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Abstract: Antimicrobial resistance (AMR) is a global medical threat that seriously endangers human
health. Rapid bacterial identification and antimicrobial susceptibility testing (AST) are key interven-
tions to combat the spread and emergence of AMR. Although current clinical bacterial identification
and AST provide comprehensive information, they are labor-intensive, complex, inaccurate, and slow
(requiring several days, depending on the growth of pathogenic bacteria). Recently, Raman-based
identification and AST technologies have played an increasingly important role in fighting AMR. This
review summarizes major Raman-based techniques for bacterial identification and AST, including
spontaneous Raman scattering, surface-enhanced Raman scattering (SERS), and coherent Raman
scattering (CRS) imaging. Then, we discuss recent developments in rapid identification and AST
methods based on Raman technology. Finally, we highlight the major challenges and potential future
efforts to improve clinical outcomes through rapid bacterial identification and AST.

Keywords: antimicrobial resistance; spontaneous Raman; SERS; coherent Raman scattering; bacterial
identification; AST

1. Introduction

The global rise in antimicrobial resistance (AMR) represents a major public concern
that seriously endangers human health [1–4]. At least 25,000 infected people die each year
in the European Union alone due to treatment failures caused by AMR [5]. The biggest
problem with current bacterial identification and antimicrobial susceptibility testing (AST)
methods is their speed. In most cases, it takes a night of incubation to carry out bacterial
identification and an additional 24 to 48 h for AST [4]. Rapid bacterial identification and
AST are essential to combat the spread of AMR.

In recent years, matrix-assisted laser desorption ionization–time-of-flight–mass spec-
trometry (MALDI-TOF-MS) has become the gold standard for the identification of microor-
ganisms in clinical practice [5]. Once the pathogen is identified, an additional 18 to 24 h are
needed to perform AST [6]. Traditional AST methods rely on time-consuming culturing
methods, including disk diffusion and broth microdilution testing [4]. These methods,
based on the differences in bacterial growth at different antimicrobial concentrations, have
been standardized and recommended by the Clinical and Laboratory Standards Institute
(CLSI) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) as
a gold-standard [5]. However, it takes several days to obtain a pure culture of the pathogen,
and at least an additional 16–20 h to obtain the minimal inhibitory concentration (MIC)
value, resulting in a turnaround time of 3–5 days [7]. Automated broth microdilution detec-
tion instruments, such as VITEK-2, MicroScan WalkAway, and BD phoenix, provide faster
AST results and shorten the time to 4.5–18 h [7]. However, these instruments still require
bacterial growth, which is still inherently slow. A molecule-based approach is another
emerging technique in bacterial identification due to its high specificity and sensitivity [8].
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However, this method requires specific antibodies and does not achieve full hybridization,
making it difficult to apply to unknown bacteria [9].

Raman technologies, due to their label-free, non-invasive, and single-bacterial sensitiv-
ity advantages [10–13], are playing an increasingly important role in bacterial identification
and AST [14–22]. Many reviews have focused on different techniques for rapid microbial
identification and AST development [23–27]. In this review, we summarize and discuss the
latest advances in Raman-based technology in rapid bacterial identification and AST. In
particular, we highlight innovative research on three promising technologies, spontaneous
Raman, SERS, and CRS, which include stimulated Raman scattering (SRS) and coherent
anti-Stokes Raman scattering (CARS) (Figure 1). Moreover, we will discuss their potential
for transformation from the laboratory to the clinic.

Figure 1. Physical principles of Raman-based techniques. (a) Energy level diagrams representing
the generation of emission signals. For spontaneous Raman scattering, the molecule is excited to a
virtual energy state. It then returns to a lower energy level, accompanied by light scattering, which
usually relies on Stokes Raman scattering. CRS, including SRS and CARS, is a nonlinear optical
process based on the interaction between pump and Stokes lasers. (b) Mechanisms for SERS. SERS
relies on electromagnetic and chemical enhancements, increasing Raman signal intensities by up
to 108–1014 orders of magnitude. Ωp, pump beam; ωs, Stokes beam; ωas, anti-Stokes beam; Ω,
Raman-active molecular vibration (adapted and reproduced from reference [11,13]).

2. Raman-Based Techniques for Bacterial Identification
2.1. Artificial Intelligence-Based Raman Spectroscopy for Bacterial Identification

Raman spectroscopy as a vibrational spectroscopy technique has become one of the
main tools of biomedicine [10,28–31]. It differs from other analytical tools since it is simple
to use, label-free, and non-invasive. In addition, it has high analytical throughput and
provides extensive information about chemical construction, biological structure, and
interactions within microbial biomolecules [32].

Many studies utilize Raman spectroscopy for bacteria identification at the species level.
For example, Kloß et al. studied urine samples at the single-cell level directly by Raman
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microscopy for the first time [33]. In this study, a database of 11 important UTI bacterial
species grown in sterile-filtered urine was established and classified at a species level to
generate a statistical model. Subsequently, this model was demonstrated to identify infected
urine samples from ten patients without the need for the traditional cultivation process.
Similarly, Rebrošová et al. successfully identified 16 clinically important staphylococcal
strains directly from bacterial colonies [34]. They obtained characteristic Raman spectra
of 277 Staphylococcus strains with the ideal identification result and demonstrated that
Raman spectroscopy could be a reliable tool for clinical bacterial diagnosis.

Because spontaneous Raman signals from bacterial species are inherently weak, achiev-
ing clinically rapid and accurate identification remains challenging. Currently, deep learn-
ing methods have shown extraordinary potential in processing large amounts of Raman
spectroscopic data [14,35]. Ho et al. used Raman spectroscopy and deep learning to classify
30 strains of bacteria and fungi and achieve comparable identification accuracy (Figure 2).
This study used a measurement time of 1 s. The corresponding signal-to-noise ratio (SNRs)
was one order of magnitude lower than the typical reported bacterial spectrum but still
achieved considerable or improved identification accuracy. The advantage of this method
is that no culture is required, and the total time for data analysis is greatly reduced. The
model used in this study achieved 89.1% accuracy in identifying methicillin-resistant and
sensitive S. aureus (MRSA and MSSA) based on detecting subtle spectral differences in
antibiotic therapy. Therefore, the limitation of the low signal-to-noise ratio can be overcome
through machine learning.

Figure 2. Rapid identification of bacteria by Raman spectroscopy and deep learning. (a) Bacteria
deposited onto 200 nm gold-coated silica substrates for Raman spectroscopy. Scale bar: 1 µm.
(b) Conceptual measurement schematic: by focusing the excitation laser source to diffraction-limited
spot size, Raman signal from single cells was acquired. (c) A one-dimensional residual network with
25 convolution layers was used to classify bacteria from low-signal Raman spectra. (d) The mean
values of 2000 Raman spectra from 30 isolates are shown in bold and superimposed on a representative
single spectrum of noise for each isolate. Reprinted from reference [14] with permission.

The huge amount of spectroscopic data used in deep learning models usually takes a
long time process and requires powerful hardware facilities [36]. Moreover, the classifica-
tion results from the deep learning model are difficult to link to biological insight [14]. To
address these problems, Yan et al. combined Raman spectroscopy with machine learning
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and proposed a forward-looking strategy for the rapid diagnosis of pathogenic bacteria
(Figure 3). The identification accuracy ranged from 87.1% to 95.8%, enabling the efficient
prediction of strains at the serotype level [36]. Compared to the deep learning model,
using a traditional machine learning method makes chemical bond assignment and data
interpretation easier. In addition, traditional machine learning models do not require large
amounts of computational power; therefore, it is feasible to integrate them into portable
Raman spectrometers, making it easier to expand to the clinic [36].

Figure 3. Rapid identification of bacteria by Raman spectroscopy and machine learning. Prediction
results of independent test sets through 4-level KPCA-DT classification model. KPCA-DT Kernel
principal component analysis decision tree. Reprinted from reference [36] with permission.

However, a significant disadvantage of Raman microscopy is the weak signal; the
quantum efficiency of the Raman effect is only 10−8–10−6 [11]. Meanwhile, the high power
of the laser and long acquisition time in Raman measurements could cause the sample to de-
grade. Through the interaction of nanoscale roughness materials with biomolecules within
a sample, SERS provides orders of magnitude signal enhancement with 108–1014 orders of
magnitude [13,37].

2.2. SERS for Bacterial Identification

SERS improves the sensitivity of Raman techniques, enabling the rapid analysis of
different microbial samples. In general, gold and silver nanoparticles are considered ideal
SERS substrates [38]. Since classical Raman microscopy is a mature and powerful tool for
bacterial identification, SERS has also been used for microbial identification [16,39–41].

Bashir et al. [42] achieved tigecycline-resistant E. coli identification by SERS spec-
troscopy. They used statistical analysis, including principal component analysis (PCA),
hierarchical cluster analysis (HCA), and partial least squares discriminant analysis (PLS-
DA), to examine the differential diagnostic potential of SERS between tigecycline-resistant
and -sensitive E. coli strains (Figure 4). This study showed that using an ideal analytical
model combined with SERS spectra, it is possible to distinguish bacterial species. How-
ever, when comparing the SERS spectra of different bacteria, there are still some problems.
Details can be found below, including standard operating procedures (particularly SERS
substrates), reproducibility of SERS spectra, and chemical stability of SERS substrates or
media. These factors directly hinder the correct identification of different bacteria. In addi-
tion, it is necessary to establish a database consisting of SERS measurement data obtained
under different conditions to distinguish clinical bacterial species [13].
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Figure 4. SERS for the identification of tigecycline-resistant E. coli strains. Schematic illustration of
SERS combined with discriminant analysis technique showing: (a) synthesis of AgNPs; (b) bacteria
culture and sample preparation; (c) date acquisition with a 785 nm laser as an excitation source.
Reprinted from reference [42] with permission.

Toward clinical translation, Dina et al. developed a SERS-based biosensor for pathogen
detection [16]. This biosensor, which can detect both Gram-negative and Gram-positive
microorganisms, requires minimal sample preparation, has low cost, high accuracy, and
a short analysis time (less than 5 min). Liu et al. also reported a rapid, specific detection
of 22 common pathogenic strains with SERS [43]. They used a novel high-quality silver
nanorod SERS substrate prepared by a simple interface self-assembly method to obtain
the chemical fingerprint information of pathogens. Using a mathematical analysis method,
they revealed the unique spectral characteristics of the strain and identified 20 bacterial
species with high sensitivity and specificity. Ease of preparation and cost-effectiveness are
worth considering for the development of SERS. The above studies provide support for
SERS to move to clinical applications.

In addition, when combined with a microfluidic system, the poor repeatability of
SERS could be compensated, which enables the identification of microbial contaminants
in food [44]. Moreover, the application of SERS in bacterial identification should consider
requirements and challenges, such as increasing the understanding of the obtained spectral
data, improving the reproducibility of SERS spectra, optimizing the analysis, improving
throughput, and further reducing the cost of the substrate [13,37]. With the improvement
of the above problems, SERS can quickly provide more information about the analyte and
measure the delay in seconds, thus enabling real-time monitoring of the process to meet the
clinical needs of rapid microbial identification. However, given the heterogeneity of bacteria
and the complexity of clinical samples, microfluidic techniques still have limitations, so a
more specific and precise approach is required for bacterial identification.

2.3. Laser Tweezers Raman Spectroscopy (LTRS)

The combination of Raman spectroscopy and optical tweezers allows for contactless
manipulation and separation of the biological sample of interest, enabling nondestruc-
tive identification and the precise extraction of individual specific cells. High-resolution
Raman spectroscopy images allow us to obtain abundant information about cellular-
level compounds in biological samples, including RNA/DNA, lipids, proteins, and other
metabolites [38,45]. Furthermore, LTRS has many advantages over traditional Raman
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techniques, e.g., simple sample preparation, facilitating the preservation of biological
samples in their original state in an almost physiological environment, detection requires
a small amount of sample, and high sensitivity and specificity for spectral analysis of
microorganisms [46].

Xie et al. achieved the reagent-free identification of individual bacterial cells in aqueous
solutions by LTRS [47]. They used six bacteria to demonstrate the ability of confocal LTRS
to identify and distinguish various bacteria under different growth conditions. This study
shows that LTRS has the potential to detect and identify microbial cells in different aqueous
media rapidly. In another study, to improve the specificity of laser tweezer technology,
Huang et al. demonstrated an approach for bacterial identification by combining optical
capture, laser tweezers, and stable isotope Raman microscopy [48]. They performed Raman
spectroscopy acquisition on artificially mixed 13C-labeled and unlabeled bacteria to explore
the isolation of different bacteria. The limitation of this method is that cell dysfunction,
cell death, or the physical dislocation of individual cells during the identification process
can occur during bacterial culture, and the cell identification rate is low. Still, only a small
fraction of cells are successfully identified, mainly due to cell dysfunction, cell death, or the
physical misplacing of individual cells during recognition.

In addition, the actual Raman spectroscopic dataset shows considerable variability
in the same cell, even in the same species. This method was further improved by Lu et al.
to achieve more accurate bacterial identification through deep learning [49]. They used
artificial intelligence to analyze the Raman spectra of LTRS to identify microorganisms
at the single-cell level [49]. Using a convolutional neural network (ConvNet) framework,
they extracted Raman spectral signatures from individual microbial cells. They constructed
the best ConvNet model based on the Raman data, achieving an average classification
accuracy of 95.64 ± 5.46% (Figure 5). This work proves that the LTRS has the poten-
tial to open up a new frontier in research into unculturable microorganisms, especially
microbial identification.

Figure 5. Combination of an Artificial Intelligence Approach and LTRS for Microbial Identification.
(a) Schematic Scheme of the single-cell LTRS setup. (b) The microbial cells were imaged by the
confocal microscope in the LTRS. (c) Results of prediction of 14 microbial species achieved by the
ConvNet taxonomic model. Reprinted from reference [49] with permission.

In addition, combined with artificial intelligence and a large number of datasets, the
technology provides more reliable results for identifying bacterial species than traditional
techniques. In addition, the miniaturization and automation of Raman instruments, Raman
spectroscopic enrichment of a large number of microorganisms, and fast cloud data services
will facilitate the application of this technology in microbial identification.

However, using LTRS to study the usually inconspicuous characteristic information in
individual bacteria remains an enormous challenge [49]. At present, it cannot be widely
used in clinical medical diagnosis; the main reason is that the signal intensity measured
according to the Raman scattering effect is weak, and the spontaneous Raman signal at
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the single-bacterial level is very weak and difficult to detect. Although SERS significantly
enhances Raman signaling, the need to introduce colloidal metal particles into bacterial
samples to achieve Raman enhancement results is contrary to the unlabeled and non-
invasive benefits. Therefore, to cope with the complexity of clinical samples and the need
for rapid bacterial identification, a label-free, high-throughput, and highly chemically
specific technique is necessary.

2.4. CARS

CARS microscopy is a label-free technique that significantly improves signal levels
while providing ideal high-throughput detection and chemical specificity compared to
other Raman techniques [50]. In addition, hyperspectral CARS can acquire chemical
information about an image of a spectrum at every pixel [51]. This technology has enabled
the nondestructive identification of bacterial endospores in the mail [52].

Bacterial detection is essential for the clinical diagnosis of infectious diseases and food
safety [53]. Conventional methods, including brightfield light microscopy, Gram staining,
and motility testing, require long bacterial culture time and unique markers, lack accuracy
due to limited information, or are insensitive in complex environments [54]. Hong et al. [51]
demonstrated the application of a fiber laser-based hyperspectral CARS to detect bacteria
at the single-cell level, with a total recording time of several minutes. This study showed
the fiber laser-based CARS could detect bacteria in complex environments, including milk
and urine, and culture and labeling of bacteria were not required (Figure 6). However, due
to the existence of the non-resonant background signal, the CARS spectrum has a distortion
relative to the spontaneous Raman spectrum, and the reflected spectral information is not
relatively ideal.

Figure 6. In situ detection of single bacteria in complex environments by hyperspectral CARS
imaging. (a) Hyperspectral CARS image of concentrated E. coli culture liquid dropped on glass.
(b) Corresponding hyperspectral CARS profiles of E. coli and glass background. (c) CARS image after
phase retrieval. (d) Corresponding phase-retrieved CARS spectra of E. coli and glass background.
Scale bar: 5 µm. Reprinted from reference [51] with permission.

In addition, the simple structure and low cost of fiber lasers for CARS may make the
CARS microscope a mobile and inexpensive clinical diagnostic platform. However, the



Photonics 2022, 9, 133 8 of 18

problem of suppressing or separating the non-resonant background of distorted Raman
spectroscopy is a top priority that CARS urgently needs to optimize [55]. Although the
focus of this research is on bacterial detection, it is also feasible to combine deep learning to
achieve bacterial identification based on spectral changes in a variety of bacteria. Mean-
while, the metabolic feedback of bacteria under antibiotics can also be further studied by
monitoring spectral changes, making CARS microscopy a promising method for identifying
bacteria in situ and achieving rapid AST for bacteria.

3. Raman-Based Techniques for Bacterial AST

Compared with the identification information of bacteria, the AST results of bacteria
are more critical to clinical infection. Raman-based techniques are also promising tools
for AST [56–58]. Compared to other techniques, Raman is label-free and non-invasive,
providing an analysis method that does not require sample extraction to study biological
samples [59–61]. Raman spectroscopy and SRS imaging are two major types of techniques
currently used to study bacterial AST. Based on the research of Raman spectroscopy in
AST, it mainly includes directly observing the changes (such as peak intensity and area)
produced by the effect of drugs on Raman peaks and indicating the metabolism of bacteria
under antibiotics using isotope labeling [27]. SRS imaging is based on a combination of
deuterium labeling techniques to quantify the metabolic level of bacteria to achieve rapid
AST [22]. Compared to quantifying the growth of bacteria based on traditional methods,
measuring the metabolism of bacteria to antibiotic therapy can obtain AST results more
quickly [27].

3.1. Raman Spectroscopy for Bacterial AST

Raman spectroscopy can provide fingerprint information of different biomolecules
in bacteria, such as protein, DNA, lipids, carbohydrates, and metabolites [62]. More-
over, the signal intensity of Raman is proportional to the concentration of molecular
components [17,63–65]. The idea of Raman-based AST is to detect the changes which
sensitively reflect the phenotypic and physiological response of bacteria under the action
of antibiotics in these biomolecules [21,66–68]. Because Raman can detect single bacteria
without lengthy culture and enrichment, it is still applicable when the number of bacteria
in complex clinical samples is low [69–71].

Rousseau et al. achieved the rapid AST of MRSA by single-cell Raman spectroscopy [57].
This study found that the Raman spectral intensities of susceptible and drug-resistant
S. aureus strains differed in the presence of different concentrations of cefoxitin, so dif-
ferences in Raman spectra can be used to predict their resistance/sensitive phenotypes.
Indeed, they also found higher cell-to-cell response denaturation and the important ef-
fect of culture conditions on phenotypic resistance of a given strain based on Raman
spectra (Figure 7a). This study demonstrates single-cell Raman spectroscopy can rapidly
obtain Raman spectra in large cell populations and provide a fine vision of spectral vari-
ability that would help address challenging bacterial susceptibility/resistance diagnoses.
Moritz et al. [66] combined single-cell Raman with optical tweezers to study the pheno-
typic response of E. coli to penicillin and cefazolin. This study found several Raman peaks
at 729, 1245, and 1660 cm−1, showing significant time-dependent differences in bacteria
treated with antibiotics and untreated bacteria, indicating that this method can study the
interaction between bacteria and antibiotics to develop a Raman spectroscopy-based AST
method. Gmund et al. reported the utility of Raman spectroscopy in detecting the antibiotic
resistance of E. coli [72]. They found that the Raman spectrum peak intensity correlated
with the expression of well-known antibiotic resistance genes and demonstrated Raman
spectroscopy could identify the type and mode of action of antibiotic resistance in 11 strains
in a reproducible manner.

The AST methods mentioned above are based on detecting bacterial spectrum changes,
mainly in the fingerprint region, under the action of antibiotics. However, like genotype
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AST, these methods rely on detecting known resistance mechanisms and may not work for
different bacteria or antibiotics and unknown resistance.

3.2. Raman Spectroscopy and Isotope Labeling Technique for Bacterial AST

Raman spectroscopy combined with stable isotope labeling has enabled rapid AST
by assessing the level of microbial metabolism. When bacteria ingest D, 13C, and 15N
isotopic markers through metabolism, essential components in cells, such as proteins,
lipids, cytochromes, and carotenes, have a redshift in their Raman spectrum peaks [17].
Notably, the degree of redshift is proportional to the amount of isotope intake, which is
related to cell activity or function [64]. Therefore, combining single-cell Raman and stable
isotope labeling is an effective way to study bacterial activity and function [56,73].

Compared with 15N and 13C, deuterium (D) labeling shows a unique C-D peak in
the biological silent region of Raman spectra and thus is a sensitive method for studying
bacterial activity [73]. This labeling is universal and thus provides an alternative solution
for general AST. The use of D2O for Raman stable isotope labeling (Raman-D2O) has
attracted great interest as a rapid AST [74,75]. Its applications range from identifying
pathogens in medical samples to determining microbial activity in the environment.

Tao et al. [21] showed that the Raman-D2O could detect the effects of bacteria on
different drugs. This study used the response in 2040 to 2300 cm−1 band as a universal
biomarker to study bacterial metabolic activity. Kai Yang et al. further demonstrated Raman-
D2O as an activity-based rapid AST method for clinical urine samples [68]. By quickly
transferring (~15 min) bacteria in clinical urine, the total detection time from receiving
urine to binary sensitivity/resistance reading was reduced to only 2.5 h. Yi et al. [76]
integrated the Gram stain classification of linear discriminant analysis (LDA) models and
D2O labeling, and developed a fast Raman-assisted antibiotic susceptibility test (FRAST).
Using the FRAST, they demonstrated the Gram classification of bacteria and the detection of
bacterial metabolic activity. In addition, the clinical feasibility of FRAST was also explored
through the analysis of nine infectious urinary samples and three sepsis samples. It could
obtain the AST results of the urine samples within 3 h and sepsis samples within 21 h.
Collectively, these works demonstrate that Raman-D2O could be a general method for
rapid AST that accelerates microbial analysis in clinical practice and facilitates antibiotic
stewardship. However, the limitation of this study was that they only determined the
sensitivity of bacteria and not the accurate MIC values.

3.3. SERS-Based Sensor for Bacterial AST

SERS-based methods have been applied to the biomedical analysis, including bacterial
AST, biomarkers related to cancer and infectious diseases, nucleic acid, and quantitative
cell detection [77,78]. The combination of Raman and deep learning shows the promise
of AST. Although Raman spectroscopy can benefit from SERS enhancement, a way to
address the reproducibility of SERS data is needed [14]. Lots of progress has been made
in analyzing the SERS spectrum using complex machine learning models. For SERS-
based AST, spectral analysis must be detailed enough to capture the complexity and
diversity of bacteria observed in the clinic. Machine learning, especially deep learning,
is becoming an important force in healthcare reform, assisting doctors in making more
accurate judgments [79]. Therefore, the combination of SERS and deep learning shows the
promise of AST.

Fu et al. used Bacteria-aptamer@AgNPs-SERS to detect the Raman intensity of E. coli
and S. aureus in the presence of different concentrations of antibiotics [80]. They found
that the bacterial Raman signal reached a peak at 735 cm−1, based on which the MIC value
could be determined within 1 h. Similarly, Ragan et al. used a sensor platform consisting of
SERS sensors, controlled nano-gap chemistry, and machine learning algorithms to analyze
complex spectral data (Figure 7b) and revealed that bacterial metabolic status after antibiotic
exposure correlated with AST [81]. They showed that this platform could distinguish
between the reactions of E. coli and P. aeruginosa with over 99% accuracy in untreated cells
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within 10 min of exposure to antibiotics. In addition, this study extended the deep learning
to the study of P. aeruginosa treated with antibiotics of different efficacies. The generation
characteristics of the variational autoencoder were used to identify the vibration regions
in the AST dataset that collectively exhibited the greatest variation between antibiotic-
resistant, sensitive, and untreated SERS spectra. This work showed that deep learning
analyzes SERS data to provide a rapid approach to clinical AST.

Figure 7. Rapid AST by Raman spectroscopy and SERS. (a) Rapid AST of MRSA by Raman
spectroscopy with LDA. (b) Deep learning and SERS spectra of bacterial lysate for rapid AST.
MRSA, methicillin-resistant Staphylococcus aureus; LDA, linear discriminant analysis. Reprinted
from reference [57,81] with permission.

SERS is an important analytical tool capable of fingerprinting molecules in a fast, ultra-
sensitive manner. However, it is still difficult to meet the requirements of actual sample
analysis. Microfluidics technology is an ideal adjunctive technique that can effectively
enhance the performance of SERS in complex sample analysis, including reproducibility,
selectivity, and sensitivity [82].

3.4. SERS and Microfluidic-Based for Bacterial AST

Microfluidics control the movement of fluids and integrate sample preparation, re-
action, separation, and detection in small portable devices [83]. The device can integrate
various functions to achieve high-throughput and fast analysis of low-volume fluid sam-
ples in the microliter range, especially when combined with SERS and other spectroscopic
techniques. Devices that combine microfluidics with SERS analysis have gained a lot of
attention in the field of pathogen identification due to the advantages of improved sample
automation, integrated sample preparation, mixing and restriction, and increased portabil-
ity. The combination strategy has great potential to be transformed into a rapid diagnostic
application for bacterial AST.

Chang et al. developed a microfluidic system that integrates membrane filtration and
SERS active substrates (MF-SERS) for on-chip bacterial enrichment, metabolite collection,
and in situ SERS measurements for AST [84]. The MF-SERS system has a detection limit of
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103 CFU/mL, which is four orders of magnitude lower than the bacterial concentrations in
the centrifugation purification procedure, thereby greatly reducing the bacterial culture
time. Bacteria and secreted metabolites are sealed off during bacterial capture, metabolite
filtration, and SERS detection, minimizing possible contamination and human error. This
study showed that the MF-SERS system has a miniature size and a limited microenviron-
ment that can integrate multiple bacterial processes for bacterial enrichment, culture, and
AST assays.

However, microfluidics still have limitations for clinical samples. For example, clinical
samples often have lots of impurities that cause clogging, so a complex pretreatment process
is required. In addition, the single-use of microfluidic chips cannot give full play to the
advantages of the microfluidic analysis platform that can be used multiple times, resulting
in higher detection costs. Therefore, it is necessary to develop a high-throughput technique
that can be used directly in clinical samples.

3.5. SRS and Deuterium Labeling Technique

CRS microscopy, including CARS and SRS microscopy, is an emerging molecular
imaging technique with significant signal improvements over spontaneous Raman [85].
CRS microscopy has wide applications in biomedicine, including label-free imaging, drug
molecular tracking, tumor detection, lipid quantitative analysis, molecular metabolism, and
the mechanism of action of biological enzymes [85]. Compared with CARS, SRS does not
have a non-resonance background. With the capabilities of high-speed chemical imaging
and sub-micron resolution [86,87], SRS is also suitable for studying bacterial metabolism at
the single-bacteria level.

SRS was first introduced in rapid AST by quantitatively measuring deuterated glu-
cose metabolism in bacteria [20]. Glucose is the most common carbon source for most
bacteria [88]; therefore, glucose metabolism can provide general information about the
metabolic activities in bacteria. SRS can detect and quantify the formation of the C-D bond
in bacteria after incubation with deuterated glucose. Importantly, this metabolic imaging
method can determine the MIC of various bacteria, such as E. coli, K. pneumoniae, and
S. aureus, as well as antibiotics with different antibacterial mechanisms [20]. In addition,
this method was further demonstrated in a variety of bacteria–antibiotic combinations by
tracing the incorporation of heavy water (D2O), even in clinically relevant environments
(urine and blood). It was shown that SRS could detect the metabolic response of bacteria
toward antibiotic treatment in a short incubation time (10 min) (Figure 8). Based on this,
the single-cell metabolic inactivation concentration (SC-MIC), a parameter equivalent to
the MIC in traditional broth microdilution, was obtained in 2.5 h. In a total of 37 sets
of samples, including 8 major bacterial species and 14 different antibiotics, this method
achieved a 94.6% categorical agreement [22].

In subsequent work, the SRS-D2O method was further demonstrated in 103 E. coli
strains toward one antibiotic, cefotaxime. Since β-lactam antibiotics, to which cefotaxime be-
longs, cause the deformation of Gram-negative bacteria, a new AST evaluation index based
on metabolism and morphology was established to improve the accuracy (Figure 8) [89].
With the two quantifiable markers, the new method achieved a 93.2% categorical agreement
and a 93.2% essential agreement with the standard reference method.

Toward clinical translation, the SRS-based AST has been further demonstrated in urine
and blood environments. Urine samples with E. coli and blood samples with P. aeruginosa
were used for proof-of-concept demonstrations. The total detection time of bacterial
AST in urine and blood was reduced to less than 3.5 h, in line with the need for rapid
clinical testing [22]. Subsequently, a platform that combines MALDI-TOF MS and SRS
demonstrated a rapid process for bacterial identification and AST directly from positive
blood culture bottles (PBCB) [90]. This platform reduced bacterial identification and AST
process to only 3.5 h, and it is the fastest to obtain identification and AST from PBCB.
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Figure 8. SRS imaging of D2O metabolic incorporation for rapid AST. (a) Scheme for D2O labeling of
lipid and protein. (b) SRS imaging setup. (c) Time-lapse SRS imaging of P. aeruginosa after culture in
D2O-containing medium. (d) A new evaluation method by SRS metabolic imaging and morphological
deformation of E. coli that treated with a β-lactam antibiotic for rapid AST. Penicillin-binding proteins
(PBPs). Reprinted from reference [22,89] with permission.

In addition to being fast, the main advantages of SRS-based AST are universal and
can be measured directly on clinical samples, including blood, urine, and sputum. In addi-
tion, compared to spontaneous Raman spectroscopy, SRS microscope can synchronously
measure all bacteria within a field of view, thus having the prospect of high-throughput
measurements. However, SRS instruments are more complex and expensive and therefore
challenging to industrialize. In the future, cheaper and smaller fiber laser CARS could be an
alternative to rapid AST. However, the non-resonant background signals in CARS are the
main limitation that needs to be addressed with various technologies for the development
of CARS.

4. Conclusions and Outlook

Rapid bacterial identification and AST are key components for the management of
antibiotics, reducing the emergence of AMR, and finally saving the lives of infected patients.
Many reviews have summarized various techniques for rapid microbial identification and
AST development [23–27]. These technologies have contributed to the development of
rapid microbial diagnosis to some extent. To better integrate rapid bacterial identification
and AST into workflows, modifications must take into account, including turnaround time,
ease of implementation, cost-effectiveness, and personnel availability. In addition, clinical
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needs, antibiotic management, experienced clinicians, and local AMR epidemiology should
also be considered [91].

Many efforts have been dedicated to the development of bacterial identification and
AST related to Raman spectroscopy, SERS, CRS, and Raman techniques based on the
combination of stable isotopes and microfluidics. In addition, through multivariate data
analysis models, more information can be extracted from complex Raman spectra. Since
many types of Raman spectrometers have baseline shifts, the obtained spectrum usually
contains the desired signal as well as unwanted elements, such as background noise. We
have also summarized recent research on Raman spectroscopic data processing [38,92,93].

In order to optimize these technologies in the future, the following requirements and
challenges must be considered: (1) increased understanding of the obtained Raman spectra
de; (2) improved reproducibility of spectral data (such as SERS); (3) optimization of sample
preparation processes and improved high-throughput detection; (4) miniaturization and
automation of equipment, and reduced cost (such as pulsed lasers required by SRS); (5) new
tolerance of microorganisms to isotopes (such as deuterium).

In this review, we introduced the application of Raman-based techniques in microbial
identification and AST, including spontaneous Raman, SERS, and CRS. We then discussed
recent developments in rapid identification and AST methods combined with Raman tech-
nology, as shown in Tables 1 and 2. These Raman-based methods take shorter turnaround
times than the culture-based methods and can play a key role in early clinical decision-
making to treat microbial infections. Moreover, the application of Raman technologies can
be further expanded in microbial identification and susceptibility detection by combining
them with other technologies, such as fluorescence, microfluidics, and isotope labeling.
Meanwhile, automated sample preparation and data acquisition will further facilitate the
application of Raman-based techniques in microbial identification and AST.

Table 1. Comparison of Raman-based bacterial identification methods.

Identification
Technique Mechanism Time of Sample

Preparation Time for Test Measurements
Specification

Direct on
Clinical Sample Sensitivity Reference

Raman
spectroscopy
and machine

learning

Spectral
difference

15 min for
centrifugation

6 and 30 s for
single cell

CW laser; 532 nm for
exciation (7 mW) Yes/Urine Single cell [33]

24 h for
preculture 15 s for a colony CW laser; 785 nm

for exciation No Colony [34]

12 h for
preculture and

1 h for dry
1 s for single cell CW laser; 633 nm for

exciation (13.17 mW) No Single cell [14]

several hours to
growth phases

6 and 10 s for
single cell

CW laser; 532 nm for
exaction (5 mW) No Single cell [36]

Laser tweezers
Raman

spectroscopy
Spectral

difference

Overnight 30 s for
single cell

CW laser; 514.5 nm for
exciation (9 mW) and

1064 nm for trap
(5 mW)

No Single cell [48]

About several
hours 60–90 s CW laser; 785 nm

(16 mW/µm2) No Single cell [49]

SERS Spectral
difference

24 h for culture
and 20 min for

inculation
20 s for sample CW laser; 785 nm

(120 mW) No Several bacteria [42]

Overnight and
30 min for

centrifugation

10 s for
single bacteria

CW laser; 532 nm
(0.2 mW) or 633 nm

(0.17 mW) for exciation
No Several bacteria [16]

12 h for culture
and 50 min for

inculation

5 s for
single bacteria

CW laser; 633 nm for
exciation (0.5 mW) No Several bacteria [43]

CARS Hyperspectral
image about 15 min 1–2 min

Pulse laser; 780 nm
(~80 mW) as the pump

beam and 1030 nm
(~250 mW) as the

Stokes beam

Yes/urine Single cell [51]
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Table 2. Comparison of Raman-based AST methods.

AST
Technology Mechanism Time of Sample

Preparation Time to Result Direct on Clinical
Samples Sensitivity Real MIC Reference

Raman
spectroscopy

Change of
Raman spectra

2 h for culture 4 h No Single cell No [57]
24 h for culture 4–15 h No Single colony No [66]

Raman
spectroscopy and

deuterium labeling

Quantify
deuterium

incorporation

Overnight-culture
in D2O At least 40 min No Single cell No [21]

15 min for filtration 2.5 h from urine Yes/urine Single cell No [68]

2.5 h for culture 3 h from urine and
21 h from blood Yes/urine and blood Single cell No [76]

SERS-based Change of
spectra

10 h for culture 2 h antibiotic
treatment No Several bacteria Yes [80]

24 h incubate and
18 h for culture

30 min antibiotic
exposure and 1 h

for test
No Several bacteria Yes [81]

16–18 h incubate
and 2 h for culture About 2.5 h No Several bacteria Yes [84]

SRS and deuterium
labeling

Quantify
deuterium

incorporation

2 h for preculture
At least 0.5 h from

cultures in
log phase

No Single cell Yes [20]

15 min for
centrifugation
and filtration

2.5 h from isolates,
urine, or blood Yes/urine and blood Single cell Yes [22]

2–3 h to log phase 3 h from isolates No Single cell Yes [89]
Overnight 3 h from isolates Yes/ blood Single cell Yes [90]
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