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Abstract: Discrete time crystals (DTC) have been demonstrated experimentally in several different
quantum systems in the past few years. Spin couplings and cavity losses have been shown to play
crucial roles for realizing DTC order in open many-body systems out of equilibrium. Recently, it
has been proposed that eternal and transient DTC can be present with an open Floquet setup in the
thermodynamic limit and in the deep quantum regime with few qubits, respectively. In this work, we
consider the effects of spin damping and spin dephasing on the DTC order in spin-optomechanical
and open cavity systems in which the spins can be all-to-all coupled. In the thermodynamic limit, it
is shown that the existence of dephasing can destroy the coherence of the system and finally lead the
system to its trivial steady state. Without dephasing, eternal DTC is displayed in the weak damping
regime, which may be destroyed by increasing the all-to-all spin coupling or the spin damping. By
contrast, the all-to-all coupling is constructive to the DTC in the moderate damping regime. We also
focus on a model which can be experimentally realized by a suspended hexagonal boron nitride
(hBN) membrane with a few spin color centers under microwave drive and Floquet magnetic field.
Signatures of transient DTC behavior are demonstrated in both weak and moderate dissipation
regimes without spin dephasing. Relevant experimental parameters are also discussed for realizing
transient DTC order in such an hBN optomechanical system.

Keywords: discrete time-crystalline order; decoherence; optomechanical systems; hexagonal boron nitride

1. Introduction

In recent years, periodically driven (Floquet) quantum many-body systems have at-
tracted considerable attention since they are crucial for understanding new non-equilibrium
Floquet many-body localization (MBL) [1] phase and may have potential applications in
quantum metrology [2]. One example of a non-equilibrium Floquet-MBL phase is the
discrete time-crystalline (DTC) order [3–5], which is different from a continuous time
crystal [6–9] and is characterized by the breaking of discrete time-translation symmetry
(TTS) [10]. The DTC order has been realized experimentally in several quantum systems in
the past few years [11–14]. Under driving with a period T, the system can exhibit strobo-
scopic response with a period nT and it is expected to be robust against imperfection of the
driving [15,16]. Recently, the DTCs in open Floquet systems have been reported [17–23].
Since any realistic systems will be unavoidably coupled to its surroundings and the influ-
ences of baths can be either negative or positive, the mechanisms of stabilizing DTC in
dissipative systems will be important to explore.

Meanwhile, recent development of optomechanical systems [24–28] has facilitated
breakthroughs of quantum technologies such as ground state cooling [29,30], optical sens-
ing [31–35], and quantum information processing [36,37]. With nanoscale cavity optome-
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chanical devices, the coupling between light and motion of mechanical resonators can be
flexibly modulated with controllable loss [38], which may even reach ultrastrong coupling
regime [39]. A natural choice of mechanical modes is to use membranes of two-dimensional
materials due to their excellent mechanical properties [40]. Recently, hexagonal boron ni-
tride (hBN) has drawn great interest and served as a promising platform for exploring
both quantum and nanophotonic effects [41–45]. hBN has a very wide bandgap and out-
standing chemical and thermal stability beyond that of graphene. As a type of van der
Waals materials, hBN can be integrated with plasmonic, nanophotonic, and potentially
more complex structures [46–50]. The hBN membranes have low mass, small out-of-plane
stiffness, high elasticity modulus and strong tensile strength, which make them a promising
candidate for high-Q mechanical resonators and high-sensitivity sensors [51,52]. A spin-
mechanical system based on color centers in a suspended hBN mechanical resonator has
been proposed [53,54], which can even simulate the Rabi model in the ultrastrong coupling
regime. Very recently, optically addressable spin defects were observed in hBN [55–57].
As the DTC order has been found in N atoms in a lossy cavity [19–21], it is interesting to
explore the DTC in such spin-optomechanical systems with incoherent noise (spin damping
or dephasing).

In this work, we consider the DTC behaviors in an open Floquet system as N qubits in
a (mechanical) cavity via switching on and off of the spin-cavity coupling. In the thermody-
namic limit, it describes a cavity QED model with a large ensemble of trapped spins while,
in the deep quantum regime (with few qubits), it characterizes an optomechanical model
as a suspended hBN monolayer membrane with a few spin defects under a microwave
drive and a Floquet magnetic field (Figure 1). We discuss stroboscopic dynamics in both
regimes and explore whether stroboscopic oscillations are stable to spin damping and spin
dephasing as well as the effect of all-to-all spin coupling.

y
z

microwave drive

x

(a)

Figure 1. Sketches of the setups for realizing the DTC order: (a) a large ensemble of spins trapped
in a cavity and (b) a suspended hBN monolayer membrane with a few spin color centers under a
microwave drive and a circular-localized magnetic field. The Hamiltonian is modeled by Equation (1)
and the Floquet driving protocol is that the spin-cavity coupling λ is switched on (off) in the first
(second) half of a Floquet period T. In this work, both spin and cavity losses are considered.

2. Perfect DTC in the Thermodynamic Limit

We consider an open system as N qubits with all-to-all interactions in a (mechani-
cal) cavity (Figure 1). The all-to-all coupling can be mediated by a photon in an optical
cavity [19] or a phonon in a mechanical oscillator [53,54,58]. The Hamiltonian is given
by [19,20,53,54,59,60]
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Ĥ(h, λ) = ω0 ∑
i

ŝz
i + ωâ† â +

2h
N ∑

i<j
ŝz

i ŝz
j +

2λ√
N
(â + â†)∑

i
ŝx

i , (1)

where â (â†) is the annihilation (creation) operator of the photon field with optical frequency
ω, ŝµ

i (µ = x, y, z) is the spin- 1
2 angular momentum operator along the µ axis for the i-th

qubit of transition frequency ω0, and h (λ) is related to the spin-spin (spin-cavity) coupling
strength. For convenience, a more compact version can be derived as

Ĥ(h, λ) = ω0 Ĵz + ωâ† â +
h
N

Ĵ2
z +

2λ√
N
(â + â†) Ĵx, (2)

by introducing the collective angular moment operator Ĵµ = ∑i ŝµ
i and neglecting a constant

term. We consider a general decoherent model by including both the spin and cavity losses.
Then, the dynamics of the system can be described by the master equation (setting h̄ = 1)

dρ̂

dt
= −i[Ĥ, ρ̂] + γD[â]ρ̂ +

Γ
N

D[ Ĵ−]ρ̂ +
Γ̃
N

D[2 Ĵz]ρ̂, (3)

where Ĵ− = Ĵx − i Ĵy is the collective lowering operator and D[ô]ρ̂ = ôρ̂ô†− (ô† ôρ̂+ ρ̂ô† ô)/2.
Here, γ = ω/Q is the cavity damping rate with Q the quality factor. In addition, Γ and Γ̃ are
the spin relaxation and dephasing rate, respectively. Previous works mainly focused on the
DTC in cavity QED systems with merely the cavity loss or the nearest-neighbor (short-range)
spin coupling [19–21]. They have neither discussed stabilizing DTC in dissipative systems
with all-to-all coupling nor considered the effects of spin damping and spin dephasing.

First, we would like to consider the robustness of DTC behavior in the thermodynamic
limit N → ∞. By performing the mean-field approximation and factorizing the means of
operator product, we obtain a closed set of semiclassical equations as

j̇x = −ω0 jy − hjy jz +
Γ
2

jx jz − Γ̃jx,

j̇y = ω0 jx − 2λ
√

2ωxjz + hjx jz +
Γ
2

jy jz − Γ̃jy,

j̇z = 2λ
√

2ωxjy +
Γ
2
(j2z − 1),

ẋ = p− γ

2
x,

ṗ = −ω2x− γ

2
p− 2λ

√
2ωjx, (4)

where jµ = 〈 Ĵµ〉/j with j = N/2 and ∑µ j2µ = 1, x = 〈â + â†〉/
√

2Nω, and p = i〈â† −
â〉/
√

2N/ω. The set of Equation (4) is a generalization of that in Reference [19] which is a
special case as h = 0 here. The introduction of spin-spin coupling h breaks the original sta-
ble attractors (jx, jy, jz)st = (±

√
1− µ2, 0,−µ)/2 and (x, p)st = ∓[λ

√
2ω(1− µ2)/(ω2 +

γ2/4)](1, γ/2), with µ = (λc/λ)2 and the critical spin-cavity coupling strength
λc =

√
(ω0/ω)(ω2 + γ2/4)/2. We would also like to focus on the steady-state solutions

as Reference [19], which is instead numerically found out due to the more complexity
considered. It is clear that there exist trivial steady-state solutions as x = p = jx = jy = 0
and jz = ±1. Besides, as long as the dephasing exists (Γ̃ 6= 0), the steady-state solutions
will fall into be trivial. This can be understood as that the existence of dephasing will finally
destroy the coherence (non-diagonal terms of density matrix) and leads to the final state
as either |+N/2〉 or |−N/2〉 when the Z2 symmetry is broken at λ > λc. Here, |±N/2〉
are the eigenstates of Ĵz with Ĵz |±N/2〉 = ±N/2|±N/2〉. Therefore, we set Γ̃ = 0 in
the following discuss, unless specifically mentioned. Besides, we assume the spins are
initially in the eigenstate |→→ · · · →→〉 with jx|t=0 = 1, jy|t=0 = 0, and jz|t=0 = 0 and the
cavity mode is initially in a coherent state |α〉 with x|t=0 = p|t=0 = 0. If we consider the
symmetry-broken regime λ > λc, it is clear that the final state will fall into either one of
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the two nontrivial stable states. To observe a DTC order, we perform the Floquet driving
protocol similar to Reference [19]: the spin-cavity coupling λ is artificially switched off
in the second-half period, i.e., λ = 0 for (n + 1/2)T ≤ t < (n + 1)T with n = 0, 1, 2, . . ..
From an alternative viewpoint, the Floquet driving is that we let the spins periodically
driven by a leaky cavity in every first-half period nT ≤ t < (n + 1/2)T. We introduce
the imperfection parameter ε via a detuning between ω and ω0 as ω = (1− ε)ωT and
ω0 = (1 + ε)ωT with ωT = 2π/T. In the perfect case (ε = 0), it is not difficult to check
that the unitary dynamics during the second-half period contributes a parity operator
P = e−iπ(a†a+Jz) which flips the stable state to the other one. If certain observables of the
spins (say jµ) or the cavity mode (say x, p) exhibit period doubling oscillations which are
robust against imperfection driving ε, then a DTC order may be identified. We also consider
nonunitary imperfections due to decoherence of the system. To observe the long-time be-
havior, we numerically solve a Floquet–Lindblad master equation (setting λ in Equation (4)
be periodically time-dependent as characterized above) up to 500 periods T by means of
the Runge-Kutta method. We shall remark that we have also tried more periods such as
5000 periods as in Reference [19] but there is no qualitative difference. For convenience, we
set ωT = 1 and λ = 1 to illustrate the perfect DTC in the λ > λc regime.

In Figures 2 and 3, we plot the stroboscopic dynamics of the scaled angular momentum
vector~j = (jx, jy, jz) as well as their stroboscopic trajectories on the Bloch sphere for the
perfect driving (ε = 0) and imperfect driving (ε 6= 0) cases, respectively. By comparing
the first row a–d where there is no spin-spin coupling with h = 0, we clearly observe
different stroboscopic dynamics in different dissipation regimes. First, the DTC order is
well preserved by the existence of weak spin damping Γ as shown in Figure 2a and robust
again imperfection ε as shown in Figure 3a. As the spin damping rate Γ increases, the
DTC dynamics becomes irregular with the trajectory of~j scattered on the Bloch sphere
(Figures 2b and 3b). However, the dynamics will become more regularly with the area
of stroboscopic trajectories reduced if the cavity loss rate γ increases (Figures 2c and 3c).
The eternal stroboscopic oscillations will occur again with the trajectories almost collapse
into the two stable points for γ � Γ (Figure 2d), which is robust against imperfection ε
(Figure 3d) so as to identify the DTC order. Besides, by comparing the second row (e–h)
where there is spin-spin coupling h 6= 0, different stroboscopic dynamics from that of h = 0
is also demonstrated in different dissipation regimes. From Figure 2e–h (perfect ε = 0
case) with growing all-to-all coupling h, we observe that DTC oscillations is gradually
destroyed and the system finally falls into one of the trivial stable states with jx = jy = 0
and jz = −1 (Figure 2h). By contrast, in the imperfect case (ε 6= 0) as shown in Figure 3e–h,
we surprisingly find that the DTC order may be rebuilt by appropriate h in the moderate
damping regime, by comparing Figure 3g with Figure 2g.
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Figure 2. Stroboscopic dynamics (top) and stroboscopic trajectories (bottom) of the scaled angular
momentum vector~j = (jx, jy, jz) (red, green, blue) in the thermodynamic limit for the perfect driving
case ε = 0. The top shows typical stroboscopic dynamics of jx (solid red curve), jy (dashed green
curve) and jz (dotted blue curve) for the last 30 periods of the entire 500-period evolution. The bottom
displays the stroboscopic trajectories on the Bloch sphere for the entire 500 periods (green) and for
the last 100 periods (red) sphere. We consider no spin-cavity coupling h = 0 in (a–d) and increasing
spin-cavity coupling strength in (e–h) with h = 0.05, 0.1, 0.3, 1, respectively. The parameters are set
as: (a,e) γ = Γ = 0.05, (b,f) γ = 0.05, Γ = 0.3, (c,g) γ = Γ = 0.3 and (d,h) γ = 1.5, Γ = 0.3.
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Figure 3. Stroboscopic dynamics (top) and stroboscopic trajectories (bottom) of the scaled angular
momentum vector components jx (solid red curve), jy (dashed green curve), jz (dotted blue curve) in
the thermodynamic limit for the imperfect driving case ε = 0.05. There is no spin-cavity coupling
with h = 0 in (a–d) and increasing spin-cavity coupling strength with h = 0.05, 0.1, 0.3, 1 (e–h),
respectively. The parameters are set as: (a,e) γ = Γ = 0.05, (b,f) γ = 0.05, Γ = 0.3, (c,g) γ = Γ = 0.3
and (d,h) γ = 1.5, Γ = 0.3. The robustness of DTC against imperfection is clearly shown in (a,d,e).
Besides, it is interesting to find that the DTC can even benefit from the imperfection as comparing
Figure 3g with Figure 2g.

3. Transient DTC Behavior in the Deep Quantum Regime

We proceed to focus on the few-atom cases [N ∼ O(1)], which corresponds to the
hBN optomechanical system as displayed in Figure 1b. It is expected that a DTC behavior
may still survive in few atom cases, the so-called deep quantum regime [19]. In this regime,
we do not perform semiclassical approximation so that all the quantumness of the system
is well maintained. The interplay among spin-spin coupling, spin-cavity coupling and
dissipations may give rise to more subtle behaviors for transiently long DTC in this deep
quantum regime. By transiently long we mean that the DTC lasts much longer than the
decay time γ−1. The initial state is chosen to be |⇒〉 ⊗ |α〉, where |⇒〉 ≡ ⊗N

j=1|→〉 is the

eigenstate of Ĵx with the eigenvalue N/2 and |α〉 is a coherent state with â|α〉 = α|α〉. The
Floquet–Lindblad dynamics extended from Equations (1) and (3) is directly solved under a
truncation of 16 photons for α = 0.01.

Figure 4a shows the stroboscopic dynamics of the scaled angular momenta jµ and
quadratures x, p (inset) in the strong coupling regime (λ = 1) and weak dissipation regime
(γ = Γ = 0.05) for the two-qubit case (N = 2). We clearly observe that jx and x exhibit
stroboscopic oscillations with doubling period 2T after t ∼ 5T, which persists even at
t ∼ 50T and thus is much longer than the decay time (here γ−1 = Γ−1 ∼ 3T). In this
sense, a transient DTC order is established in the deep quantum regime before reaching the
stationary state. In Figure 4b, we plot the stroboscopic dynamics in the moderate dissipation
regime (γ = Γ = 0.3). In this case, the decay time can be estimated as γ−1 = Γ−1 ∼ 0.5T so
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that the stroboscopic dynamics occur immediately and lasts over 10T, which still maintains
a transient DTC order. Moreover, if the spin dephasing Γ̃ ≈ 2Γ as predicted in Reference [53]
is additionally considered, as shown in Figure 4c,d, we find that the oscillation time is
merely comparable to the decay time and thus no transient DTC order exists. Besides, we
observe similar phenomena if more spins are involved such as the case of N = 3 shown in
Figure 5. One effect of increasing the spin number N is that the transient oscillations evolve
into an eternal one as predicted at the thermodynamic limit N → ∞ in Figure 2. Another
effect of increasing N may be that the stroboscopic oscillations is more robust against the
spin dephasing as comparing the oscillation dynamics of quadrature x (purple solid) in
Figures 4c and 5c.
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Figure 4. Stroboscopic dissipative dynamics of the scaled angular momenta of jx (red solid curve),
jy (green dashed curve), and jz (blue dotted curve) in the two-qubit N = 2 case. The insets show
stroboscopic dissipative dynamics for quadratures x (purple solid) and p (black dashed). We consider
weak dissipation in (a) h = γ = Γ = 0.05, Γ̃ = 0 and moderate dissipation in (b) h = γ = Γ = 0.3, Γ̃ = 0
but without spin dephasing as the thermodynamic limit case. Contrast to (a) and (b), (c) and (d)
includes spin dephasing Γ̃ ≈ 2Γ as suggested in Reference [53].

Before ending, we would like to discuss the setup of experimental parameters for real-
izing TDC order in the optomechanical system of hBN monolayer membrane. According
to Referecne [53], a maximum magnetic field gradient 270 G/nm may be reached such
that the spin-cavity coupling λ may become comparable or even larger than the oscillator
frequency ω. In this work, we consider λ = ωT, ω = (1− ε)ωT and ω0 = (1 + ε)ωT with
ε ≤ 10%, and the cavity loss rate γ ≤ 1.5ωT, which indicates λc ≤ 0.65ωT. To insure the
occurrence of transient DTC dynamics, we need operate in the regime of λ > λc. Then, the
minimal spin-cavity coupling is to achieve λ > 0.65ωT, which is realizable in a suspended
circular hBN membrane with radius R ∼ 1 µm. Another important aspect is to control the
dephasing rate Γ̃ which is detrimental to the DTC order. According to Reference [53], the
spin dephasing mainly stems from optical polarization Γ̃o and membrane vibrations Γ̃v,
which is proportional to the vibration frequency ω. Therefore, to suppress the dephasing
rate, it is suggested to reduce the cavity frequency ω, which also corresponds to enhance
the membrane radius R. Last, but not least, the cavity loss promotes spin cooling and
localization, which is crucial to the emergence of DTC. However, as can be indicated by
comparing Figure 4b with Figure 4a (or Figure 5b with Figure 5a), a too strong cavity loss
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γ (corresponding to extremely low Q) may overdamp the system dynamics and destroy the
DTC order. Besides, a stronger γ leads to a higher critical spin-cavity coupling λc such that
stronger spin-cavity coupling λ is needed, which imposes a challenge to its experimental
realization. For cavity loss rate γ = 0.05ωT as considered in Figures 4c and 5c, the quality
factor Q is about 20, which provides a balance between spin cooling and loss to make
experimental realization more feasible [52]. Overall, negligible spin dephasing, weak spin
damping and appropriate cavity loss are suggested in realizing transient DTC order in such
an optomechanical system.
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Figure 5. Stroboscopic dissipative dynamics of the scaled angular momenta of jx (red solid curve),
jy (green dashed curve), and jz (blue dotted curve) for the three-qubit N = 3 case. The insets
show stroboscopic dissipative dynamics for quadratures x (purple solid) and p (black dashed). We
consider weak dissipation with h = γ = Γ = 0.05, Γ̃ = 0 in (a) and moderate dissipation with
h = γ = Γ = 0.3, Γ̃ = 0 in (b) but without spin dephasing as the thermodynamic limit case. Contrast
to (a) and (b), (c) and (d) includes spin dephasing Γ̃ ≈ 2Γ.

4. Conclusions

In summary, we have investigated DTC order in a Floquet open system composed of
N qubits trapped in a (mechanical) cavity. The influences of all-to-all spin interactions, spin
damping, spin dephasing as well as cavity loss are explored both in the thermodynamic
limit and in the deep quantum regime. It is shown that the existence of dephasing will
destroy the coherence of the system and finally leads the system to its trivial steady state.
Without dephasing and all-to-all spin coupling, different stroboscopic dynamics in different
dissipation regimes is demonstrated. First, with weak spin damping and weak all-to-all
coupling, eternal DTC oscillations are observed and robust against imperfection. As the
spin damping rate increases, the stroboscopic dynamics evolves irregularly accompanied
by the trajectory of the scaled angular momentum vector scattered on the Bloch sphere.
However, with enhancement of cavity loss, the dynamics will become more regularly and
the eternal eternal DTC order will reemerge at strong cavity loss. Besides, by growing the
all-to-all coupling, we demonstrate that stroboscopic oscillations are gradually destroyed
in the weak damping regime. It is interesting to show that the DTC order may be rebuilt by
appropriate all-to-all coupling in the moderate damping regime.

We also focus on the few-atom cases, the so-called deep quantum regime, the model
of which describes a suspended hBN monolayer membrane with a few spin defects under
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a microwave drive and a Floquet magnetic field. A transient DTC lasting much longer
than the decay time can be found in both weak and moderate dissipation regimes when
there is no spin dephasing. Nonetheless, the existence of dephasing will destroy transient
oscillations and leads the system fast to a trivial steady state, which is consistent with
the results obtained by semiclassical approximation in the thermodynamic limit. We also
find that stroboscopic oscillations may be more robust against the spin dephasing by
increasing the spin number. Finally, the parameters in the experimental aspect are briefly
discussed and how to realizing transient DTC order in such an hBN optomechanical system
is suggested.
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