) LG beams with the same waist radius but with different weight coefficients, TCs, and
wavelengths. We show, both theoretically and numerically, that the topological competition
is won by a more “red” LG beam, i.e., the common TC of the whole superposition is equal
to the TC of the constituent LG beam with a longer wavelength.

2. Topological Charge of a Two-Color Superposition of Optical Vortices

Under the multi-color optical vortex, we mean a coaxial superposition of spatial coher-
ent single-ringed LG beams [19] with the same waist radius but with different topological
charges (TC) and with different wavelengths. The complex amplitude of such colored
optical vortices is given by:

E(r, ϕ, z, t) =
N

∑
s=1

csq−ns−1
s (z)

(√
2r

w

)ns

exp
(
− r2

w2qs(z)
+ ins ϕ + iksz− iωst

)
, (1)

where (r, ϕ, z) are the cylindrical coordinates, t is time, w is the waist radius of the Gaussian
beam, cs is the weight coefficients, and ns is the topological charges of each beam in the
superposition,

qs(z) = 1 + iz/zs, zs = ksw2/2, ks = 2π/λs, (2)

where zs is the Rayleigh distance, ks is the wavenumber, λs is the wavelength of a monochro-
matic light, and ωs is its frequency (ks = ωs/c, with c being the speed of light in vacuum).
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Below, we suppose that the weight coefficients are nonzero, since the zero-amplitude beam,
of course, cannot affect the TC of the whole superposition. In practice, superposition (1)
is generated if, in the waist plane of a coaxial superposition of spatial coherent Gaussian
beams with specific wavelengths, a SPP is placed with the order n and with a relief depth
intended for the wavelength λ0. At this, the wavelengths λs of the Gaussian beams should
be such that the SPP order remains an integer number ns: λsns = λ0n, s = 1, 2, 3, . . . , N.
Strictly speaking, after passing through the SPP, a Gaussian optical vortex [20] is generated,
rather than the LG beam. It was proved, though, that the Gaussian vortex in the far field is
almost coinciding with the LG beam [21,22].

Below, we suppose, for simplicity, that there are only two terms in Equation (1). The
topological charge is defined by M.V. Berry’s formula [23]:

TC =
1

2π
lim
r→∞

Im
2π∫
0

dϕ
∂E(r, ϕ, z)/∂ϕ

E(r, ϕ, z)
. (3)

It can seem from Equation (3) that the right part depends on the propagation distance
z. However, it is shown below that the topological charge is z-independent.

Substitution of Equation (1) with N = 2 into Equation (3) yields:

TC = 1
2π lim

r→∞
Im

2π∫
0

{
inc1

qn+1
1 (z)

(√
2r

w

)n
exp

[
− r2

w2q1(z)
+ inϕ + ik1z− iω1t

]
+ imc2

qm+1
2 (z)

(√
2r

w

)m
exp

[
− r2

w2q2(z)
+ imϕ + ik2z− iω2t

]}
×
{

c1
qn+1

1 (z)

(√
2r

w

)n
exp

[
− r2

w2q1(z)
+ inϕ + ik1z− iω1t

]
+ c2

qm+1
2 (z)

(√
2r

w

)m
exp

[
− r2

w2q2(z)
+ imϕ + ik2z− iω2t

]}−1
dϕ.

(4)

Supposing that both beams have nonzero amplitude, c1 6= 0, c2 6= 0, and replacing the
variable r = wρ/21/2, this expression can be rewritten in a more compact form:

TC =
1

2π
lim

ρ→∞
Re

2π∫
0

nP(z)ρn−me−Q(z)ρ2
ei(k1−k2)ze−i(ω1−ω2)teinϕ + meimϕ

P(z)ρn−me−Q(z)ρ2 ei(k1−k2)ze−i(ω1−ω2)teinϕ + eimϕ
dϕ, (5)

with P(z) = (c1/c2)[qm+1
2 (z)/qn+1

1 (z)] and Q(z) = [q−1
1 (z)− q−1

2 (z)]/2.
Equation (5) indicates that, if |q1(z)| < |q2(z)|, then the exponentials with ρ2 have a

coefficient with negative real part (i.e., –Re Q(z) > 0) and, when ρ tends to infinity, the first
terms in the integral, both in the numerator and in the denominator, tend to zero, regardless
of the numbers n and m and regardless of the weight coefficients c1 and c2. The remaining
second terms, after simplifications, yield TC = m. On the contrary, if |q1(z)| > |q2(z)|, then
the exponentials with ρ2 have a coefficient with a positive real part and, when r tends to
infinity, the first terms also tend to infinity, and the second terms can be neglected. Then,
simplifications yield TC = n. From Equation (2), it follows that |q1(z)| < |q2(z)| if λ1 < λ2
(and TC = m) and that |q1(z)| > |q2(z)| if λ1 > λ2 (and TC = n). Thus, we conclude that
the TC of a superposition of two colored optical vortices is equal to the TC of the beam
with a longer wavelength (“reds” win against the “blues”). If we take into account a
relation λsns = λ0n, s = 1, 2, . . . , N, then the beam with a longer wavelength has a smaller
topological charge.

A special case occurs in the initial plane z = 0, since |q1(0)| = |q2(0)| = 1. In this plane,
the TC in Equation (5) is defined by the factor ρn–m, rather than by the exponent, i.e., by the
highest TC of the constituent beams [24]: TC = max{n, m}.
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We note that, if there are more than two beams (N > 2), then the proof is more bulky but
quite similar and is based on overwhelming one exponent over the others and, therefore,
the TC of the whole superposition equals the TC of the beam with a longer wavelength.

We also note that, if, instead of the single-ringed LG beams in the superposition (1),
we choose the LG beams with nonzero radial indices ps:

E(r, ϕ, z, t) =
N
∑

s=1
csq−ns−1

s

(√
2r

w

)ns
Lns

ps

[
2r2

w2|qs(z)|2

]
× exp

[
− r2

w2qs(z)
+ ins ϕ− 2ipsargqs(z) + iksz− iωst

]
,

(6)

where Ln
p(.) is the associated Laguerre polynomials, then a similar derivation process will

lead to just the same TC, since it is defined by an overwhelming exponent (Gaussian
envelope of the beam) rather than by the power growth of the radial polar coordinate.

If we suppose that all the beams in the superposition (1) have the same TC equal to n,
then, instead of Equation (1), we get:

E(r, ϕ, z) =

(√
2r

w

)n

einϕ
N

∑
s=1

csq−n−1
s (z) exp

(
− r2

w2qs(z)
+ iksz

)
. (7)

Since the angular derivative of Equation (7) is ∂E(r, ϕ, z)/∂ϕ = inE(r, ϕ, z), then,
according to Equation (3), the TC of the superposition (7) with arbitrary colors is equal to the
TC of each beam: TC = n. This result is simple, but practical generation of the superposition
(7) is challenging, since it requires that, in the waist planes of each colored Gaussian
beam, different SPPs be placed, the maximal relief depth hs of which is matched with
the wavelength λs of the incident light: 2πhs(n0 − 1) = nλs, with n0 being the refractive
index of the SPP material (we suppose that there is no dispersion of the refractive index).
However, if an amplitude fork grating is used, as in [9,18], then all spectral components of
the beam have the same TC. However, due to diffraction by the grating, monochromatic
beam components diffract by different angles. Therefore, in [18], light rings of different
colors are shifted relative to each other. This shift can be compensated by a prism.

3. Numerical Simulation
3.1. Visualization of Polychromatic Beams

Here, we consider a superposition of two different-color beams. According to Equation (1),
such a light field is not stationary and is time-dependent. If, in some point of space, the
complex amplitude of the first and second beam is, respectively, A and B, then the field in
this point depends on time as follows:

E(t) = A exp(−iω1t) + B exp(−iω2t), (8)

where ω1 and ω2 are the frequencies of the beams.
The time-averaged intensity of this field is given by:

I(t) =
1
T

T∫
0

|E(t− τ)|2dτ = |A|2 + |B|2 + 2
T

Re
T∫

0

A∗B exp[i(ω1 −ω2)(t− τ)]dτ, (9)

with T being the time-averaging period. If it is large enough compared to the periods of
waves with frequencies ω1 and ω2 (i.e., cT >> λ1, λ2), the summary intensity is perceived
like the sum of intensities of both waves.

As to the perceived color, we can consider a simple case when A = B. The complex
amplitude can be written as E = 2A cos[(ω1 – ω2)t/2] exp[–i(ω1 + ω2)t/2]. This simple
example shows that, if the frequencies ω1 and ω2 are not close to each other, then this
point is perceived as a point with constant (time-independent) intensity |A|2 and with
the average frequency (color) (ω1 + ω2)/2. Consequently, if the beams are, for instance,
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of blue and red color, then some points with equal amplitudes of both beams look purple
and can be visualized as 255, 0, 255 in the RGB format. As to the phase in contrast to
the monochromatic waves, it cannot be determined, since, in every point in space, the
time-dependence of the amplitude is not harmonic. Thus, only an instantaneous phase
value can be visualized, i.e., the phase in a specific moment of time. The TC of a multi-color
beam can be determined not only by the instantaneous phase distribution, but also by
counting the number of fork teeth in the interference pattern obtained by coherent addition
with a tilted plane wave [11] or by addition of the beam with itself but with a conjugate
phase [18].

3.2. Numerical Simulation of Two-Color Laguerre–Gaussian Vortices with Different
Topological Charges

Figure 1 illustrates a superposition of two different-color LG beams. Intensity dis-
tributions (Figure 1a,d,g) are shown time-averaged, whereas the phase distributions
(Figure 1b,c,e,f,h,i) are instantaneous (in two different time moments).
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distance z = 0.2 m (a–c), z = 1 m (d–f), z = 2 m (g–i) and at time moments t1 = 60 s (b,e,h) and t2 = 61 
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TCs n1 = 4 and n2 = 3, radial indices p1 = p2 = 0 (single-ringed beams), superposition weight coeffi-
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spectively, red and blue beams dominate. 

Figure 1. Distributions of time-averaged intensity (a,d,g) and of instantaneous phase (b,c,e,f,h,i) of
a superposition of two single-ringed LG beams of different colors (λ1 = 400 nm, λ2 = 700 nm) at a
distance z = 0.2 m (a–c), z = 1 m (d–f), z = 2 m (g–i) and at time moments t1 = 60 s (b,e,h) and t2 = 61 s
(c,f,i). Other computation parameters are the following: Gaussian beam waist radius w = 500 µm, TCs
n1 = 4 and n2 = 3, radial indices p1 = p2 = 0 (single-ringed beams), superposition weight coefficients
c1 = [p1!/(n1 + p1)!]1/2 ≈ 0.2 and c2 = [p2!/(n2 + p2)!]1/2 ≈ 0.4 (so that both beams are of the same
power). Scaling mark in each figure shows 1 mm. Symbols ‘R’ and ‘B’ (a,g) show areas where,
respectively, red and blue beams dominate.



Photonics 2022, 9, 145 6 of 19

Since the TC of the blue beam exceeds that of the red beam, at small propagation
distance, the blue ring has a larger radius than the red ring (Figure 1a). However, the
red beam diverges more strongly than the blue beam. Therefore, at a distance of nearly
1 m, the rings’ radii are equal (one purple ring in Figure 1d), and, on further propagation,
at a distance nearly 2 m, the red ring becomes outer, while the blue ring becomes inner
(Figure 1g).

According to the theory, the common topological charge of the whole superposition
does not depend on the color of the outer ring and is determined solely by the topological
charge of the beam with a longer wavelength. Therefore, for the beam from Figure 1,
it should be equal to three (TC = 3). Computation of the topological charge using the
instantaneous phase distributions from Figure 1 confirms this; computing by M.V. Berry’s
Equation (3) along a circle with the radius R1 = 7.5 mm yields the values 2.986 (Figure 1b),
2.982 (Figure 1c), 2.874 (Figure 1e,f), and 2.907 (Figure 1h,i).

In the initial plane and in the initial time moment, optical vortices in the beam cross-
section are distributed in the following way: In the beam center on the optical axis, there is
an optical vortex with the smallest TC of 3, whereas, at some radii from the axis, there is
a vortex with a TC of +1 and, at greater radius, there is a vortex with TC of –1. After the
evolution of such a superposition in time and in space, on the optical axis there is still a
vortex with a TC of +3, while the optical dipole with TCs +1 and –1 on its ends approaches
the optical axis. Thus, the TC of the superposition is equal to 3. This evolution can be seen
in the instantaneous phase distributions in Figure 1. The vortices would behave differently,
if, vice versa, the beam with a longer wavelength had the TC of 4 and the beam with a
smaller wavelength had the TC of 3. Then, during the evolution of such a superposition,
the vortex with the TC of –1 would move away to infinity “almost immediately”, and, near
the axis, a vortex with the TC of 4 would be generated, and the whole superposition would
have a TC equal to 4.

The same holds for multiple-ringed LG beams. In Figure 2, we show a superposition
of two LG beams of different colors with the same parameters as in Figure 1, but the
radial indices are p1 = p2 = 2 (each beam has three rings). To equate the beam powers, the
weight coefficients of the superposition are chosen equal to c1 = [p1!/(n1 + p1)!]1/2 ≈ 0.053
and c2 = [p2!/(n2 + p2)!]1/2 ≈ 0.129.

Since the TC of the blue beam is greater than that of the red beam, at a small prop-
agation distance, the radii of all three rings of the blue beam exceed the radii of the
corresponding three rings of the red beam (Figure 2a). Since the red beam diverges more
strongly than the blue beam, at a distance of nearly 1 m, the radii of the inner (most bright)
rings become equal, and a single purple ring appears (Figure 2d), whereas the radii of the
two outer red rings already exceed those of the blue outer rings. On further propagation,
at a distance of nearly 2 m, all three red rings become outer with respect the to three blue
rings (Figure 2g).

According to the theory, the presence of several rings and their radii do not affect the
common topological charge of the whole superposition and, as in Figure 1, it should be
equal to 3 (TC = 3). Computation of the topological charge by M.V. Berry’s formula using
the instantaneous phase distributions from Figure 2 confirms this. Numerically obtained
values are 2.987 (Figure 2b), 2.982 (Figure 2c), 2.874 (Figure 2e,f), and 2.907 (Figure 2h,i).
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superposition of two three-ringed LG beams of different colors. All parameters are the same as in
Figure 1, but the radial indices are p1 = p2 = 2, and the superposition weight coefficients are c1 ≈ 0.053
and c2 ≈ 0.129. Scaling mark in each figure shows 1 mm. Symbols ‘R’ and ‘B’ (a,g) show areas where,
respectively, red and blue beams dominate.

3.3. Numerical Simulation of a Three-Color Laguerre–Gaussian Vortex with Different
Topological Charges

Here, we try, in a similar way, to construct a superposition of three Laguerre–Gaussian
beams of three different colors that are spatially separated in the initial plane then add up
in a single ring and form an optical vortex that looks white or gray (superposition of red,
green, and blue beams) and then separate again. At a distance z from the initial plane, the
radius of the maximal-intensity ring of each of these three vortices is equal to:

rmax,s = w
√

ns

2

√
1 +

(
z
zs

)2
. (10)

If these radii are almost equal for all three vortices, the following condition should
be fulfilled:

n1

[
1 +

(
z
z1

)2
]
≈ n2

[
1 +

(
z
z2

)2
]
≈ n3

[
1 +

(
z
z3

)2
]

. (11)

It can be seen that three vortices cannot add up at small propagation distances
(z << z1, z2, z3), since, in this case, their topological charges are nearly equal and, therefore,
in the initial plane, these three rings cannot be spatially separated. Now, we suppose that
the beams add up in the Fresnel diffraction zone, and the propagation distance is equal, for
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instance, to the average Rayleigh distance of the three beams. Let λ1 < λ2 < λ3. Then, since
the waist radius is the same for all three beams, putting z = z2 in Equation (11), we get the
following condition for the topological charges:

n2

n1
≈ 1

2

[
1 +

(
λ1

λ2

)2
]

,
n2

n3
≈ 1

2

[
1 +

(
λ3

λ2

)2
]

. (12)

For example, if the wavelengths of the interfering beams are equal to λ1 = 400 nm,
λ2 = 550 nm, and λ3 = 700 nm, then n2/n1 ≈ 0.76 ≈ 3/4 and n2/n3 ≈ 1.31 ≈ 4/3. For
example, we can choose n1 = 16, n2 = 12, and n3 = 9. However, these topological charges
are small and, according to Equation (10), the radii of the maximal-intensity rings in the
initial plane are close to each other: rmax,1 ≈ 2.83 w, rmax,2 ≈ 2.45 w, and rmax,3 ≈ 2.12 w.
Since each ring has a thickness comparable to the waist radius w, these three rings are not
spatially separated in the initial plane. Therefore, for computations, we increase the order
of each beam four times: n1 = 64, n2 = 48, and n3 = 36.

Shown in Figure 3 are the time-averaged intensity distributions and instantaneous
phase distributions of a superposition of three single-ringed LG beams of different colors.
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Figure 3. Distributions of time-averaged intensity (a,c,e,g) and of instantaneous phase (b,d,f,h) of
a superposition of three single-ringed LG beams of different colors (λ1 = 400 nm, λ2 = 550 nm,
λ3 = 700 nm) at a distance z = 0 m (a,b), z = z3/2 ≈ 0.56 m (c,d), z = z2 ≈ 1.43 m (e,f), and
z = 2z1 ≈ 3.93 m (g,h) and at a time moment t = 60 s. Other computation parameters are the following:
Gaussian beam waist radius w = 500 µm, topological charges n1 = 64, n2 = 48, and n3 = 36, radial
indices p1 = p2 = p3 = 0, superposition weight coefficients cs = 1/(ns!)1/2, s = 1,2,3 (so that all the
beams are of the same power). Scaling mark in each figure shows 1 mm. Symbols ‘R’, ‘G’, and ‘B’
(a,c,g) show areas where, respectively, red, green, and blue beams dominate. Symbol ‘W’ (e) shows a
white (light gray) ring, generated by addition of all three beams.

Since, for the chosen parameters, the topological charge of the beams decreases with
the wavelength, then, in the initial plane and at a small distance from it, the red ring is
within the green ring, and the green ring is within the blue ring (Figure 3a,c). It is also seen
that, due to the divergence on propagation, the borders between the beams (low-intensity
rings) in Figure 3c become less distinct than in Figure 3a. Since the divergence of the beams
increases with the wavelength, the red beam diverges most strongly and the blue beam
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most weakly. Choosing the topological charges according to Equation (12), at the Rayleigh
distance of the green beam (z = z2 ≈ 1.43 m), all three beams have a light ring of the same
radius, and, therefore, the diffraction pattern looks like a single white (light gray) ring
(Figure 3e). On further propagation, due to the different divergence, the rings separate
again, but, now, the blue ring becomes inner and the red ring becomes outer (Figure 3g).

According to the theory, the common topological charge of the whole superposition
is equal to the topological charge of the beam with a longer wavelength. For the chosen
parameters, it should be equal to TC = 36. An exception is the initial plane z = 0, where the
TC = max{36, 48, 64} = 64. Numerical computation using the instantaneous phase distribu-
tions from Figure 3 in M.V. Berry’s Equation (3) over a circle with the radius R1 ≈ 9.3 mm
yields the values 63.944 (Figure 3b), 35.847 (Figure 3d), 35.775 (Figure 3f), and 35.934
(Figure 3h), i.e., computation confirms the theoretical value TC = 36 in all transverse planes
excepting the initial one. In the initial plane, the value TC = 64 was obtained, but even at
z = z3/2 (half of the minimum of the three Rayleigh distances for the red beam), there are
28 vortices of the order –1 on the phase distribution (Figure 3d), and, therefore, the net
topological charge is 36 (64 − 28).

3.4. Numerical Simulation of Three-Color Laguerre–Gaussian Vortex with Different Permutations
of Light Rings Colors

In all the considered examples (Figures 1–3), the topological charge of the beams
decreases with the wavelength. Thus, it seems that the topological charge of the whole
superposition is equal to the minimal topological charge rather than to the topological
charge of the beam with the longest wavelength. In order to confirm the theoretical outcome
that the topological charge is defined solely by the wavelength, below, we consider all
possible permutations of the three colors and three topological charges. There are six
such permutations.

Figure 4 depicts the time-averaged intensity distributions and instantaneous phase
distributions of these six different superpositions of three single-ringed LG beams of
different colors with different permutations of the topological charges.

According to the theory, the topological charge should be equal to 4, 2, and 1 on those
figures where the red ring is respectively outer (Figure 4a,b,e,f), middle (Figure 4c,d,i,j), and
inner (Figure 4g,h,k,l). Numerical computation using the instantaneous phase distributions
from Figure 4 in M.V. Berry’s Equation (3) over a circle with the radius R1 ≈ 5 mm yields
the values 3.996 (Figure 4a,b,e,f), 1.998 (Figure 4c,d,i,j), and 0.999 (Figure 4g,h,k,l), i.e., the
computations confirm the corresponding theoretical values. In addition, the topological
charge can be determined on the phase distributions visually. Each of the images in
Figure 4b,f contain four optical vortices of the order +1, and, thus, the net total topological
charge is TC = 4. In Figure 4d,j, in addition to the four vortices of the order +1, there are two
vortices of the order–1, i.e., the net topological charge equals TC = 2. In Figure 4h,l, there
are already three such vortices of the order–1, and, therefore, the net topological charge is
TC = 1.

To demonstrate that the TC of the whole beam depends solely on the TC of the beam
with the longer wavelength, we computed superpositions where the beams with shorter
wavelengths have higher powers. Figure 5 illustrates the beams from Figure 4i–l, but the
powers of the beams with λ1 = 400 nm and with λ1 = 550 nm are, respectively, three and
two times larger than the power of the beam with λ1 = 700 nm (i.e., cs = as/(ns!)1/2 with
a1 = 31/2, a2 = 21/2, a3 = 1).
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Figure 4. Distributions of time-averaged intensity (a,c,e,g,i,k) and of instantaneous phase (b,d,f,h,j,l)
of six different superpositions of three single-ringed LG beams of different colors (λ1 = 400 nm,
λ2 = 550 nm, λ3 = 700 nm) at a distance z = z2/2 ≈ 0.71 m (half of the Rayleigh distance of the beam
with the average wavelength) and at a time moment t = 60 s. Other computation parameters are the
following: Gaussian beam waist radius w = 500 µm, topological charges n1 = 1, n2 = 2, and n3 = 4 (a,b),
n1 = 1, n2 = 4, and n3 = 2 (c,d), n1 = 2, n2 = 1, and n3 = 4 (e,f), n1 = 2, n2 = 4, and n3 = 1 (g,h), n1 = 4,
n2 = 1, and n3 = 2 (i,j), n1 = 4, n2 = 2, and n3 = 1 (k,l), radial indices p1 = p2 = p3 = 0, superposition
weight coefficients cs = 1/(ns!)1/2, s = 1,2,3 (so that all the beams are of the same power). Scaling
mark in each figure shows 1 mm. Symbols ‘R’, ‘G’, and ‘B’ (a,c,g) show areas where, respectively, red,
green, and blue beams dominate. Red symbols ‘+’ and ‘–’ in the phase distributions show the optical
vortices of the orders +1 and –1.
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Figure 5. Distributions of time-averaged intensity (a,c) and of instantaneous phase (b,d) of two
different superpositions of three single-ringed LG beams of different colors. All parameters are the
same as in Figure 4i,j (a,b) and as in Figure 4k,l (c,d), but the superposition weight coefficients are
equal to cs = as/(ns!)1/2 with a1 = 31/2, a2 = 21/2, a3 = 1, s = 1,2,3 (so that the blue and green beams are,
respectively, three and two times more powerful than the red beam).

It can be seen that the red component of both beams is weak, and the intensity
distributions contain mostly blue and green areas. However, counting the vortices of
orders +1 and –1 yields the topological charge TC = 2 for the beam in Figure 5a,b and
TC = 1 for the beam in Figure 5c,d, i.e., the total TC is equal to the TC of the red beam.
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Numerical computation using the instantaneous phase distributions from Figure 5 in M.V.
Berry’s Equation (3) over a circle with the radius R1 ≈ 5 mm confirms these values: 1.9987
(Figure 5a,b) and 0.9995 (Figure 5c,d).

3.5. Numerical Simulation of a Three-Color Superposition of the Laguerre–Gaussian Vortex with
the Same Topological Charge

In the superpositions shown in Figures 1–5, the constituent LG beams have different
TCs. Therefore, in the initial plane, different-color rings have different radii. If the TC of
all the constituent beams is the same, then such a multi-color beam consists of a single
ring in the initial plane, and then, on propagation, spectral components split. Figure 6
demonstrates such a behavior for a superposition at three different transverse planes (in
the initial plane, in the Fresnel diffraction area, and in the far field).
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Figure 6. Distributions of time-averaged intensity (a–c) and of instantaneous phase (d–f) of a super-
position of three single-ringed LG beams of different colors (λ1 = 488 nm, λ2 = 532 nm, λ3 = 633 nm)
with the same TC at different distances and at a time moment t = 60 s. Other computation parameters
are the following: Gaussian beam waist radius w = 500 µm, topological charge n1 = n2 = n3 = 25,
propagation distances z = 0 (a,d), z = z0/2 ≈ 0.74 m (b,e) (z0 is the Rayleigh distance of the beam
with the average wavelength 532 nm), and z = 5z0 ≈ 7.38 m (c,f), radial indices p1 = p2 = p3 = 0,
superposition weight coefficients cs = 1, s = 1,2,3 (all the beams are of the same power). Scaling mark
shows 1 mm (a,b,d,e) and 10 mm (c,f). Symbols ‘R’, ‘G’, and ‘B’ (e) show areas where, respectively,
red, green, and blue beams dominate.

Figure 6 shows the topological charge of the beam computed along the red circles. It
can be seen that it is slightly different in Figure 6a,b,c but close to its theoretical value of 25.
Figure 6 also demonstrates that the light ring has the white color in the initial plane, but
then, on propagation, acquires the form of a rainbow in the far field (red, green, and blue
colors are clearly seen). Moreover, as the theory predicts, the longer wavelength leads to
the larger ring radius.

3.6. Numerical Simulation of Paraxial Free-Space Space Propagation of a Three-Color Gaussian
Beam Passed through a Spiral Phase Plate

We note that the generation of a multi-color superposition of several LG beams with
the same TC is challenging. In practice, an optical vortex can be created by a spiral phase
plate. This SPP is fabricated for a particular wavelength. If such a SPP is illuminated by a
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multi-color light, then each spectral component acquires its own TC, typically fractional.
If an nth-order SPP is designed for the wavelength λ0 and illuminated by a light beam
with the wavelength λ, then the transmittance function of the SPP for such a beam reads as
exp(in λ0 ϕ/λ) (ϕ is the polar angle). Thus, the beam with a longer wavelength acquires a
smaller effective TC, neff = nλ0/λ. Therefore, it diverges more weakly than a beam with a
shorter wavelength. However, despite the SPP, the divergence of a light beam generally
increases with the wavelength. For instance, the width of a Gaussian beam with waist
radius w0 at a distance z is w0{1 + [λz/(πw0

2)]2}1/2. These two opposite effects of decreasing
and increasing divergence can compensate each other, and the beam can propagate without
splitting into the spectral components.

Figures 7 and 8 demonstrate this effect. Shown in these figures is a three-color Gaussian
beam that passes through a third-order SPP and propagates in space to an area of the Fresnel
diffraction (Figure 7) and to the far field (Figure 8). Figures 7 and 8 are obtained by the
Fresnel transform of a Gaussian beam with an optical vortex, i.e., each beam has the
initial complex amplitude E(r, ϕ) = exp(–r2/w2 + ineff ϕ). The beam consists of blue, green,
and red light, but the SPP is designed for the green light. Therefore, for blue and red
components, the effective TC of the SPP neff is different (shown in Figures 7b,d,f and 8b,d,f).
Figures 7 and 8 also contain the TC computed individually for each spectral component
and for the entire multi-color beam. It is seen that it is equal to TC ≈ 3 in all cases except
the blue beam in far field (Figure 8a). This is because some of the peripheral vortices of the
first order are outside the area of the TC computation.
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Figure 7. Distributions of time-averaged intensity (a,c,e,g) and of instantaneous phase (b,d,f,h) of
a separate spectral components (a–f) and of entire three-color Gaussian beam (g,h) diffracted by
a SPP at a distance z = z0/2 ≈ 0.74 m (z0 is the Rayleigh distance of the beam with the average
wavelength 532 nm). Other computation parameters are the following: wavelengths λ1 = 488 nm
(a,b), λ2 = 532 nm (c,d), λ3 = 633 nm (e,f), Gaussian beam waist radius w = 500 µm, topological charge
of the SPP n = 3, wavelength for which the SPP was designed λ0 = 532 nm, time moment t = 60 s.
Scaling mark in all figures shows 1 mm. The TC was numerically computed along the red, dashed
circles (b,d,f,h).
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According to Figure 7a,e, since the initial topological charge of the blue and red
vortices is fractional, then, instead of a ring, a distorted ring is generated (a dent at nearly
+45 degrees and a gap at nearly –45 degrees). Therefore, the color of the multi-colored ring
in Figure 7g changes along the ring. At angles of approximately +45 and –45 degrees, the
color of the ring is pure green, whereas at angles of nearly –10 and –90 degrees, the ring is
an orange color (since the red component overwhelms).

As seen in Figures 7 and 8, indeed, the Gaussian beam is not split on propagation in
space. However, due to the fractional order of the SPP for the blue and red light, these
components do not contain the perfect light ring in contrast to the green light (Figures 7e
and 8e). Therefore, the resulting beam looks like a ring but with inhomogeneous color. For
instance, the orange color in the bottom of the ring in Figure 8g is due to the bright spot in
the red beam (Figure 8e) and due to the gap in the blue beam (Figure 8a).

3.7. FDTD Simulation of the Propagation a Three-Color Gaussian Beam through a Refractive
Spiral Phase Plate and in the Near Field

Shown in Figure 9 is the SPP phase with order n = 3 and its 3D view.
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The simulation of the light propagation through the SPP is carried out using the FDTD
method. This method takes the SPP microrelief into account. The SPP is placed in the
waist of three linearly polarized, coherent Gaussian beams with different wavelengths
−488 nm, 532 nm, and 633 nm. The radius of the Gaussian beams is the same and equals
2.5 µm. The following are the simulation parameters: grid size in all three coordinates
17.7 nm, simulation area 8 × 8 × 2.5 µm, and the SPP material refractive index n = 1.5;
the relief height h is calculated for the middle wavelength of λ0 = 532 nm and is equal to
h = λ0/(N − 1) = 2λ0.

Shown in Figure 10a–c are the period-averaged intensity distributions of a three-color
Gaussian beam passed through a SPP (Figure 9) at different distances z: 0.532 µm, 2 µm,
and 20 µm. For the chosen waist radius, the Rayleigh distance even for the red beam is
nearly 31 µm, i.e., all the propagation distances are in the near field. At the same time, for
the wavelength of 488 nm, blue shades are used: green shades for the wavelength of 532 nm,
red for 633 nm. Each color corresponds to the color of the laser with a given wavelength.
Figure 10d–f also shows the phase distributions of the beams with a wavelength of 488 nm,
532 nm, and 633 nm.
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Three local maxima are seen in Figure 10 to have a green tint (Figure 10a) and a
green-yellow tint (Figure 10b) at close distances. As the distance from the SPP increases,
these local maxima “smooth out”, and the intensity distribution becomes like a triangle
with three intensity zeros near the axis (triangular button). These three intensity nulls
indicate the presence of three optical vortices. The topological charge of the three-color
beam is 3. This is also seen from the phase distributions in Figure 10d–f.

4. Topological Charge of a White Optical Vortex

Here, we consider a practically important case where, in the waist plane of a white
Gaussian beam, a single SPP is placed, the relief of which is matched with the wavelength
λ0. Then, the complex amplitude of the superposition in the Fresnel diffraction zone is
given by:

E(ρ, θ, z, t) = −i
zλ0

∞∫
0

λ−1 f (λ)dλ
∞∫
0

rdr
2π∫
0

dϕ×

× exp
{

i 2πz
λ − i 2πct

λ −
r2

w2 + i nλ0
λ ϕ

}
exp

{
iπ
λz
[
r2 + ρ2 − 2rρ cos(ϕ− θ)

]}
,

(13)

with f (λ) being the envelope function of the spectrum of white-light source (e.g., LED).
Actually, Equation (13) is a superposition of the Fresnel transforms [25] for different wave-
lengths. Since the TC of each monochromatic (single-color) vortex µ = nλ0/λ is, in general,
fractional, then the integral over ϕ in Equation (13) cannot be evaluated. Therefore, we
expand the exponent exp(iµϕ) into a series of optical vortices with integers TCs:

exp
(

i
nλ0

λ
ϕ

)
=

eiπnλ0/λλ sin(πnλ0/λ)

π

∞

∑
m=−∞

eimϕ

nλ0 −mλ
. (14)

Substituting Equation (14) into Equation (13), we get:

E(ρ, θ, z, t) = −2i
zλ0

∞
∑

m=−∞
(−i)meimθ

∞∫
0

ei(π/λ)(nλ0+ρ2/z+2z−2ct) sin(πnλ0/λ) f (λ)
nλ0−mλ dλ

×
∞∫
0

exp
(
− r2

w2 +
iπr2

λz

)
Jm

(
2πrρ

λz

)
rdr,

(15)

with Jm(x) being the mth-order Bessel function of the first kind. The integral over the
variable r in Equation (15) can be evaluated by using a reference integral from [26]:

∞∫
0

rdr exp
(
− r2

w2 +
iπr2

λz

)
Jm

(
2πrρ

λz

)
=

π3/2ρw3(λz)1/2(sgnm)|m|

4(λz−iπw2)
3/2 e−ξ

[
I(|m|−1)/2(ξ)− I(|m|+1)/2(ξ)

]
,

(16)

where ξ = (πρw)2/[2λz(λz− iπw2)].
Substituting Equation (16) into Equation (15), we finally obtain:

En(ρ, θ, z, t) =
−iπ3/2ρw3

2z1/2λ0

∞

∑
m=−∞

(−i)m(sgnm)|m|eimθ Dm,n(ρ, z, t), (17)

where

Dm,n(ρ, z, t) =
∞∫
0

e−ξ [I(|m|−1)/2(ξ)−I(|m|+1)/2(ξ)]
(λz−iπw2)

3/2 ×

ei(π/λ)(nλ0+ρ2/z+2z−2ct)λ1/2 sin(πnλ0/λ) f (λ)
nλ0−mλ dλ.

(18)

The integral (18) can hardly be reduced to a reference integral, and, therefore, it cannot
be evaluated in an explicit form, excepting a trivial case of a monochromatic light when
f (λ) = δ(λ − λ0). In this case, expression (17) coincides with Equation (45) from [24].
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However, even without evaluating Equation (18), some conclusions can be drawn from the
obtained expressions (17) and (18). Namely, if there is zero denominator of the integrand,
then only some terms remain in the series (17), i.e., those terms, the numbers of which, m,
yield this zero denominator:

m =
nλ0

λ
, λ ∈ [λ0 − ∆λ, λ0 + ∆λ], (19)

with 2∆λ being the width of the spectrum of the colored Gaussian beam. For instance, if
n = 10, λ0 = 532 nm, and ∆λ = 100 nm, then only four terms remain in Equation (17), and
their numbers are m = 9, 10, 11, and 12. Further, Equation (1) can be used. This expression
indicates that the superposition contains, effectively, only four beams, and the TC of the
whole superposition is equal to the maximal TC, i.e., TC = 12. If the SPP order is increased
two times, i.e., n = 20, then, in the same example, Equation (17) contains eight colored
optical vortices with numbers m from 17 to 24. This means that Equation (17) contains,
effectively, eight optical vortices (1), and the TC of such a superposition is equal to TC = 24.
On the contrary, if the SPP order is decreased, e.g., n = 3, then, as in [16], for a beam with
an arbitrary wavelength from the range (432 nm, 632 nm), only one term in Equation (17)
becomes zero at m = 3. This explains the experimental results from [16] where, after passing
through a single SPP of the order n = 3, all colored vortices (white, blue, red, and green)
have a TC equal to m = 3.

5. Experiment

In this section, we describe an experiment generating a superposition of two optical
vortices with the same TC. Figure 11 shows an optical setup for the experiment. Gaussian
beams with almost equal waist radii are emitted by two lasers with wavelengths of 532 nm
and 633 nm. We note that, despite the theoretical part of the work, the vortex beams are
superimposed coherently; due to the difference in the wavelengths, the intensity of the
superposition is equal to the sum of the intensities of each beam, as in Equation (9). Similarly,
the intensity of the superposition of two beams from different lasers in the experiment is
also equal to the sum of the intensities of each beam. Both beams, after the beam-splitting
cube BS, propagate along the same path to SLM. The amplitude transmission function of
the SLM is shown in Figure 12a. It can be seen that the hologram on the SLM is a fork
grating. After passing through the SLM, laser beams acquire an orbital, angular momentum
and a topological charge (TC = 25). Figure 12b,c depicts separate intensities of both beams
immediately after the aperture D. It can be seen that both rings have approximately the
same radius. Figure 12d illustrates the intensity of both beams that passed through the
SLM simultaneously and are registered without a wedge. Due to dispersion on the grating
(Figure 12a), the red ring propagates at a larger angle to the optical axis than the green one.
It can also be seen (Figure 12d) that the red ring has a larger radius than the green one.
This is because the divergence of a Gaussian beam is proportional to the wavelength. In
Figure 12e, we try to use a wedge to compensate for the grating dispersion and combine
both rings. However, since the wedge angle is not consistent with the grating period
(Figure 12a), the alignment of the rings is incomplete. From Figure 12d,e, it can be seen
that, in the areas where both beams intersect, the intensity color is yellow. This means that
the beams add by intensity (without interference). This experiment is consistent with the
simulation result in Figure 6.
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Figure 11. Experimental setup: Laser 532—MGL-F-532–700 mW (λ = 532 nm, 700 mW); Laser 633—
Cobolt 06-MLD laser (λ = 633 nm, 200 mW); M2—mirror; BS—beam-splitter cube; PH—pinhole;
O1—100× objective lens; P1, P2—linear polarizers; amplitude-only SLM—spatial light modulator
(Holoeye LC 2012); L1, L2—lenses (f1 = 100 mm, f2 = 50 mm); D—diaphragm to block the zero
diffraction order; CCD—CCD camera (UCMOS 10,000 KPA).
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6. Conclusions

Thus, in this study we investigated different variants of a coaxial superposition of the
Laguerre–Gaussian beams with different wavelengths. Using the well-known M.V. Berry
formula, we derived the topological charge of a coaxial superposition of two Laguerre–
Gaussian beams of different colors, each with its own wavelength and its own TC. It
turned out that the TC of such a superposition equals the TC of the LG beam with a
longer wavelength (more red), regardless of the weight coefficient of this beam in the
superposition and regardless of the TC of this beam. This TC derivation can be generalized
to a superposition of an arbitrary finite number of the LG beams with different wavelengths,
both single-ringed and multiple-ringed. At this, the TC of the whole superposition is equal
to the TC of the constituent LG beam with the longer wavelength. This result was confirmed
numerically for a superposition of three single-ringed beams and for a superposition of two
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three-ringed beams. Since the phase velocities of the beams were different, the transverse
intensity section of the beam changed on propagation with a velocity proportional to
the difference between the maximal and minimal wavelengths. At the same time, the
instantaneous TC of such a superposition was conserved, while the intensity distribution
(time-averaged) of the “colored” optical vortex changed its light “gamut”. For example,
for a two-color superposition, if, in the near field, the colors of the light rings (rainbow)
arrange along a radius according to their TCs in the superposition from lower to greater,
then, on space propagation (in the far field), the colors of the light rings in the rainbow are
arranged in reverse order from the greater TC to the lower TC. It was also demonstrated
that, by appropriately choosing the wavelengths (blue, green, and red) in a three-color
superposition of single-ringed LG beams, it is possible to generate, at some distance, a
time-averaged light ring of the white color.

Thus, we hope the obtained results are significant for stably identifying incoming
optical signals when they a carried by multi-color light beams.
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