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Abstract: High-speed reconciliation is indispensable for supporting the continuous-variable quantum
key distribution (CV-QKD) system to generate the secure key in real-time. However, the error correc-
tion process’s high complexity and low processing speed limit the reconciliation speed. Therefore,
reconciliation has also become the bottleneck of system performance. In this paper, we proposed a
high-speed reconciliation scheme that uses the deep neural network to optimize the decoding process
of the low-density parity-check (LDPC) code. We first introduced a network structure of decoding
implementation based on the deep neural network, which can be applied to decoding algorithms
of parallel strategy and significantly reduce the decoding complexity. Subsequently, we proposed
two improved decoding algorithms based on this structure, named linear fitting algorithm and deep
neural network-assisted decoding algorithm. Finally, we introduced a high-speed reconciliation
scheme based on the CPU-GPU hybrid platform. Simulation results show that the proposed recon-
ciliation scheme reduces the complexity and enables us to realize the high-speed CV-QKD system.
Furthermore, the improved decoding algorithm can also reduce the FER, thereby increasing the secret
key rate.

Keywords: CV-QKD; high-speed reconciliation; LDPC code; deep neural network; CPU-GPU hy-
brid platform

1. Introduction

Quantum key distribution (QKD) [1] enables two remote communication terminals,
commonly called Alice and Bob, to share the unconditional secure key, even in the presence
of eavesdropper Eve. In recent decades, QKD has been widely studied and has achieved re-
markable progress because it ensures the confidentiality and security of the communication
process [2]. According to the coding dimension of transmitted information, QKD could
be divided into the discrete variable QKD (DV-QKD) [3,4] and the continuous-variable
QKD (CV-QKD) [5–8]. The former encodes information in discrete variables, such as the
polarization or phase of a single photon, and it has relatively mature development, coupled
with a farther communication distance. The latter encodes information in continuous
variables, such as the regular components of coherent states, and it achieves a higher secret
key rate at a close distance. Due to the easier preparation and measurement of quantum
states, CV-QKD has a higher practical value and has been extensively studied.

Reconciliation [9–11] plays an indispensable role in CV-QKD, and its performance
is the main factor of system performance [12]. In reconciliation, we first perform related
processing on the original key. Then, we use mature channel error correction technology
to correct the inconsistent data bits between the two communication terminals, thereby
obtaining the secure key. We need to use an error correction code near Shannon channel
capacity, usually the low-density parity-check (LDPC) code [2,13,14], to realize efficient
reconciliation. However, under the condition of extremely low signal-to-noise ratio (SNR),
better error correction performance is usually accompanied by higher algorithm complexity.
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Therefore, the high complexity and low processing speed of decoding implementation still
limit the reconciliation performance.

Belief propagation (BP) [15–17] and layered belief propagation (LBP) [18,19] are two
main LDPC decoding algorithms in reconciliation. In [20], Dakai Lin proposed a well-
structured decoding scheme that reached a reconciliation speed of 25 Mb/s. Simplified
algorithms in classic communication systems effectively reduce the complexity of mes-
sage iteration but also cause performance degradation and cannot be applied to CV-QKD
systems [21]. Deep learning [22] can obtain more significant performance improvements
than traditional methods in many fields, and we can apply it to the research of channel
decoding. In [23], the BP algorithm is described as the forward neural network. Results
prove that the combination of deep neural network and BP decoding algorithm can im-
prove the decoding performance. In [24], Fei Liang combines traditional BP decoder and
convolutional neural network (CNN) to improve error correction performance. In [25],
Lugosch proposes the neural offset min-sum (NOMS) decoding algorithm conducive to
hardware implementation. Although these neural network decoding algorithms improve
performance to a certain extent, they also cause additional complexity. Therefore, they are
not well suited for reconciliation.

In this paper, we proposed a high-speed reconciliation scheme by using the deep
neural network to optimize the performance of the LDPC decoding process. First, we
introduced the network structure of the decoding implementation. Then, we proposed
some improved decoding algorithms based on the network structure. Finally, we proposed
a high-speed reconciliation scheme based on the CPU-GPU hybrid platform. Simulation
results show that the proposed method effectively reduces the decoding complexity and
enables us to achieve high-speed decoding of 26.7 Mbits/s. Moreover, some improved
algorithms can slightly increase the secret key rate.

The rest of this paper is organized as follows. First, we introduced some preliminaries
in Section 2. Then, in Section 3, we proposed a high-speed reconciliation scheme. We
provided the network training strategy and related simulation results of the proposed
scheme in Section 4. Finally, conclusions and future works are drawn in Section 5.

2. Preliminaries
2.1. Brief Description of CV-QKD Post-Processing

Generally, in the Gaussian-modulated coherent CV-QKD system, when the transmitter
Alice sends string X to the receiver Bob via the quantum channel, the detected string Y can
only be a certain correlated with X, but not consistent, due to the influence of noise, channel
loss, and even potential Eve in the quantum channel. According to the characteristics
of the quantum channel, both X and Y are continuous variables that obey the Gaussian
distribution [26], which can be expressed as

X ∼ N
(

0, σ2
x

)
, Y ∼ N

(
0, σ2

y

)
. (1)

where σ2
y = σ2

x + σ2
e , and σ2

e is the noise variance of quantum channel.
In order to ensure that Alice and Bob can obtain the secure key, we need to post-

process the original key (X and Y). Figure 1 shows the flow chart of post-processing. Post-
processing mainly includes the reconciliation [9–11] and the privacy amplification [27–29],
both performed on the authenticated classical channel, and Eve can obtain the information
exchanged between two communication terminals.
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Figure 1. Flow chart of post-processing of reverse multi-dimensional reconciliation. Since decoding
is the crucial step in reconciliation, we can improve the reconciliation performance by improving the
decoding performance.

Since information is carried on the continuous variables and cannot be corrected
directly, it is usually necessary to convert them into discrete forms through reconciliation
algorithms. Sign reconciliation [30] or slice reconciliation [10] is generally only suitable for
the high SNR conditions. The theory proves that Gaussian variables that obey independent
and identical distribution obey uniform distribution on the multi-dimensional sphere.
Therefore, we can transform the reconciliation process into the error correction problem on
the binary additive white Gaussian noise channel (BIAWGNC) through normalization and
rotation mapping operations. This method is called the multi-dimensional reconciliation
algorithm [31]. We can obtain high-performance reconciliation with the error correction
code close to Shannon channel capacity, usually the LDPC code. Further, in order to achieve
secure long-distance communication, we need to adopt the reverse reconciliation [32],
that is, Alice complete error correction based on Bob’s reconciliation information, effec-
tively avoiding the influence of Eve, overcoming the channel loss limitation of 3dB, and
significantly improving the security of the entire system.

Alice and Bob obtain the preliminary final key after the reconciliation process. How-
ever, since the information exchange is carried out on the public channel, Eve may infer the
key information from these parts of reconciliation information. Therefore, one necessary
step, named privacy amplification, usually deletes part of the information to ensure the
security of the final key.

2.2. Reconciliation with LDPC Code

In simple terms, reconciliation is actually a process in which two legal terminals
accomplish error correction through information exchange. LDPC code, designed by
density evolution algorithm [33–36], is close to Shannon limit on the AWGN channel and
achieves a higher decoding throughput [37–39], applying the BP algorithm, more precisely,
the log-likelihood ratio BP (LLR-BP) algorithm. Since the LDPC code has excellent error
correction performance, we apply it to reconciliation, significantly reducing the frame error
rate (FER), increasing the secret key rate, and extending the secure communication distance.

Tanner graph is the graphical representation of check matrix of LDPC code [37,40,41],
composed of check nodes Cj, variable nodes Vi, and connecting edges. Equation (2) shows a
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simple check matrix, and Figure 2 shows the corresponding Tanner graph and information
transmission process.

H =

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 (2)

Figure 2. (a) The structure of the Tanner graph corresponds to Equation (2). (b) Node information
transmitted in the Tanner graph. L(rji) is the check node update information transmitted from the
check node Cj to the variable node Vi. L(qij) is the variable node update information transmitted
from the variable node Vi to the check node Cj.

We usually use circles to represent the variable nodes Vi and squares to represent the
check nodes Cj. In addition, if H(i, j) is not 0, then Vi is connected to Cj. Otherwise, they
are not connected [42]. Messages are transmitted iteratively between check and variable
nodes through the edges to achieve decoding. Let L(Pi) be the log-likelihood ratio of the
received message, k be the number of iterations, and the LLR-BP decoding algorithm is
divided into the following steps:

• Step 1, initialization.

L
(

q(0)ij

)
= L(Pi) = 2yi/σ2, i = 1, 2 . . . N. (3)

where yi is the ith bit of the received message and σ2 is the noise variance of the
transmission channel.

• Step 2, check nodes information update.

L
(

r(k)ji

)
= 2 tanh−1

 ∏
i′∈C(j)\i

tanh
(

L
(

q(k−1)
i′ j

)
/2
). (4)

where L(rji) is the information transmitted by the check node Cj to the variable node
Vi. It is calculated based on the information from the set of all variable nodes connected
to Cj, excluding the variable node Vi, and can be expressed as i′ ∈ C(j)\i.

• Step 3, variable nodes information update.

L
(

q(k)ij

)
= L(Pi) + ∑

j′∈C(i)\j
L
(

r(k)j′i

)
. (5)

where L(qij) is the information transmitted by the variable node Vi to the check node
Cj. It is calculated based on the information from the set of all check nodes connected
to Vi, excluding the check node Cj, and can be expressed as j′ ∈ C(i)\j.
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• Step 4, log-likelihood ratio of variable nodes update and decision.

L
(

Q(k)
i

)
= L(Pi) + ∑

j′∈C(i)
L
(

r(k)j′i

)
, ŷi =

{
1, L(Qi) ≤ 0
0, L(Qi) > 0

. (6)

where ŷi is the ith bit of the decoded message. The iteration ends when k reaches the
maximum number of iterations or H · ŷT = 0; otherwise, go back to Step 2.

3. High-Speed Multi-Dimensional Reconciliation

Speed and efficiency are two key technical parameters of reconciliation. The former
has an important impact on the number of keys obtained by the system per unit time.
Considering the system’s security, we need to realize real-time key generation. The latter
directly affects the secret key rate [6,31,43] and secure communication distance of the
system. The higher the value, the longer the transmission distance supported.

We adopt the reverse multi-dimensional reconciliation scheme with LDPC code in this
paper. The specific process follows [31]: First, the original keys X and Y are normalized to
obtain x and y separately. Second, Bob generates a spherical code u, calculates the rotation
mapping relationship M(y, u), which satisfies M(y, u)y = u, and sends M(y, u) to Alice.
Alice does the same rotation on x to obtain the noisy form v of u. Finally, Bob selects the
appropriate LDPC code whose check matrix is H, uses u to calculate the syndrome cB,
which satisfies cB = HuT , and sends cB to Alice as the reconciliation information. Alice
uses this information, v, and H to complete decoding and finally obtains the same binary
bit u as Bob. Therefore, multi-dimensional reconciliation can be divided into reconciliation
and error correction processes. The former has low computational complexity; the latter
is the most important and the most complicated step. Our purpose is to use the powerful
data processing capability of the deep neural network to optimize decoding performance,
thereby increasing the reconciliation speed and improving the secret key rate.

3.1. Proposed Network Structure of Decoding Implementation

The LLR-BP algorithm is a message-passing algorithm, and its implementation directly
corresponds to the Tanner graph. Fortunately, the Tanner graph is a natural network
structure, and we can naturally think of a neural network with similar structures.

3.1.1. Multi-Layer Perceptron (MLP)

MLP is also called the artificial neural network (ANN) [44]. It includes an input layer,
an output layer, and multiple hidden layers. Figure 3 shows the simplest MLP, a three-layer
network structure with only one hidden layer.

As can be seen from the above figure, the two layers of MLP are fully connected,
which means that neurons in different network layers are all connected. Denote the vector
x represents the network’s input, so the output of the hidden layer is f (w1x + b1). w1 is
the weight, b1 is the bias, and f is the activation function, which commonly uses sigmoid
function or tanh function.

fsigmoid (x) =
1

e−x + 1
, ftanh (x) =

ex − e−x

ex + e−x . (7)

If the activation function is not defined, the output of this layer is equal to (w1x + b1).
Therefore, the most critical elements of constructing a neural network include the dimen-
sions of each network layer, the calculation formula of each neuron, the depth of the
network, and the network connections between layers.
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Figure 3. The structure diagram of a single hidden layer MLP. The depth of the network is 3, and the
number of neurons in the input layer, hidden layer, and output layer is 3, 6, and 3, respectively.

3.1.2. Proposed Decoding Network Structure

According to the content described in Section 2, the decoding performance of the LDPC
code is mainly related to the following factors, e.g., the information update algorithm, the
structure of the check matrix, the maximum number of iterations, etc. These factors also
determine the network structure of the decoding implementation.

1. The information update algorithm affects the error correction performance and deter-
mines the neurons’ specific connection mode between the network layers. Different
from the fully connected network structure of MLP, our network connection depends
on the information needed for the calculation of the neuron information. In other
words, we only need to send the information needed in the calculation formula of the
node to the node.

2. The structure of the check matrix determines its maximum error correction capability.
Furthermore, the number of columns determines the dimensions of the input and
output layers, and the number of non-zero elements determines the dimensions of
the hidden layer.

3. The maximum number of iterations has a considerable influence on the error cor-
rection performance and determines the depth of the network. We can adjust the
maximum number of iterations within a certain range to improve error correction
performance. If the maximum number of iterations is set too small, the network
depth is low, and the decoding success rate is low. On the contrary, if the maximum
number of iterations is too large, it will cause excessive network depth and high time
consumption.

Figure 4 shows the network structure of the decoding implementation. It is worth
noting that the network structure we proposed does not wholly correspond to the tradi-
tional decoding iterative process. There are three reasons for this. (a) Under low SNR,
decoding usually stops when the upper limit of the number of iterations is reached. (b) If
the correct codeword has been obtained in a few iterations, the transmitted information has
already converged at this time, and subsequent network propagation will not change its
sign. (c) We also consider the training of the deep neural network decoding algorithm. In
order to ensure that the training of the neural network can obtain the optimal parameters
of the network, we need to adopt the most complex decoding conditions when training the
network, that is, the decoding stops when the upper limit of the number of iterations is
reached. Therefore, the entire network can be divided into one input layer, (2I − 1) hidden
layers, and one output layer, where I is the maximum number of iterations. Assuming
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that the check matrix H is a (M, N) matrix and the number of non-zero elements is E, the
specific design of the three network layers is described as follows.

Figure 4. The proposed decoding network structure. The entire network consists of one input layer,
(2I − 1) hidden layers, and one output layer, where I is the maximum number of iterations. The
input and output layers contain N neurons, corresponding to Equations (3) and (6). Iterations except
the last iteration correspond to two hidden layers with E neurons, named c2v_layer and v2c_layer,
respectively corresponding to Equations (4) and (5), where E is the number of non-zero elements of
the check matrix.

First, the input layer is composed of N neurons. This layer corresponds to the initial-
ization process of decoding. Therefore, the input of this layer is the log-likelihood ratio
(LLR) of the channel received information, and the output is the initial information of the
variable nodes.

Then, the hidden layer is composed of E neurons. All iterations except the last iteration
correspond to two hidden layers, named c2v_layer and v2c_layer. They calculate check
and variable nodes information, respectively. The last iteration only includes one c2v_layer
because it does not need to calculate variable node information. In the Tanner graph, the
non-zero elements of the check matrix determine the connecting edge between the variable
node and the check node. Drawing on this idea, we first sort the non-zero elements of
the check matrix by column and then correspond each non-zero element to a neuron in
the hidden layer. Therefore, the number of neurons in all hidden layers is E. In addition,
there are already definite network connections between different layers instead of the fully
connected structure of traditional neural networks. The reason is that these neurons only
need the corresponding node information in the calculation formula. It should be noted
that neither the input layer nor the hidden layer needs to define an activation function. We
can directly calculate the corresponding value according to the LLR-BP decoding algorithm.

Finally, the output layer comprises N neurons and outputs the final decoded codeword.
The activation function of this layer is defined as

σ(x) =
1− sgn(x)

2
, sgn(x) =

{
−1, x <= 0

1, x > 0
(8)

For clarity, we take Equation (2) as an example to illustrate using the check matrix to
generate the corresponding network structure. First, we number the non-zero elements of
the check matrix in column order.

Ĥ =

 1 3 0 7 0 0
2 0 5 0 8 0
0 4 6 0 0 9

 (9)
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Then, the non-zero elements correspond to the neurons in the hidden layer in order.
Moreover, the connecting edge of the neuron is only the information needed for formula
calculation. Figure 5 shows the network structure of the above matrix.

Figure 5. The network structure of (9) with 3 hidden layers corresponds to 2 iterations.

3.1.3. Advantages of Proposed Network Structure

Our method is to expand the iterative decoding process into a forward propagation
network to reduce complexity, thereby speeding up the decoding process. Compared
with the traditional decoding implementation, the decoding network structure has the
following advantages.

• The node information of the traditional algorithm is transmitted in the form of a
matrix with the same shape as the check matrix. The network structure we proposed
expands the two-dimensional matrix into a one-dimensional vector, optimizes the
storage structure of the check matrix, and saves a lot of storage space.

• We arrange the transmitted information in order, which makes the memory read
and write orderly, so the time delay of data read and write is significantly reduced,
improving the decoding speed.

• We have neglected the update of variable nodes with degree 1 in the network con-
struction, reducing unnecessary operations of traditional decoding algorithms.

• The forward propagation network eliminates the need for multiple iterations of de-
coding. Without iteration, we input the channel message into the network and obtain
the decoded codewords [45].

• Since the network is fully parallel, we can use powerful hardware, such as graphics
processing unit (GPU) or field-programmable logic gate array (FPGA), to process
multiple data at once.

• This network structure is suitable for decoding algorithms with parallel strategy, and
training network parameters can also improve the decoding algorithm. All we need
to do is adjust the neuron’s calculation formula.

3.2. Linear Fitting Decoding Algorithm

The LLR-BP decoding algorithm has excellent error correction performance, but its
computational complexity is relatively high, especially the calculation of check node infor-
mation. The main calculations in the formula are concentrated in tanh(x) and tanh−1(x).
We focus on simplifying complexity on tanh(x) because tanh−1(x) is calculated only once.
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Since tanh(x) is an odd function and takes y = ±1 as the asymptote, we assume that
the approximation function F(x) has the following form,

F(x) =

{
h(x), x ∈ [0,+∞)

−h(−x), x ∈ (−∞, 0)
. (10)

where h(x) has the following algebraic form,

h(x) =
(. . . (anx + an−1)x + an−2) . . .)x + a1)x

(. . . (bnx + bn−1)x + bn−2) . . .)x + b1)x + b0
. (11)

where n is the highest power of the numerator (or denominator), and an and bn are weight
coefficients. Then, we can use the deep learning method to obtain the optimal weight
coefficients. The sample label is tanh(x), the network output is F(x), and the training goal
is to minimize the difference between the above two. We use the mean square error (MSE)
loss function to train the network, which is defined as

MSE =
1
m

m

∑
i=1

[tanh(i)− F(i)]2. (12)

where m is the number of samples. Table 1 illustrates the MSE under different parame-
ter settings.

Table 1. The MSE under different parameter settings.

n MSE

3 6.133325138919856 × 10−7

4 1.2272255835313485 × 10−8

5 8.221156127182263 × 10−13

3.3. Deep Neural Network-Assisted Decoder

The above method is to optimize the algorithm by reducing the complexity, and then
we will introduce an algorithm to improve the error correction performance. We can
increase the role of LLR information with a larger absolute value in information update
because the larger the absolute value of the LLR, the greater the probability difference
between 0 and 1, and the more reliable this LLR value is. On the contrary, we need to
reduce the influence of this value in the decoding process. In short, our idea is to add
a corresponding correction factor for each node information to adjust the reliability of
the transmitted information, thereby increasing the convergence speed of the algorithm.
Corresponding to the network structure, we add weight or bias to the network [23,25].
We can use the backpropagation algorithm to update the parameters in the network and
realize the optimal design of the network. In this part, we first propose a general model
of the simulation system based on the deep neural network-assisted decoder (DNNAD).
Subsequently, we introduce the specific structure of the DNNAD.

3.3.1. General Model of Simulation System

Since the data of the experiment system is not easy to obtain, we built this simulation
system to obtain sample data for network training. All system parts are in parallel structure
and can process multiple data simultaneously. Figure 6a shows the general model of
the simulation system based on the DNNAD. We can easily obtain a large amount of
sample data using this system. In the transmitter, K-bit messages Us pass through the
LDPC encoder and the BPSK modulator successively, and we can respectively obtain N-bit
codewords Xs and modulation information Ps, where Ps = 1− 2Xs. Subsequently, the
modulation information Ps is transmitted to the receiver through the BIAWGN channel. In
addition, the received messages Vs can be expressed as Vs = Ps + Ne, where Ne represents
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the Gaussian noise vector and satisfies Ne ∼ N
(
0, σ2). The received messages Vs are input

into the DNNAD for decoding in the receiver. Finally, we can obtain the estimated value
Ys of Xs.

Figure 6. The proposed deep neural network-assisted decoder (DNNAD). (a) The general model of
the simulation system based on the DNNAD. (b) The network structure of the DNNAD. The structure
has not changed in the application phase, but some weights are added to the forward propagation.
In the training phase, we add some additional branches to output the decoded codewords of each
iteration based on the original network structure, so the number of hidden layers becomes (3I − 2),
where I is the maximum number of iterations.

Our purpose is to use neural network training to reduce the difference between the
decoded codeword and the real codeword, that is, to optimize the network to minimize the
difference between the network output Ys and the sample label Xs. Since the codeword
bits are binary data, the general method is to use the cross-entropy loss function, which is
defined as follows

CE = − 1
N

N

∑
i=1

[Xsi log(Ysi) + (1− Xsi) log(1− Ysi)]. (13)

where Xsi is the i-th bit of sample label, Ysi is the i-th bit of sample output, N is the
codeword length.

There is a training method called multi-task learning (MTL) in deep learning [46]. It is
not a specific algorithm and can handle multiple tasks using only one model. A single-task
training target may ignore the potential information of some related tasks that may improve
the target task. Adding related other tasks may make the final result better.

According to this idea, the training purpose is to reduce the difference between the
decoded codeword of each iteration and the real codeword through network optimization.
We first calculate the decoding codeword for each iteration. Then, we add some new tasks
based on the original loss function. Therefore, the final decoding loss function is defined as

CE = − 1
N

I

∑
o=1

N

∑
i=1

[Xsi log(Yso,i) + (1− Xsi) log(1− Yso,i)]. (14)
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where Xsi is the i-th bit of sample label, Yso,i is the i-th bit of the decoded codeword of the
o-th iteration, N is the codeword length, and I is the maximum number of iterations.

3.3.2. The Specific Structure of the Deep Neural Network-Assisted Decoder

We have made some modifications based on the decoding network structure. Figure 6b
shows the network structure of the improved decoding algorithm. First, we added weights
to each layer. In order to maximize the error correction performance, we had better add
different weights to different information. However, the long code used in reconciliation
will cause a larger scale of the decoding network. In addition, due to a large number of
non-zero elements, adding weight to all information will occupy a large number of storage
resources and consume a large amount of multiplication, resulting in higher complexity. To
solve these problems, we refer to the weight-sharing method of the convolutional neural
network (CNN) [47,48]. The weight sharing method means that a single weight controls
multiple connections, which can also be interpreted as imposing equal constraints between
different connections. Therefore, with this method, we only need to train the optimal
weights for one iteration and share them with each iteration, reducing the number of
weights that need to be trained and the computational complexity of the network. So, the
node information calculation formula of the DNNAD is defined as

L
(

r(k)ji

)
= α

(k)
ji ∗ 2 tanh−1

 ∏
i′∈C(j)\i

tanh
(

L
(

q(k−1)
i′ j

)
/2
)

L
(

q(k)
ij

)
= L(Pi) + ∑

j′∈C(i)\j
L
(

r(k)j′i

) . (15)

where α
(k)
ji is the corresponding weight coefficient of the check node information of the k-th

iteration, and α
(k)
ji = αji.

Second, we use different network structures in the training and application phases to
satisfy the MTL training method. In the training phase, we add some additional branches to
output the decoded codewords of each iteration based on the original network structure, so
the number of hidden layers becomes (3I− 2). In addition, in order to ensure the feasibility
of the backpropagation algorithm, the activation function of the network layer needs to be
differentiable, so the activation function of the approximate decision layer adopts a variant
of the sigmoid function, which is defined as

σ(x) = sigmoid(−x), sigmoid(x) =
1

e−x + 1
. (16)

3.4. Proposed High-Speed Reconciliation Scheme

Compared with CPUs, GPUs support large-scale parallel operations, rich in computing
and storage resources, and are good at floating-point operations with high precision. The
most important thing is that it fits well with the proposed decoding implementation method.
Therefore, we propose a high-speed reconciliation scheme based on the CPU-GPU hybrid
platform. Figure 7 shows the architecture of the high-speed reconciliation scheme. We copy
the data that needs to be decoded to the GPU after the reconciliation step, use the decoding
network for high-speed decoding, and finally copy the decoded codewords back to the CPU
for subsequent operations. The whole process makes full use of the high-speed parallel
processing capability of the GPU, and we can obtain multiple secure keys in one processing.
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Figure 7. The architecture of the high-speed reconciliation scheme based on the CPU-GPU hybrid platform.

4. Simulation Results and Performance Analysis

In this section, we will present all the experiment results in the paper. First, we
provided the network training strategy. Subsequently, we carried out the performance
analysis of the proposed method, including the complexity analysis of the reconciliation
scheme and comparing error correction performance. Finally, we analyzed the secret key
rate of the improved reconciliation scheme.

4.1. Network Training Strategy

Figure 8 shows the specific process of data set generation. Since the information bits
are composed of 0 and 1, an (N−K, N) check matrix can generate 2∧K kinds of information
Us. We can obtain 2∧K kinds of codewords Xs after LDPC encoding. In the same way, we
can also obtain 2∧K kinds of modulation information Ps. Although the CV-QKD system
works in the extremely low SNR environment, we generally use channels with different
SNRs to generate sample data because the diversity of training samples is conducive to
improving the model’s versatility. Theoretically, we can obtain several sets of different
sample inputs Vs and the corresponding sample labels Xs through the above steps. Finally,
we randomly selected samples from different SNRs to form a batch of samples.

Figure 8. Specific process of data set generation.

In terms of other settings for network training, we use the Gaussian distribution
method to initialize the network parameters. Moreover, we use the batch method and
Adam optimizer for network training. Table 2 illustrates the network training settings.

Table 2. The network training settings.

Items Settings

Batch Size 200
Network Learning Rate 0.001

Network Parameter Initialization Method Gaussian distribution method
Optimizer Adam optimizer
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4.2. Complexity Analysis of Reconciliation Scheme

As we said before, the reconciliation complexity mainly focuses on the error correc-
tion process, so we mainly analyze the decoding implementation complexity. Decoding
implementation complexity mainly includes the theoretical complexity and the additional
specific implementation complexity. The former is mainly the mathematical operation com-
plexity of the decoding algorithm. The latter mainly includes control operations, storage
space usage, loop operations, and function calling. We denoted that OM represents the
mathematical calculation complexity, OC represents the control operations complexity, OS
represents the storage space usage complexity, OL represents the loop operations complex-
ity, and OF represents the function calling complexity. Same as the definition above, a check
matrix of (M, N) contains E non-zero elements. Therefore, the total complexity of decoding
K frame data according to the traditional LLR-BP algorithm is as follows

Ototal = K ∗ (OM + OC + OS + OL + OF). (17)

Since OC, OS, and OL are all related to the matrix operation structure, we can set

OC = WC ∗M ∗ N,
OS = WS ∗M ∗ N,
OL = WL ∗M ∗ N.

(18)

where WC, WS, and WL are weighting factors. Therefore, Equation (17) becomes

Ototal = K ∗ [OM + (WC + WS + WL) ∗M ∗ N + OF]. (19)

Next, we use the proposed decoding network structure for decoding. We convert the
two-dimensional matrix into a one-dimensional column vector, so we only need to pass the
calculated value of the non-zero element and the weight of the corresponding layer in each
iterative calculation. Therefore, the data processing amount reduces from M ∗ N to E (due
to the sparsity of the check matrix H, E << M ∗ N), and the network does not require loop
operations. Therefore, the total complexity becomes

O′total = K ∗ [OM + (WC + WS) ∗ E + WL ∗ 0 + OF]. (20)

In addition, the network structure is fully parallel, which means the data at the same
position of each frame perform the same operation. Therefore, we can arrange the K frame
data in columns to form the input matrix. According to the above ideas, each row of data
in the input matrix will perform the same operation. It can be seen that we have extended
the previous operation on a single data to the operation on a row of data in a matrix. This
method can significantly simplify the complexity of function calling and control operations.
Equation (20) may be rewritten as

O′′total = K ∗OM + WC ∗ E + K ∗WS ∗ E + OF. (21)

Comparing the complexities of Equations (19) and (21), we find that using a fully
parallel network structure significantly reduces the decoding implementation complexity.

In addition, the complexity of several decoding algorithms based on the same network
structure is different. The most obvious difference is the computational complexity of
the three algorithms. According to the above equations, we can easily find that each
iteration of LLR-BP includes 2E additions, (E−M) multiplications, E divisions, E tanh,
and E arctanh operations. The linear fitting method transforms exponential operations
into multiplication and addition operations. The computational complexity includes
2n multiplications, (2n − 1) additions. To balance fitting accuracy and complexity, we
finally choose n = 3. The error is small enough and will not affect the final decoding
performance. Similarly, the DNNAD adds some multiplication calculations based on the
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LLR-BP algorithm. Therefore, the computational complexity of the three algorithms is
defined as

OLLR−BP
M = 2Eadd + (2E−M)mcl + Etanh + Etanh −1

OFIT
M = (2E + 5)add + (4E−M + 6)mcl + Etanh −1

ODNNAD
M = 2Eadd + (3E−M)mcl + Etanh + Etanh −1

. (22)

However, for the DNNAD, we should also note that the weight parameters need to
occupy storage space. So, its total complexity becomes

ODNNAD
total = K ∗ODNNAD

M + WC ∗ E + (K + 1) ∗WS ∗ E + OF. (23)

Comparing the complexity of these three algorithms, we find that the linear fitting
algorithm is the least complex and, at the same time, the DNNAD is the most complex.
Nonetheless, their complexity is much lower than that of traditional decoding implementa-
tions.

Figure 9 shows the decoding speed of different decoding implementation methods
on an Intel(R) Core(TM) i7-6700K CPU and an NVIDIA GeForce GTX 1650 GPU. As we
analyzed, the network structure greatly improves the decoding speed. The same is true for
reconciliation. Therefore, we can realize high-speed reconciliation.

Figure 9. The decoding speed of different decoding implementation methods. The speed of serial
network decoding reaches 0.339 Mbits/s, which is already better than the original BP algorithm.
The speed of parallel network decoding even reaches 26.7 Mbits/s on an NVIDIA GeForce GTX
1650 GPU.

4.3. Error Correction Performance Comparison

The decoding success rate is a crucial factor that affects the reconciliation performance.
If the error correction fails, the entire data frame will be discarded. Therefore, we usually
use the frame error rate (FER) to measure the decoding success rate, expressed as the ratio
of consistent frames obtained by both terminals to the total number of frames. FER will not
affect whether the system can obtain a secure key, but to improve the practicability of the
system and enhance the reliability of communication, we should minimize FER.

We first constructed four check matrices with different code lengths and code rates.
Then, we compared the frame error rates of different algorithms. Figure 10 shows the frame
error rate of the four codewords at different iterations. We can find that the performance of
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linear fitting is close to that of LLR-BP and sometimes even better than LLR-BP. In addition,
the DNNAD generally outperforms LLR-BP. This result confirms that the improvement
ideas we analyzed before are feasible. More importantly, it proves that the proposed
decoding network structure can be applied to various codewords and has strong versatility.

Figure 10. (a) The FER performance of (144, 576) at 25 and 100 iterations. (b) The FER performance of
(1408, 1920) at 25 and 100 iterations. (c) The FER performance of (7040, 9600) at 25 and 100 iterations.
(d) The FER performance of (98304, 131072) at 25 and 100 iterations.
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4.4. Secret Key Rate

As mentioned earlier, the reconciliation efficiency directly affects the secure trans-
mission distance and secret key rate of the system. For the CV-QKD system of reverse
multi-dimensional reconciliation, the secret key rate could be defined as

K = (1− FER)(βIAB − χBE). (24)

where β is the reconciliation efficiency, IAB is the Shannon mutual information between
Alice and Bob, and χBE is the von Neumann Entropy between Bob and Eve [49–51]. The
reconciliation efficiency is determined by the performance of the LDPC code, which can be
defined as β = R/C, where R is the code rate of the LDPC code, C is the channel capacity,
and C = 1/2 ∗ log2(1 + SNR). When the check matrix used in reconciliation is determined,
C has also been determined, and β is the same. Both IAB and χBE are related to the system
parameters and the transmission distance. Generally speaking, the longer the transmission
distance, the lower the secret key rate. Therefore, we can increase the secret key rate by
decreasing the FER.

We choose the (98304, 131072) check matrix for reconciliation. According to the
simulation in the previous part, we can conclude that the Shannon limit is 0.45. Using the
above formula, we gain that the reconciliation efficiency is 93.27%. Additionally, we can
leverage the DNNAD to reduce FER and thus increase the secret key rate.

5. Conclusions

In this paper, we proposed a high-speed reconciliation scheme based on the CPU-GPU
hybrid platform. We first proposed a decoding network structure that supports high-speed
error correction considering the high complexity of reverse reconciliation based on the
LDPC code. Subsequently, we used this structure to implement two improved decoding
algorithms, reducing algorithm complexity or improving decoding performance. Finally,
we applied the improved decoder to the system to achieve high-speed reconciliation. Since
the GPU cannot reflect the advantages of the simplified algorithm, our next task is to use
FPGA to realize the special chip of high-speed reconciliation.
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