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Abstract: We report the result of an accurate calculation of optical transmission of a light beam
traveling along the helix direction of a heliconical cholesteric liquid crystal when the light intensity
is affecting the director orientation by an effective optical torque. The study is based on the appli-
cation of Ambartsumian’s layer addition modified method with the aim of taking into account the
continuous modification of the wave field during propagation, which is quite strong when the light
wavelength approaches the Bragg resonance. We show first, that the recently calculated red shift
of the transmission gap is confirmed under the constant intensity approximation. Additionally, by
taking into account the full modulation of the optical field occurring at wavelengths close to the Bragg
resonance, a weak red shift is already observable at very low intensities, but quickly has the onset of
instabilities in the optical transmission. We give the first account of this effect, which is dependent on
the light intensity showing and that it corresponds to the onset of non-uniform distribution of the
conical angle and pitch of the structure.

Keywords: heliconical liquid crystals; nonlinear optics; pitch tuning; optical instabilities

1. Introduction

Light propagation through the helical structure of cholesteric liquid crystals (CLC) has
been studied for a long time, and a large amount of literature produced on this subject has
been well referenced in different books on liquid crystals [1–4]. Besides the explanation of
the strong Bragg reflection observed in these materials, the theoretical approaches aimed at
accounting for the optical behavior under different geometrical or physical conditions can
be a change of light incidence angle, change of temperature, application of electric field, etc.

After the discovery of the giant optical nonlinearity (GON) in nematic liquid crystals
(NLC), the change of the optical properties of a CLC induced by light traveling through the
material has been considered. However, these effects demonstrated to be very weak with
respect to the ones occurring in NLC [5,6] due to the twist deformation that strongly affects
the polarization of the light beam. Specifically, no significant tuning of the Bragg resonance
has been observed due to light-induced reorientation in pure CLC.

From this point of view, heliconical cholesteric liquid crystals (ChOH-oblique heli-
coidal cholesterics) provide a new phenomenology linked to the peculiar conical arrange-
ment of the molecular director. This configuration occurs in CLC when the bend elastic
constant K3 is lower than the twist elastic constant K2, that is K3 < K2, and an applied
low-frequency electric field (denominated “static” in the following) is applied within a
range of values between two critical fields EN∗C < E < ENC, in a direction parallel to the
helix axis. In this case, when E < EN∗C we have a conventional CLC structure with a helix
axis rotated by 90◦ with respect to the conical configuration, while for E > ENC, we have a
complete unwinding of the structure that becomes a uniaxial nematic [7–9]. ChOH were
predicted more than fifty years ago by De Gennes [10] and Meier [11] and were realized a
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few years ago by the team led by O. Lavrentovich [7] using novel dimeric liquid crystals
with two rigid rod-like units connected by a flexible chain with an odd number of links.
Then in ChOH, the molecular director n = (sin θ cos φ, sin θ sin φ, cos θ) rotates in space
on a conical surface, forming an angle 0 < θ < 30◦ with the helix axis (here chosen as the z
axis); therefore, the azimuthal angle is periodically modulated, φ(z) =

( 2π
P
)
z = qz, where

p is the helix pitch.
Different from CLC, the bend deformation present in ChOH allows a strong coupling

between the optical field of a light beam traveling through this structure, and the molecular
director n gives rise to an optical torque, such as the one that originates GON in nematic
liquid crystals. This effect has been experimentally demonstrated by the observation of
light-induced tuning of the Bragg resonance vs. the impinging intensity using a fixed
value of the static electric field [12]. Since the optical torque acts in the opposite direction
with respect to the static field torque, its action corresponds to an increase in the conical
angle that is to an increase of the helix pitch. The result is a weakening of the effect of the
static field necessary to stabilize the conical structure; in other words, the light reduces the
effective field Ee f f that determines the conical angle θ and the pitch p of the ChOH structure.

In a recent paper [13], the nonlinear effects due to this optical reorientation on the
light propagation of a light beam have been highlighted. In fact, if the light wavelength is
close to the Bragg reflection band, the light-induced shift of the resonance itself changes
the traveling conditions of the light beam increasing or reducing reflectivity dependent on
intensity and polarization. This leads to a strongly nonlinear behavior in light transmission
with the appearance of stop bands for a range of values of the light intensity that is
dependent on the value of the applied static field. In that paper, the strong approximation
of keeping the intensity constant has been remarked as the main limit of the obtained
results and the need for a more accurate calculation has been underlined.

Here, we consider the same problem discussed in ref. [13] by performing a more
accurate calculation that allows accounting for the nonlinear feedback of the structure
parameters on the light propagation. The method has been used previously for different
studies related to light propagation in CLC and is based on Ambartsumian’s layer addition
modified method [14]. This method makes it possible not only to calculate the components
of the reflected and transmitted fields but also the field inside the system and, therefore,
to study the features of the localization of light in the system. In this way, the sample
is considered as a stratified material and the optical field is recalculated after traveling
through each layer, allowing a more careful determination of the effects of the light field on
the structure and, as a consequence, of the light transmitted by the sample.

We show first that under the constant intensity approximation, this method confirms
the red shift of the transmission gap recently calculated [13]. Then, by taking into account
the full modulation of the optical field occurring at wavelengths close to the Bragg reso-
nance, a weak red shift is already observable at very low intensities; however, very soon
we have the onset of instabilities in the optical transmission. We give here, the first account
of this effect that is dependent on the light intensity and show that it corresponds to the
onset of non-uniform distribution of the conical angle and pitch of the structure.

2. Theoretical Approach and Calculation Method

The effect of the optical field on the liquid crystal structure is considered by using the
Meier’s theory [12]. The free energy density in Gauss units is written as:

fK + fE + fOPT =
1
2

K2

[
q0 + sin2θ

(
∂φ

∂z

)]2
+

1
2

K3sin2θcos2θ

(
∂φ

∂z

)2
− ∆ε

8π
(n·ES)

2 − ∆εOPT
16π

(n·EOPT)
2 (1)

This equation is obtained assuming:

θ = const. then
∂θ

∂z
= 0 ; and

∂

∂x
=

∂

∂y
= 0
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The “static” field ES is oriented along the z axis chosen in the direction of the helix axis:

ES = ES k̂

We also assume negligible the effect on the azimuthal angle φ based on the previous
work on planar cholesterics [5,6].

Equation (1) becomes:

f =
1
2

K2

[
q0 + sin2θ

(
∂φ

∂z

)]2
+

1
2

K3sin2θcos2θ

(
∂φ

∂z

)2
− ∆ε

8π
E2

Scos2θ − ∆εOPT
16π

sin2θ A2
OPT (2)

where A2
OPT is the effective square of the optical field acting on the liquid crystal director

(see below). Here, ∆ε is the low frequencies dielectric anisotropy and ∆εOPT is the dielectric
anisotropy at optical frequencies.

By neglecting the term −(∆εOPT/16π)A2
OPT not dependent on θ, the free energy

density is rewritten as:

f =
1
2

K2

[
q0 + sin2θ

(
∂φ

∂z

)]2
+

1
2

K3sin2θcos2θ

(
∂φ

∂z

)2
−
(

∆ε

8π
E2

S −
∆εOPT

16π
A2

OPT

)
cos2θ (3)

Minimization of Equation (3) is performed to find the value of the equilibrium conical
angle θ in the same way as is done in absence of the optical field. By comparing the two
cases, it is straightforward to see that now the equilibrium is determined by an effective
field Ee f f given by:

Ee f f =

√
E2

S −
∆εOPT

2∆ε
A2

OPT (4)

Using the light intensity I we can write the effective field as:

Ee f f =

√
E2

S −
∆εOPT

∆ε

4π

navc
I (5)

where nav is the average refractive index, c is the speed of light in vacuum.
Therefore, according to the previously reported results on ChOH [7–9], we are able

to evaluate θ(I) and the pitch p(I) from the known dependences of θ and p on the
applied field:

sin2θ =
κ

1− κ

(
ENC
Ee f f

− 1

)
and p = κ

ENC p0

Ee f f
(6)

where κ = K3/K2 and p0 is the pitch of the correspondent planar cholesteric.
Under these conditions light propagation is investigated in the following way: we

consider light propagation through the ChOH layer as having the dielectric permittivity
and magnetic permeability tensors in the forms:

ε̂(z) =

(
εm +

∆εe f f
2 cos(2qz)

∆εe f f
2 sin(2qz)

∆εe f f
2 sin(2qz) εm −

∆εe f f
2 cos(2qz)

)
, µ̂(z) = Î (7)

where ∆εe f f = εe f f − ε⊥, εe f f =
ε⊥ε‖

ε‖−(ε‖−ε⊥)sin2θ
, ∆εopt = ε‖ − ε⊥, where ε‖ and ε⊥ are the

dielectric permittivity parallel and perpendicular to the director in the nematic phase. As
usual, q = 2π/p. Then, we divide the ChOH layer of thickness d into a large number of thin
sublayers of thicknesses d1, d2, d3, . . . , dL. If the maximal thickness is small enough, we
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can assume that the optical characteristic parameters are constant in each sublayer. Then the
problem is reduced to the solution of the following system of matrix difference equations:

R̂m = r̂m + ˜̂tmR̂m−1

(
Î − ˜̂rmR̂m−1

)−1
t̂m,

T̂m = T̂m−1

(
Î − ˜̂rmR̂m−1

)−1
t̂m,

(8)

with initial conditions R̂0 = 0̂ and T̂0 = Î [14]. Here, R̂m, T̂m, R̂m−1 and T̂m−1 are the
reflectance and transmittance matrices of the system with m and (m − 1) sublayers, respec-
tively; r̂m, t̂m are the reflectance and transmittance matrices of the m-th sublayer; 0̂ is the
zero matrix; Î is the unit matrix, and the respective matrices for the reverse light propagation
are denoted by tilde. The field in the medium will be calculated by the method presented

in [14]. We will calculate the reflection coefficient R = |Er |2

|Ei |2
, transmission coefficient

T = |Et |2

|Ei |2
, and light intensity of the total wave excited in the ChOH layer I(z) = |Ein(z)|2 Ii

for the diffracting eigen polarization (EP). EP is the polarization of the incident light, which
does not change upon transmission through the system. This polarization coincides with
the polarization of one of the eigenmode, practically with the circular polarization with
the same handedness of the ChOH helix. Here, Ei, Er and Et are the fields of the incident,
reflected, and transmitted waves, respectively and Ii is the intensity of incident light. In
the linear limit, we will take Ii = I0 = 1, and in general Ii = NI0. As is well known, (see,
in particular [15] and references therein) the function I(z) in a CLC layer has complex
behavior and it can be either much higher or much lower than the intensity of the incident
light. Then, we investigate how the intensity I(z) affects the structure of the ChOH layer
and how can this effect be taken into account in the light propagation. To this aim, we
organize our calculations as follows. In the first step (j = 1) we take:

Ee f f =

√
E2

S −
∆εOPT

∆ε
N = const, p = const and s = sin2θ = const (9)

With these parameters we calculate the reflection and transmission coefficients as
well as the light localization in the ChOH layer, that is the I(z, λ) = |Ein(z, λ)|2 Ii. In

the second step (j = 2) we take Ee f f (z, λ) =
√

E2
S −

∆εOPT
∆ε |Ein(z, λ)|2 N and take into

account its influence on helix pitch and angle θ. Therefore, we will have p(z, λ, j) =

κ
ENC p0

Ee f f (z,λ,j)
and s(z, λ, j) = sin2θ = κ

1−κ

(
ENC

Ee f f (z,λ,j)
− 1
)

. Now, we calculate the reflection

and transmission coefficients as well as light localization in the ChOH layer, that is the
I(z, λ, j) = |Ein(z, λ, j)|2N for these new parameters, and so on with j = 3, 4, 5, . . .

The parameters chosen for the calculation are the same as ref. [13]: ε‖ = 2.79, ε⊥ = 2.19,
∆ε = 4.79, κ = 0.1, the unperturbed helix pitch is p0 = 1400 nm, the layer thickness is
d = 20 µm with critical fields ENC = 4.88 V/µm and EN∗C = 1.53 V/µm and we take
nav =

√
(ε‖ + ε⊥)/2, where nav is the refractive index of the ChOH layer. The static

field applied along helix direction is Es = 2.03 V/µm. In our calculations, all the above
mentioned sublayers are the same: d1 = d2 = d3 = . . . = dL = 4 nm.

In conclusion of this section, we remark that all programs were compiled in Visual
Basic (based on analytical expressions for the reflection and transmission matrices for an
anisotropic layer [16] and the layer addition method [14]) and debugged by the authors,
and the graphs were built using the Excel and MATLAB programs.

3. Results and Discussion

Firstly, we check our approach by considering negligible the change in the intensity
through the sample and using Equation (9) with fixed values of intensities in all the
sublayers. The obtained transmission spectra are shown in Figure 1, where the transmission
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T vs. the light wavelength λ is reported for increasing values of the intensities. These data
coincide with what was reported in [13].
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Figure 3 shows the transmission spectra for four increasing values of the light inten-
sity correspondent to increasing values of the parameter N (N = 400 i.e., 𝐼 = 1.52 ∙10ହ 𝑊/𝑐𝑚ଶ ; N = 750 i.e., 𝐼 = 2.85 ∙ 10ହ 𝑊/𝑐𝑚ଶ ; N = 1000 i.e., 𝐼 = 3.8 ∙ 10ହ 𝑊/𝑐𝑚ଶ ; N = 
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Figure 1. Transmission spectra of a ChOH sample for the considered diffracting eigenmode for
increasing values of the light beam intensity. The static field is E = 2.03 V/µm. Material parameters
are the ones reported in the text. The chosen intensities are the same as in ref. [13]: I0 = 0.0 W/cm2,
I1 = 4.33·106 W/cm2, I2 = 7.66·106 W/cm2.

By dropping this strong approximation, we allow a recalculation of the impinging
light field according to the approach described in the former section. Starting with a very
low value of the incident intensity (N = 1 that is I = 3.8·102 W/cm2). In this case, the result
is very stable and increasing the iteration parameter j does not significantly change the
final transmission of the light, as shown in Figure 2, for wavelengths around the Bragg
resonance. Here, it is reported the transmission spectrum (a) at j = 1, and (b) the spectrum
of the change in transmission ∆T = T(j = 2) − T(j = 1) for N = 1. In this case, the influence
of the total field intensity excited in the medium is very small, being below 1% at the
maximum variation occurring at the edge of the Bragg stop band, as observed in Figure 2b.

Photonics 2022, 9, 139 5 of 9 
 

 

3. Results and Discussion 
Firstly, we check our approach by considering negligible the change in the intensity 

through the sample and using Equation (9) with fixed values of intensities in all the sub-
layers. The obtained transmission spectra are shown in Figure 1, where the transmission 
T vs. the light wavelength λ is reported for increasing values of the intensities. These data 
coincide with what was reported in [13].  

 
Figure 1. Transmission spectra of a ChOH sample for the considered diffracting eigenmode for in-
creasing values of the light beam intensity. The static field is 𝐸 = 2.03 𝑉/𝜇 𝑚. Material parameters 
are the ones reported in the text. The chosen intensities are the same as in ref [13]: 𝐼଴ = 0.0 𝑊/𝑐𝑚ଶ, 𝐼ଵ = 4.33 ∙ 10଺ 𝑊/𝑐𝑚ଶ, 𝐼ଶ = 7.66 ∙ 10଺ 𝑊/𝑐𝑚ଶ. 

By dropping this strong approximation, we allow a recalculation of the impinging 
light field according to the approach described in the former section. Starting with a very 
low value of the incident intensity (N = 1 that is 𝐼 = 3.8 ∙ 10ଶ 𝑊/𝑐𝑚ଶ). In this case, the 
result is very stable and increasing the iteration parameter j does not significantly change 
the final transmission of the light, as shown in Figure 2, for wavelengths around the Bragg 
resonance. Here, it is reported the transmission spectrum (a) at j = 1, and (b) the spectrum 
of the change in transmission ΔT = T(j = 2) − T(j = 1) for N = 1. In this case, the influence of 
the total field intensity excited in the medium is very small, being below 1% at the maxi-
mum variation occurring at the edge of the Bragg stop band, as observed in Figure 2b. 

  
Figure 2. The transmission spectrum (a) at j = 1 and (b) spectrum of ΔT = T(j = 2) − T(j = 1) in the case 
N = 1. 

Figure 3 shows the transmission spectra for four increasing values of the light inten-
sity correspondent to increasing values of the parameter N (N = 400 i.e., 𝐼 = 1.52 ∙10ହ 𝑊/𝑐𝑚ଶ ; N = 750 i.e., 𝐼 = 2.85 ∙ 10ହ 𝑊/𝑐𝑚ଶ ; N = 1000 i.e., 𝐼 = 3.8 ∙ 10ହ 𝑊/𝑐𝑚ଶ ; N = 
5000 i.e., 𝐼 = 1.9 ∙ 10଺ 𝑊/𝑐𝑚ଶ).  

Figure 2. The transmission spectrum (a) at j = 1 and (b) spectrum of ∆T = T(j = 2) − T(j = 1) in the
case N = 1.

Figure 3 shows the transmission spectra for four increasing values of the light intensity
correspondent to increasing values of the parameter N (N = 400 i.e., I = 1.52·105 W/cm2;
N = 750 i.e., I = 2.85·105 W/cm2; N = 1000 i.e., I = 3.8·105 W/cm2; N = 5000 i.e.,
I = 1.9·106 W/cm2).
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N = 400, we observe a slight adjustment of the Bragg resonance location and width, which 
will become stable after some additional steps. In the other cases, the situation is very 

Figure 3. The transmission spectra for different intensities of incident light (for different N)
and at different j. (a) I = 1.52·105 W/cm2; (b) I = 2.85·105 W/cm2; (c) I = 3.8·105 W/cm2;
(d) I = 1.9·106 W/cm2.

As expected, at these intensities we observe (about one order of magnitude lower than
the ones considered in the plot of Figure 1) a very weak red shift in the Bragg resonance
(about 5 nm from the lower and the higher of the considered intensities) at the first step
of calculation (j = 1). However, differences arise when increasing the j value. In the case
of N = 400, we observe a slight adjustment of the Bragg resonance location and width,
which will become stable after some additional steps. In the other cases, the situation is
very different: by increasing the j parameter, the clear Bragg resonance transforms into an
irregular spectrum, and it happens more quickly as the intensity increases.
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It was not possible to perform the calculation of the full spectrum for higher and
higher values of the j parameters because of the extremely high computer time requested.
However, in order to give a first account of this effect, we have performed the calculation
at a single wavelength close to the edge of the Bragg stop band. Thus, we are able to
demonstrate the actual occurrence of the instability. This is shown in Figure 4, where the
transmission T vs. j is reported for different values of the intensity of the incident light and
the fixed value of λ = 490 nm.
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Figure 4. The dependence of the transmission T vs. j for different values of intensity of the incident
light. Light wavelength λ = 490 nm. (a,b) correspond to intensities leading to a steady state value of
transmission; (c) transmission at intensity just above the critical value to get undamped oscillations.

Looking at Figure 4a, we observe that with a very low intensity (N = 10 i.e.,
I = 3.8·103 W/cm2) no change occurs, while increasing the intensity by one order of mag-
nitude after a few steps, a steady-state value is reached, shown by the flat lines. For N
values just above 400 (I = 1.52·105 W/cm2), we observe a slower and slower approach
to the steady-state value achieved for j > 300 at N = 425 (I = 1.62·105 W/cm2) through
irregular oscillations whose amplitude decreases with increasing j. From Figure 4b,c, we
observe a transition from damped to undamped oscillations in the light transmission. With
the used parameters, this occurs at a critical value of Ncr, such that 430 < Ncr < 440.
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In order to correlate the observed instabilities in the optical transmission to the ori-
entational conformation of the ChOH layer, we have calculated the function given in
Equation (6). Figure 5 shows the density plots of the s = sin2θ and helix pitch p versus
z/p0 and j. For two values of the intensities, one below (N = 400 i.e., I = 1.52·105 W/cm2)
and one above (N = 1000 i.e., I = 3.8·105 W/cm2) the critical value leading to un-dumped
oscillations. At N = 400, after a sharp change in the angle θ and in the pitch of the helix at
small values of j, a regular and small modulation of these quantities is established over
the ChOH layer, and it does not change by increasing j. At N = 1000, irregular changes in
the angle θ and in the pitch of the helix are observed, both through the layer thickness z
and vs. j. Therefore, by increasing the intensity, the occurrence of a strong instability in the
heliconical structure is established.
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Figure 5. The density plots of s = sin2θ (a) and helix pitch p (b) versus z/p0 and j at N = 400. The
same quantities plotted at N = 1000 (c,d).

4. Conclusions

Using Ambartsumian’s layer addition modified method, we have studied the nonlin-
ear light propagation of a light beam along the helix direction of a heliconical cholesteric
liquid crystal, when the nonlinearity arises from light-induced optical torque on the molec-
ular director. Thus, it is possible to take into account the continuous modification of the
wave field during propagation, which is large when the light wavelength approaches the
Bragg resonance. We first show that the recently calculated red shift of the transmission gap
is confirmed under the constant intensity approximation [13]. However, by considering the
full modulation of the optical field occurring at wavelengths close to the Bragg resonance,
after a weak red shift already present at very low intensities, we have shown the onset of
instabilities in the optical transmission. We have pointed out that a critical intensity exists
dependent on the material parameters for the onset of an oscillating behavior in the optical
transmission for wavelength close to the edge of the Bragg resonance. Moreover, we have
demonstrated that such light intensity instabilities correspond to non-uniform distribution
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of the conical angle and pitch of the structure. Concerning the previous analytical discus-
sion of this problem [13], our results confirm that those findings can be correctly applied to
a pump/probe configuration where the exciting beam has a wavelength far from the Bragg
resonance that keeps its intensity nearly constant through the sample, and the probe beam
with low intensity is at the edge of the Bragg resonance. On the contrary, a more complex
phenomenology applies to a single beam traveling in the medium with an intensity high
enough to induce significant optical reorientation and wavelength near the initial location
of the Bragg wavelength of the helical structure.
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