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Abstract: In the last few decades, photoinduced electron transfer (PET) based on “fluorophore-spacer-
receptor” format became the most popular approach in the design of fluorescent sensing probes. As a
result, a variety of architectures for detection of different chemical species has been synthesized, and
PET has been well-studied in liquid solutions. The extension of the principles of molecular sensors
from liquid solution onto solid support is currently a major task, which opens up new directions for
practical applications. An approach for the design of solid state fluorescence-sensing materials could
be based on aggregation-induced emission (AIE). That is why, herein, we focused our attention on
the investigation of some 1,8-naphthalimides designed on classical “fluorophore-spacer-receptor”
to serve as fluorescence-sensing materials in solid state via simultaneous PET and AIE. The effects
of different substituents were investigated, and it was found that the examined compounds with
well-pronounced AIE could be used as an efficient platform for rapid detection of pH and acid/base
vapors in solid state.

Keywords: 1,8-naphthalimide; fluorescent sensors; photoinduced electron transfer (PET); solid state
emission; acid-base vapors; strip paper; aggregation-induced emission (AIE)

1. Introduction

Owing to their importance in health care and environmental protection, great atten-
tion is currently being paid to the design and synthesis of novel fluorescence probes [1–4].
Generally, their attractiveness was based on the utilized fluorescent signaling output
and its benefits such as immediate response, high efficiency and sensitivity, cheap and
affordable equipment suitable even for field analysis [5,6]. In addition, the used fluores-
cence techniques for analysis allow noninvasive and harmless real-time imaging with
great spectral resolution in living objects that is extremely useful for modern biomedical
applications [6–12].

The intensive work in this field resulted in a large number of fluorescent probes for
detection of different chemical spices, which were based on a few photophysical phe-
nomena, including intramolecular charge transfer (ICT), twisted intramolecular charge
transfer (TICT), photoinduced electron transfer (PET), fluorescence resonance energy trans-
fer (FRET), excited-state intramolecular proton transfer (ESIPT) and aggregation-induced
emission (AIE) [13–27]. Among them, the PET model developed by A. P. de Silva us-
ing “fluorophore-spacer-receptor” became the most popular approach for the design of
fluorescence-sensing probes [28–32]. Notably, this model was distinguishable with having
simple construction and easy and predictable communication between the receptor (recog-
nition part) and the fluorophore (signaling part). That is why, in the last few decades, the
PET process was well-studied in the most common fluorophores, and a large variety of
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PET probes was reported. Furthermore, the PET probes based on the “fluorophore-spacer-
receptor” format were successfully implemented even in molecular logic gates for a more
complex analysis [33–37]. However, the design and synthesis of novel PET fluorescent
probes with improved properties and better applicability is still a great challenge. Thus,
extension of the principles of molecular sensors from liquid solution onto solid support is
currently a major task that opens up new directions for practical applications [38–40].

An approach for the design of solid state fluorescence-sensing materials could be
based on aggregation-induced emission (AIE). AIE is a relatively new strategy for the
design of fluorescence probes that is currently very attractive due to the observed unusual
high emission output in solid state and the lack of fluorescence in solution [41,42]. This
phenomenon showed the opposite results in comparison with the traditional organic
fluorophores that possessed bright fluorescence only in dilute solutions. The different
behavior of AIE probes inspired the research interest of the development of a new concept
for the design of fluorescent materials, particularly with practical applications in the fields
of OLED and chemosensing systems [43–45]. However, the reports about simultaneous
acting PET processes and AIE in organic fluorophores are very rare.

Recently, we prepared a fluorescence-sensing 1,8-naphthalimide-based probe in the
classical PET “fluorophore-spacer-receptor” format, which showed latent fluorescence
in an aggregated state due to the PET quenching process [46]. This compound was suc-
cessfully applied as a solid state chemosensing material for rapid detection of acid/base
vapors and pH in aqueous solutions due to the reversible modulation of PET after expo-
sure to acid/base vapors. These results encouraged us to extend this concept to variety
of 1,8-naphthalimide derivatives and to determine the influence of different substituents
on the effectiveness of the probes.

2. Materials and Methods
2.1. Materials

Commercially available 1,8-naftalic anhydride, 4-chloro-1,8-naftalic anhydride, 4-bromo-
1,8-naftalic anhydride, 4-nitro-1,8-naphthalic anhydride, n-butylamine, ethylenediamine, N,N-
dimethylethylenediamine, N-(2-hydroxyethyl)ethylenediamine, N-methylpiperazine, allyl
amine, allyl alcohol, chloroacetyl chloride and methyl acrylate (Sigma-Aldrich Co., St. Louis,
MO, USA and Fisher Scientific, Waltham, MA, USA) were used as purchased without further
purification. 1,8-Naphthalimides 1–4 and 7–11 were synthesized as described before [47–51].
The intermediate compound N-[2-(2-hydroxylethylamino)-ethyl]-1,8-naphthalimide 5 was
synthesized according to the previously reported procedure [52]. The solvents used in the
synthetic procedures and in the photophysical investigation, HCl and NH3 (Sigma-Aldrich
Co., Ltd., St. Louis, MO, USA and Fisher Scientific, Waltham, MA, USA), were pure or of
spectroscopy grade.

2.2. Methods

FT-IR spectra were recorded on a Thermo Scientific Nicolet iS20 FTIR spectrometer
(Thermo Fisher Scientific, Waltham, MA, USA). The 1H NMR analysis was performed on
a Bruker AV-600 spectrometer (BRUKER AVANCE II+ 600 MHz, Bruker, Billerica, MA,
USA) with an operating frequency at 600 MHz. Electrospray ionization mass spectra
(ESI-MS) were obtained on a Bruker MicrOTOF-Q system (Compass, Bruker, Billerica, MA,
USA). The elemental analysis data were obtained on an automated EuroEA3000 CHNS-O
Analyzer (Euro Vector S.P.A, Pavia PV, Italy). The TLC monitoring was performed on silica
gel, ALUGRAM®SIL G/UV254, 40 × 80 mm, 0.2 mm silica gel 60. A Hewlett-Packard
8452A spectrophotometer (Agilent Technologies, Inc., Santa Clara, CA, USA) was used for
the UV-Vis absorption measurements. The photophysical study was performed at room
temperature (25.0 ◦C) in 1 × 1 cm quartz cuvettes. The fluorescence spectra were recorded
using a Scinco FS-2 spectrofluorimeter (Scinco, Seoul, Korea). The solid films were obtained
by deposition of the probe solutions on a glass plate and evaporation of the solvent.
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2.3. Synthetic Procedures
Synthesis of 1,8-Naphthalimide 6

To a solution of methyl acrylate (6.3 mL, 20 mmol) in 10 mL of methanol, a solu-
tion of 1,8-naphthalimide 5 (1 g, 3.5 mmol) in 10 mL of methanol was added dropwise
for a period of 30 min. The reaction mixture was stirred for 3 days at room tempera-
ture, and the excess of methyl acrylate was removed under vacuum, whereupon the ester-
functionalized derivative 6 was obtained as yellow-brown oil (1.27 g, 98%). FT-IR (KBr) cm−1:
1732 (ν MeO-C=O); 1701 (νas N-C=O); 1648(νs N-C=O). 1H NMR (CHCl3-d, 600.13 MHz) δ
8.63 (dd, 2H, J = 7.3 Hz, J = 1.1 Hz, naphthalimide H-2 and H-7), 8.25 (dd, 2H, J = 8.2 Hz,
J = 1.1 Hz, naphthalimide H-4 and H-5), 7.78 (dd, 2H, J = 8.2 Hz, J = 7.3 Hz, naphthalim-
ide H-3 and H-6), 4.31 (t, 2H, J = 6.7 Hz, (CO)2NCH2), 3.65 (dd, 2H, J = 6.4 Hz, J = 3.7 Hz,
CH2CH2CO), 3.49 (s, 3H, OCH3), 2.90 (m, 4H, NCH2CH2OH), 2.80 (dd, 2H, J = 6.4 Hz,
J = 3.7 Hz, CH2CH2CO) and 2.46 (t, 2H, J = 6.7 Hz, (CO)2NCH2CH2). Calculated for
C20H22N2O5 (MW 370.40) C 64.85, H 5.99, N 7.56%; found C 65.02, H 6.05, N 7.47%. Positive-
ion ESI-MS at m/z: 371.0122 [M + H]+.

3. Results and Discussion
3.1. Design and Synthesis

We focused our study on the 1,8-naphthalimide fluorogenic molecules due to their
bright fluorescence, large stokes shifts and high photo and chemical stability [53,54]. All
compounds under study were designed as PET fluorescent probes based on a classical
“fluorophore-spacer-receptor” model where the electron-rich tertiary anime is the proton
receptor and the 1,8-naphthalimide fluorophore is the fluorescence signaling part. The
rational synthetic methods for obtaining 1,8-naphthalimide chemosensors allows two
possibilities for incorporation of PET receptor fragments in this fluorophoric system. For
the first one, the receptor fragment known as “Upper-receptor” is bound to N-position
of the 1,8-naphthalimide architecture, while in the second one, the receptor fragment
named “Lower-receptor” is directly attached to a C-4 position of the 1,8-naphthalimide
fluorophore [55].

Thermodynamically, both PET paths from the unprotonated amino receptors are
feasibly equal but require the electron to enter the fluorophore across a different electric
field, which affects its efficiency [47,56]. It is well-known that the 1,8-naphthaimide fluo-
rophoric system is an ICT “push-pull” π-electron system where, in the excited state, strong
charge transfer occurs from the C-4 electron-donating position to the carbonyl electron-
accepting groups, and considerable dipole character is generated (negative pole at the
imide terminus) [57,58]. A large dipole moment in the excited state gives rise to a strong
photogenerated electric field. Depending on its charge and magnitude, this molecular elec-
tric field could inhibit or accelerate a transiting electron in the 1,8-naphthalimide excited
state. Thus, the fluorescence-quenching PET process is accelerated in the “Lower-receptors”
systems, where the electrons enter the space of the 1,8-naphthalimide fluorophore across
its attractive electric field (Scheme 1).
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However, in the “Upper-receptor” systems, the strong repulsive character of the resulted
field around the imide moiety seriously restricts the PET process from the N-position in the
electron-rich architectures such as 4-amino-1,8-naphthalimides [59–61].

This effect is reduced in the unsubstituted or 4-halogen-substituted electron-poorer
derivatives, which generate a weaker repulsive field around the imide cycle of the fluo-
rophore [48,62]. That is why we chose the C-4 unsubstituted and 4-c-halogeno-substituted
1,8-naphthaimide units during the study of “Upper-receptor” systems instead of the com-
monly used 4-amino- or 4-oxy-substituted derivatives (Scheme 2).
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Furthermore, the effect of the “Lower-receptors” was investigated in common 4-oxy,
4-amino and 4-amido 1,8-naphthaimides (Scheme 3).
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Compounds 1–3 and 5 were obtained according to previous reports [49,50,52] after con-
densation of 1,8-naphtalic anhydride or 4-halogeno-1,8-naphtalic anhydride with the corre-
sponding amines (N,N-dimethylethylenediamine or N-(2-hydroxyethyl)ethylenediamine)
in boiling ethanol. 1,8-Naphthalimide 4 was prepared, as we reported before, by interaction
of ethylene diamine and 1,8-naphthalic anhydride in water [47]. The novel PET probe 6
was synthesized after Michael addition of methyl acrylate to 1,8-naphthalimide 5 at room
temperature in methanol.

The 1,8-naphthalimides under study containing “Lower receptors” were synthesized, as
we reported before, according to Scheme 5 [40,63].
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Scheme 5. Synthesis of 1,8-naphthalimides 7–11.

All compounds were obtained from intermediate 4-nitro-1,8-naphthalimide that was
synthesized after reaction of n-butylamine with 4-nitro-naphthalic anhydride in boiling
ethanol. The reference compounds 8 and 10 were prepared after nucleophilic substitution
of the nitro group with allyl amine or allyl alcohol in DMF at room temperature. The PET
probes 7 and 9 were obtained similarly to 8 and 10 using N,N-dimethylethylenediamine or
N-dimethylethanolamine instead of allyl amine and allyl alcohol. The 1,8-naphthalimide
11 was prepared in three steps, as we reported before [63]. In first step, the N- butyl-4-nitro-
1,8-naphthalimde was reduced selectively to N-butyl-4-amino-1,8-naphthalimde using
SnCl2. Then, the amino group was acetylated with chloroacetyl chloride, and the obtained
intermediate was reacted with methylpiperazine to afford the fluorescence probe 11.

The 1,8-naphthalimides under study were prepared as solid state emissive probes
with PET fluorescence-sensing signaling output. In order to examine the PET process in
solid state, all of the compounds were dissolved in a 1:1 binary solvent mixture of ethanol
and chloroform. Then, the so-prepared saturated solutions (10−2 M) were sprayed onto a
glass, and the solvent was evaporated in air. The resulted film was exposed for 2 s to HCl
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and then to NH3 vapors. The glass samples were photographed, and their fluorescence
spectra were recorded after each exposure.

3.2. Chemosensing Properties
3.2.1. 1,8-Naphthalimides Containing “Upper-Receptor”

The 1,8-naphthalimide 1 is a typical fluorescence-sensing system based on the
“fluorophore-spacer-receptor” format with well-pronounced PET [50]. Due to the PET
process, compound 1 showed a very low fluorescence emission in diluted solution. Af-
ter protonation of the tertiary amino receptor, the PET quenching process was cut off,
and bright fluorescence appeared in a range of 350–500 nm with a maximum at 396 nm
(Figure 1).
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Figure 1. Normalized fluorescence spectra of probe 1 in water solution at pH 4 and thin film of
probe 1 exposed to HCl vapors.

In concentrated solution, compound 1 displayed low green fluorescence that decreased
after dilution (Figure 2a). The observed green fluorescence in concentrated solutions
was usual for unsubstituted and 4-halogeno-substituted 1,8-naphthalimides, as it was
attributed to aggregation-induced emission (AIE). However, the previously reported 1,8-
naphthalimides showed a much stronger fluorescence, probably due to the lack of a PET
quenching process in their architectures. To confirm this statement, a powder of 1 was
exposed to acid vapors (HCl) and, under a UV-lamp (λ = 366 nm), was found that due to
the prevented PET, compound 1 has a bright emission in aggregated state after exposure
of acid vapors (Figure 2b). Obviously, the observed fluorescence properties of 1 were
based on the simultaneous acting latent AIE and quenching PET. The use of powder for
sensing purposes is inappropriate, which is why probe 1 was studied in thin film on glass
support as a fluorescence-sensing material in aggregated state. However, in order to obtain
latent AIE, the thin films were prepared from concentrated solutions containing 10−2 M of
compound 1; otherwise, the use of diluted solutions resulted in a dominant monomeric
fluorescence emission.

Similarly to the diluted solution, the prepared thin film based on probe 1 showed low
fluorescence before exposure to HCl vapors and highly intensive fluorescence emission
due to the disallowed PET after exposure (Figure 3), which was visible even to a naked
eye (Figure 4). However, the observed fluorescence was broad and in the spectral region
of between 370 nm and 600 nm, with a maximum at 450 nm (Figure 1). The observed
red-shifting fluorescence spectrum of probe 1 in an aggregated state compared to that
in diluted solution was expectable, and it could be explained with the formation of J-
aggregates [64,65]. According to Kasha’s exciton theory in J-aggregation, the state of the
molecule is regarded as a dipole, and the excitonic state of the aggregate splits into two
levels through the interaction of transition dipoles.
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It was found that the bright fluorescence of the thin film of compound 1 exposed
to HCl vapors could be turned “off ” to its initial state after exposure to NH3 vapors
(Figure 3). In addition, the emission of the thin film was transferred between “off ” and
“on” state reversibly 10 times without significant changes in both states. The observed
fluorescence enhancement was calculated to be FE = 13.3 (the maximum fluorescence
intensity of the compound when exposed to hydrochloric vapors divided by the maximum
fluorescence intensity after exposure to ammonia vapors). Furthermore, the resulting
fluorescent and nonfluorescent films showed stable fluorescent output at room conditions
for at least 2 weeks. These results clearly showed that compound 1 could be used as an
efficient platform for the rapid detection of acid/base vapors in solid state.

Paper is a promising material for fabrication of smart devices such as chemosensors
because it allows easier operation and portability at very low cost [66–69]. That is why a so-
lution of 1 was poured onto a filter paper and the solvent was evaporated in order to obtain
strip papers with chemosensing properties. The so-prepared strip papers showed exactly
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the same fluorescent response toward acid/base vapors as the filmed glass plate. Addi-
tionally, their ability to determine pH in aqueous solution was studied and found that the
obtained strip papers based on compound 1 are a suitable indicator for the determination
of pHs in a pH window 2.5–1.5 (Figure 5).
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In order to determine the solid state chemosensing properties and the influence of
the C-4 substituents of 4-halogen-substituted 1,8-naphthalimides based on the classic PET
“fluorophore-spacer-receptor” format, compounds 2 and 3, containing chlorine and bromine
in the C-4 position, were also involved in the present study. It was found that the C-4
halogen favored the solid state emission in the 1,8-naphthalimide PET system and the effect
of the different C-4 halogens was negligible (Figure 6). As can be seen from Figure 6A, after
exposure to HCl, the thin film of compounds 2 and 3 showed bright fluorescence in the
range of 400–600 nm, with a maximum at about 480 nm. Similarly to compound 1, both
films reversibly turned their emission between the “off ” and “on” state after exposure to
HCl and NH3 vapors (Figure 6B) several times, as the observed fluorescence enhancement
was more than 60 times (FE = 64.2). The prepared strip papers from compounds 2 and 3
showed exactly the same response as probe 1.
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Figure 6. Normalized fluorescence spectra of thin films of 2 and 3 (λex = 370 nm) exposed to HCl
vapors (A) and fluorescence spectra of solid film of probe 2, exposed first to HCl and then to NH3

vapors (B).

Furthermore, the thin film of compound 4 was studied after exposure to HCl and NH3
in order to determine the ability of primary amine to serve as a PET proton receptor in
aggregated state. The results obtained were consistent with those in solution. The thin film
of 4 showed well-pronounced AIE centered at 513 nm due to the possibility of primary
amine to participate in hydrogen bonding, which stimulates AIE. However, the observed
films showed a weak chemosensing response due to the lower oxidation potential of the
primary amine, which lowered the feasibility of the PET process. The observed fluorescence
enhancement after exposure to HCl and NH3 vapors was FE = 1.4 (Figure 7).
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(λex = 370 nm).

The above results showed the great potential of the PET-based 1,8-naphthalimides
with “Upper-receptor” to serve as efficient probes for rapid detection of acid/base vapors
in solid state. However, the introduction of amines in 1,8-naphthalimides’ N-position
increased their water solubility and could affect the thin film stability in the presence of
water vapors. That is why, herein, the chemosensing properties of thin film based on
compound 5, which was well-known as a highly water-soluble PET probe [52], was studied
and why the observed results were compared with a similar compound, 6, with higher
hydrophobicity. Both compounds have a very similar fluorescence-sensing behavior in
aggregated state. After exposure to HCl, the thin films based on 5 and 6 showed, due to the
hindered PET, a bright fluorescence, with a maximum at 490 nm (Figure 8). Additionally,
both films were switched reversible between the “off ” and “on” states using HCl and
NH3 vapors with fluorescence enhancement about 60 times (FE = 56.2 for compound 5
and FE = 59.5 for compound 6).
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then to NH3 vapors (λex = 370 nm).

However, due to the different solubility, both films showed different stability af-
ter exposure to water vapors. As can be seen from Figure 9, the thin film based on
compound 5 showed a monomeric blue emission due to the dissolved molecules on the
surface (Figure 9a). At the same time, the thin film based on compound 6 showed a constant
starting green emission (Figure 9b).
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Figure 9. Solid film under UV lamp of probe 5 (a) and probe 6 (b), exposed to water vapors.

3.2.2. 1,8-Naphthalimides Containing “Lower-Receptor”

Due to their strong emission in the visible spectral region, the most common PET
sensing 1,8-naphthalimides are their 4-amino, 4-oxy and 4-amido substituted derivatives.
However, they possess a strong electron-donating group in the C-4 position of the fluo-
rophoric system, which generates a strong electron repulsive field around the imide group
in the excited state, and the PET in these systems usually occurs only in architectures with
a “Lower-receptor” fragment.

Compound 7 is a typical 4-oxy-substituted PET probe containing “Lower-receptor”. In
thin film, it showed low fluorescence emission, which was amplified after exposure to HCl
vapors about 10 times due the protonation of the tertiary amino receptor, which prevented
PET quenching process. The fluorescence spectrum of 7 in thin film was completely
different in comparison with the above registered for the “Upper-receptor” PET systems in
the “on” state. As can be seen from Figure 10, the solid state fluorescence emission of 7
showed two well-pronounced bands centered at 452 nm and 562 nm. These bands could be
attributed to the presence of both monomeric and aggregation-induced emission in solid
state [44]. In order to conform this assumption, 1,8-naphthalimide 8 without PET receptor
was also investigated as thin film on glass support. As we expected, the fluorescence
spectrum of compound 8 in solid state was similar compared to the fluorescence spectrum
of 7, but with monomeric emission at 436 nm, aggregation-induced emission at 492 nm and
lack of chemosensing response.
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For a difference of compound 7, the 4-amino substituted PET probe 9 in thin film 
showed a very low fluorescence emission centered at 550 nm with negligible sensing 
properties toward HCl and NH3 vapors (Figure 13A). The resulted fluorescence placed 
around the monomeric emission of 4-amino-1,8-naphthalimide in solid film of 9 could be 
attributed to the lack of aggregation-induced emission of 4-amino-1,8-naphthalimide 
derivatives. To confirm this statement, 4-allylamino-1,8-naphtalimide 10 without a PET 
receptor was involved in the present study. The results obtained clearly showed that that 

Figure 10. Fluorescence spectra of solid film of probe 7 (A) and compound 8 (B), exposed first to HCl
and then to NH3 vapors (λex = 370 nm).

The thin film based on 7 showed a reversible fluorescence response after exposure to
HCl and NH3 vapors (Figure 11), as the observed “off ” and “on” states showed constant
and stable fluorescence output for at least two weeks.
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Figure 11. Solid film of probe 7 under UV lamp exposed first to HCl (a) and then to NH3 (b) vapors.

In addition, the prepared strip papers from compound 7 showed pH fluorescence-
sensing properties exactly in the same pH window as the above studied compounds
possessing “Upper-receptor” (Figure 12). This result clearly illustrates that the different
substituents do not show any effect on the PET sensing response in 1,8-naphthalimides on
the strip paper.
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Figure 12. Fluorescent response of strip papers based on 1,8-naphthalimide 7 at different pHs.

For a difference of compound 7, the 4-amino substituted PET probe 9 in thin film
showed a very low fluorescence emission centered at 550 nm with negligible sensing
properties toward HCl and NH3 vapors (Figure 13A). The resulted fluorescence placed
around the monomeric emission of 4-amino-1,8-naphthalimide in solid film of 9 could
be attributed to the lack of aggregation-induced emission of 4-amino-1,8-naphthalimide
derivatives. To confirm this statement, 4-allylamino-1,8-naphtalimide 10 without a PET
receptor was involved in the present study. The results obtained clearly showed that that
lacks aggregation-induced emission in 4-amino-1,8-naphthalimides (Figure 13B); therefore,
they are not suitable for solid state chemosensing probes.
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then to NH3 vapors, and compound 10 (B) exposed to HCl.

Furthermore, we found that, similarly to probe 9, compound 11 did not show any
chemosensing fluorescence response toward HCl and NH3 vapors in thin film (Figure 14),
but the observed fluorescence output was on the opposite side compared to that of 9.
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Figure 14. Fluorescence spectra of solid film of probe 11, exposed first to HCl and then to NH3 vapors
(λex = 370 nm).

In solid state, 11 showed a constant bright emission before and after exposure to HCl
and NH3 vapors in both thin film and strip papers. This effect can be easily explained
by the presence of an acidic amide group and a basic methyl piperazine amine in 11,
whose intermolecular interaction favors and stabilizes the process of aggregate formation
and AIE under the blocked PET process due to the engaged amine receptor. As a result,
compound 11 showed well-pronounced AIE, but it was not suitable for a solid state emissive
chemosensing probe due to the lacked PET quenching process.

All the results presented above clearly show the great potential of unsubstituted,
4-halogeno-substituted and 4-oxy-substituted 1,8-naphthalimides based on the classic PET
“fluorophore-spacer-receptor” format to serve as chemosensing materials for acid/base
vapors in aggregated state due to the simultaneous action of AIE and PET. The results
presented here could be seen as a contribution to the development of the applied sensory
chemistry from liquid solution toward solid support. The previous reports in this field were
directed to synthesis of PET sensor beads, which required a complicated synthetic process
for immobilization and utilization on polymer beads [38,70]. In contrast to the previous
reports, the concept presented here was achieved simply and easily, especially since the
covalent attachment to the surface of the polymer beads could not generate fluorescent
aggregates; therefore, the resulting sensors showed only monomeric fluorescence emission
as output. In particular, Thapa et al. prepared a dry-phase PET fluorescence sensor
on a glass support; however, the sensing signal obtained after evaporation of a diluted
solution of the fluorescent probe in its “off ” or “on” state was a well-pronounced monomer
emission [71], while the films in this study were obtained from concentrated solutions and
showed the typical reaction for the 1,8-naphthalimdes AIE. Similarly, the obtained strip
papers also operated via AIE due to their preparation from high concentrated solutions
of the PET probes (10−2 M) instead of the usually used diluted solutions (10−4 M), which
resulted in a probe’s monomeric fluorescence [72].

4. Conclusions

In summary, we presented here the synthesis of a series of 1,8-naphthalimide deriva-
tives and investigation of their ability to act as fluorescence-sensing materials for acid/base
vapors in solid state via simultaneous photoinduced electron transfer (PET) and aggregation-
induced emission (AIE). All compounds under study were designed as PET fluorescent
probes based on a classical “fluorophore-spacer-receptor” model, where the electron-rich
tertiary anime is the proton receptor and the 1,8-naphthalimide fluorophore is the fluo-
rescence signaling part. The implemented investigation and the results obtained showed
that the thin films and strip papers of 1,8-naphthalimide derivatives with “Upper-receptor”,
which are unsubstituted in the C-4 position or the substituent, have a weak electron-donor
or even electron-acceptor character, due to the fact that the generation of a weak repulsion
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field in the fluorophore molecule could be used as an efficient platform for rapid detection
of acid/base vapors in solid state. The study showed that the emission of the thin films was
transferred between the “off ” and “on” states reversibly at least 10 times without significant
changes in both states and with considerable fluorescence enhancement. In addition, the
ability of this type of 1,8-naphthalimides to determine pH in aqueous solution was studied,
whereby it was found that the obtained strip papers are suitable indicators for determina-
tion of pHs in a pH window of 1.5–2.5. In contrast to “Upper-receptor” compounds, those
with “Lower-receptor”, such as 4-amino and 4-amido 1,8-naphthalimides, turned out to be
insufficiently suitable indicators for acid/base vapors in solid state.
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