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Abstract: In coherent optical communication systems, where multiple modulation formats are mixed
and variable, the correct identification of signal modulation formats provides the foundation for
subsequent performance improvement using digital algorithms. A modulation format identification
(MFI) scheme based on signal constellation diagrams and support vector machine (SVM) is proposed.
Firstly, the signal constellation diagrams are divided by the fractal dimension of the weighted linear
least squares (WLS-FD) algorithm, and the fractal dimension (FD) in each region is calculated, which is
regarded as one of the image features. Then, the feature values of the image in different directions are
extracted by the gray-level co-occurrence matrix (GLCM), and their mean and variance are calculated,
which is regarded as another feature. Finally, the two features are input into the modulation format
classifier constructed by the SVM to achieve MFI in coherent optical communication systems. To
verify the feasibility and superiority of the scheme, we compare it with the MFI scheme based on
higher-order statistical (HOS) features, GLCM features, and FD features, respectively. Further, we
built a 30 GBaud coherent optical communication system with fiber lengths of 80 km and 120 km,
where the optical signal-to-noise ratio (OSNR) ranges from 0 dB to 30 dB. The proposed MFI scheme
identifies seven modulation formats: QPSK, 8QAM, 16QAM, 32QAM, 64QAM, 128QAM, and
256QAM. The results show that compared with the other three schemes, our proposed scheme has a
better identification accuracy at low OSNR. In addition, the identification accuracy of this scheme can
reach 100% when the OSNR ≥ 10 dB.

Keywords: signal constellation diagrams; support vector machine (SVM); coherent optical
communication; modulation format identification

1. Introduction

With the rapid development of services such as 5G, cloud computing, high definition
video, and cloud conferencing, the demand for bandwidth and spectrum utilization is
increasing [1–5], and the channel capacity in optical communication systems is growing
exponentially. The future fiber optic communication systems are expected to be dynamic
and diverse, which can accommodate a wide variety of signals and have different modu-
lation formats to meet the different needs of users [6–10]. In addition, optical signals are
susceptible to various transmission impairments that change dynamically in time, which
places new demands on optical receivers. At the digital receiver, demodulate the trans-
mitted signal; it is necessary to know the type of modulation format; therefore, correctly
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identifying the modulation format is critical for high-quality communication [11–13].
Currently, existing algorithms for modulation format identification (MFI) are broadly

classified into two categories according to the identification principle of the algorithm.
One is the likelihood-based (LB) method of hypothesis testing based on the likelihood
function, which minimizes the probability of false identification and provides the optimal
solution on Bayesian ideals [14–16]; however, this method contains higher computational
complexity and is not easy to implement. Another category is the feature-based (FB) iden-
tification method, which is also the approach taken in this paper. This method has to
extract significant features from the received signal and then identify the signal modulation
format. Although FB is a sub-optimal method, it is usually more straightforward and easier
to implement and can also provide near-optimal identification performance if properly
designed [17–20]. For example, an MFI scheme based on lightweight convolutional neural
networks (CNN) in the 2D-Stokes planes is proposed in [17]. The authors in [18] proposed
an MFI scheme that depends on using CNNs on constellation diagrams. A blind optical
MFI scheme based on the Hough transform of the constellation diagram is proposed in [19],
which is used to display phase and magnitude information. In [20], the authors proposed a
modulation classification scheme based on signal constellation diagram and deep learning
to identify different modulated signals. Most of the above MFI techniques can identify
modulation formats such as QPSK, 16QAM, and 64QAM. To the authors’ knowledge, MFI
has not been considered in the literature for higher-order QAM signals.

In this paper, an MFI scheme based on signal constellation diagrams and support
vector machine (SVM) is proposed. Firstly, the signal constellation diagrams are divided by
the fractal dimension of the weighted linear least squares (WLS-FD) algorithm, and each
region’s fractal dimension (FD) is calculated, regarded as one of the image features. Then,
the feature values of the image in different directions are extracted by the gray-level co-
occurrence matrix (GLCM), and their mean and variance are calculated, which is regarded
as another feature. Finally, the two features are input into the modulation format classi-
fier constructed by the SVM to achieve MFI in coherent optical communication systems.
To verify the feasibility and superiority of the scheme, we compare it with the MFI scheme
based on higher-order statistical (HOS) features, GLCM features, and FD features, re-
spectively. Further, we built a 30 GBaud coherent optical communication system with
fiber lengths of 80 km and 120 km, where the optical signal-to-noise ratio (OSNR) ranges
from 0 dB to 30 dB. The proposed MFI scheme identifies seven modulation formats: QPSK,
8QAM, 16QAM, 32QAM, 64QAM, 128QAM, and 256QAM. The results show that compared
with the other three schemes, our proposed scheme has a better identification accuracy at
low OSNR. In addition, the identification accuracy of this scheme can reach 100% when the
OSNR ≥ 10 dB.

2. Theory and Principle

The architecture of the MFI scheme proposed in this paper is shown in Figure 1. Firstly,
the signal constellation diagrams are divided by the WLS-FD algorithm, and the FD in
each region is calculated, which is regarded as one of the image features. Then, the feature
values of the image in different directions are extracted by the GLCM, and their mean and
variance are calculated, which is regarded as another feature. Finally, the two features are
input into the modulation format classifier constructed by the SVM. Meanwhile, to facilitate
the learning of feature data by the SVM learning algorithm, it is necessary to change the
feature data into one-dimensional data. The training feature data and test feature data are
obtained by randomly extracting the feature set several times according to the ratio of 7:3,
and the number of samples is 6370 and 2730, respectively.
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Figure 1. The architecture of the MFI scheme.

2.1. Extraction of Signal Constellation Diagram Features

The characteristics of the image surface can be described using FD [21,22]. Larger
fractal dimension values indicate more complex image surfaces, which usually correspond
to rougher textures. In contrast, images with smooth surfaces typically have relatively
small fractal dimension values. Based on the above considerations, the image FD is chosen
as one of the features to measure image quality. The box-counting (BC) method proposed
by Sarkar and Chaudhari is used to calculate the fractal dimension of the images [23].
Although the BC method can estimate the BC of the fractal image, there are certain defects,
and it can not reflect the inhomogeneity of this graph, so the differential box-counting
(DBC) method is used. Most researchers employed linear least squares (LLS) regression
to calculate the FD of the images; however, it is susceptible to outliers. Furthermore,
it provides equal weight to all points while drawing a line, which is impracticable; therefore,
in this paper, the FD of the images is obtained using WLS regression, and each fitting point
is given a distinct weight using the trapezoidal membership function (TMF). As a mature
statistical image analysis method [24], GLCM has excellent flexibility and robustness, and
the technique is simple, which is extensively utilized in the field of statistical analysis.
The co-occurrence matrix is acquired by calculating the grayscale image and its different
features in different directions to obtain the feature values. Finally, the mean and variance
of these feature values are calculated as the image features.

The algorithm flow for extracting signal constellation diagram features is shown in
Figure 2. When calculating the fractal dimension of the constellation diagrams as an input
image, because the gray value in the area of the vector point concentration is generally
higher than other blank areas, the calculated fractal dimension is bound to have a big
difference. The constellation diagrams are divided into 16 ∗ 16 regions, and the subsequent
dimensional judgments and fractal box dimensions are calculated for each region separately.
WLS-FD sorts the fractal box dimensions calculated from each small region according to
the region’s location as one of the image features.

Figure 2. Algorithm flow for extracting signal constellation diagram features.
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Calculating the constellation diagrams is similar to constructing a three-dimensional
surface on which pixels are located along (x, y), and their grayscale values represent the
third coordinate z. The fractal image of pixel size M ∗M is divided into small pieces of size
s ∗ s, where M

2 ≥ s > 1 and s is an integer. The scale of the grid is r, which is calculated
by s

M . Each small block has a column of s ∗ s ∗ h boxes. Where G is the total amount of
gray levels in an 8-bit grayscale image, which is 256, and the height h of the box can be
formulated as [23] Equation (1):

h =
s

M
× G (1)

The image’s highest and lowest gray levels at position (i, j) fall in the uth and νth boxes,
respectively, and the total amount of boxes that are size s ∗ s × h comes to nr, which is
obtained by Equation (2):

nr(i, j) = u− ν + 1 (2)

The value of all grids is Nr, which can be obtained by Equation (3):

Nr = ∑i,jnr(i, j) (3)

The weight for each grid size is assigned by WLS-FD using the rules of the TMF. Each
point (xd, yd) on the fitting line corresponds to a different grid size s, which is assigned the
weight W(s). Where xd = log 1

r , yd = log Nr, the weight of the point (xd, yd) is written as
W(s), which can be used with ws instead of each other. The weight for each data point is
assigned by TMF using Equation (4):

W(s) =



0, s ≤ at
s−at
bt−at

, at < s < bt

1, bt ≤ s ≤ ct
dt−s
dt−ct

, ct < s < dt

0, s ≥ dt.

(4)

According to Equation (4), TMF divides all data points into five parts with intervals of
(−∞, at], (at, bt), [bt, ct], (ct, dt), and [dt,+∞), respectively. The points in the first and fifth
parts have a weight of 0, while the points in the third part have a weight of 1. The points in
the second and fourth parts have weights in the range (0, 1). In this paper, the values of at,
bt, ct, and dt are estimated by Equation (5):

at = smin − 1

bt =
∣∣∣ 3
√

M
∣∣∣

ct = max
{

s
[(

M
s

)
+ 1 ≤

(
M

s− 1

)]}
dt = smax + 1

(5)

Since the size of all the images we use is 512× 512 pixels, we can obtain at = 1, bt = 8,
ct = 27, and dt = 257 by Equation (5). After the weight of the points (xd, yd) are obtained.
Fitting these points to the regression line y = ax + b via WLS. The FD of the image is
calculated by Equation (6):

DA =
(∑r wsxdyd)(∑r ws)− (∑r wsyd)(∑r wsxd)(

∑r wSx2
d
)
(∑r wS)− (∑r wsxd)

2 (6)

The GLCM is an n ∗ n square matrix, where n is the number of gray-level cate-
gories in the image. The (i, j) elements in the matrix represent the number of pixel pairs.
By calculating the GLCM in four directions (0◦, 45◦, 90◦and 135◦), GLCM[p(i, j)]is normal-
ized by Equation (7):
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p(i, j)
ε
⇒ p̂(i, j) (7)

where ε is the constant of normalization.
Angular second moment m1, entropy m2, contrast m3, and correlation m4 are used to

perform image block retrieval, which can be calculated by [24] Equation (8):

m1 = ∑i∑jP(i, j)2

m2 = −∑i∑jP(i, j) log P(i, j)

m3 = ∑i∑j(i− j)2P(i, j)

m4 =

[
∑i∑j((i ∗ j) ∗ P(i, j))− µxµy

]
σxσy

(8)

where: µx = ∑i∑ji ∗ P(i, j), µy = ∑i∑j j ∗ P(i, j), σx = ∑i∑j(i− µx)
2 ∗ P(i, j),

σy = ∑i∑j
(

j− µy
)2 ∗ P(i, j). The final texture features in this paper are calculated us-

ing the mean and variance of m1, m2, m3, and m4.

2.2. MFI Classifier Based on SVM

The SVM [25] is used to build the MFI classifier for processing the extracted signal
constellation diagram features. The robustness of the classification algorithm is improved
by constructing a linear segmentation hyperplane with maximum boundaries to classify
all data correctly. A training dataset D = {(x1, y1), (x2, y2), · · · , (xM, yM)} containing M
samples is given. The samples’ feature vectors and labels are xi and yi, respectively, where
the feature vector satisfies xi =

(
x(1)i , x(2)i , · · · , x(m)

i

)
with m features and the labels satisfy

yi ∈ {−1,+1}. To train the maximum margin model with parameters w ∈ RD and b ∈ R,
it solves the following optimization problem:

min
w,b

1
2
‖w‖2

Subject to yi

(
wTxi + b

)
≥ 1, i = 1, · · · , N

(9)

According to the feature vector xi and Lagrange multiplier pairs λi, λ∗i [26], the
classification decision function is calculated by Equation (10):

f (x) =
M

∑
m=1

(λi − λ∗i )〈xi, x〉+ b (10)

The classifier’s performance is measured by comparing the predicted results with yi,
and the classification accuracy is expressed by Equation (11):

P =
1
M

M

∑
m=1

II( f (xi) = yi) (11)

where II denotes the indicative function, which is 1 when the condition inside the brackets
holds and 0 otherwise. According to Equation (11), the accuracy of the classifier is obtained
by adding the number of predicted samples with the same labels as the original ones and
dividing them by the total number of samples M.

3. Simulation Setup and Results
3.1. Simulation Setup

The configuration of the simulation system is depicted in Figure 3. First, the pseudo-
random bit sequence (PRBS) is generated and used to generate different modulated signals
in the arbitrary waveform generator (AWG), where the digital-to-analog converter (DAC)
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module turns the digital signal into an analog signal. In the Mach–Zehnder modulator
(MZM), four signals are modulated to two optical carriers with different polarization states.
The optical carriers are generated by a continuous-wave (CW) laser with a center frequency
of 193.1 THz and divided into different polarization states by a polarization beam splitter
(PBS). Then, the two polarization states of the modulated optical signal are combined
into one using a polarization beam combiner (PBC). The transmission links are 80 km
and 120 km single-mode fiber (SMF) with an attenuation coefficient of 0.2 dB/km and a
dispersion coefficient is 16.75 ps/nm/km. The amplification gains of the erbium-doped
fiber amplifier (EDFA) are 16 dB and 24 dB, respectively. Then, the optical signals are
transmitted through SMF and amplified by EDFA, which can completely compensate for
the fiber attenuation loss in the process of optical signal transmission. Two optical signals,
I and Q, are obtained at the receiver, and the photodiode is used to modulate the optical
signals into analog signals. Next, after the coherent receiver, the analog signal is converted
into a digital signal by the analog-to-digital converter (ADC) module. Further, dispersion
compensation (DC), resampling, timing recovery, and constant mode algorithm (CMA)
equalization are performed sequentially at the DSP. Finally, the required constellation
diagrams are generated. The parameters of the coherent optical communication system are
shown in Table 1.
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Figure 3. Simulation system setup.

Table 1. Cohert optical fiber communication system parameters.

Parameter Type Value

Central wavelength 193.1 THZ
Signal Rate 30 GBaud

Fiber input power 10 dBm
Optical amplifier EDFA

EDFA gain 16 dB, 24 dB
EDFA noise 4 dB

Fiber SMF
Fiber attenuation coefficient 0.2 dB/km
Fiber nonlinear coefficient 1.31 (W·km)−1

Fiber dispersion coefficient 16.75 ps/(nm·km)
Fiber distance 80 km, 120 km
OSNR range 0 dB∼30 dB

3.2. Results and Discussion

The simulation system generated 9100 constellation diagrams in PNG format, which
have a pixel size of 512× 512. The sample constellation diagram obtained after 80 km SMF
transmission is shown in Figure 4.
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Figure 4. The sample constellation diagram obtained after 80 km SMF transmission.

Seven modulation signal samples are used in the test set for the simulation test,
according to the proposed MFI scheme. As shown in Figures 5 and 6, the overall and
average identification accuracy at low OSNR are plotted in the 3D histograms for the seven
signals transmitted through 80 km and 120 km fiber, respectively.
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Figure 5. The average identification accuracy after 80 km fiber transmission (a) OSNR range is
0∼30 dB (b) OSNR range is 0∼10 dB.
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Figure 6. The average identification accuracy after 120 km fiber transmission (a) OSNR range is
0∼30 dB (b) OSNR range is 0∼10 dB.

In Figure 5, the three types of signals, QPSK, 8QAM, and 256QAM, have high iden-
tification accuracy of 99% in the overall case and at low OSNR, with the identification
accuracy of QPSK and 8QAM signals reaching 100%. The 16QAM, 32QAM, 64QAM,
and 128QAM signals have the possibility of misidentification among each other. However,
in the MFI scheme proposed in this paper, the overall identification accuracy of 16QAM,
32QAM, 64QAM, and 128QAM reaches 98.2%, 98.5%, 95.1%, and 98.2%, respectively, and
the identification accuracy at low OSNR reaches 95.5%, 96%, 87.3%, and 95.3%, respectively.

In Figure 6, the three types of signals, QPSK, 8QAM, and 32QAM, have high identifica-
tion accuracy of 98% in the overall case and at low OSNR, with the identification accuracy
of QPSK and 8QAM signals reaching 100%. The 16QAM, 64QAM, 128QAM, and 256QAM
signals have the possibility of misidentification among each other. However, in the MFI
scheme proposed in this paper, the overall identification accuracy of 16QAM, 64QAM,
128QAM, and 256QAM reaches 97.4%, 95.9%, 97.4%, and 98.2%, respectively, and the
identification accuracy at low OSNR reaches 93.3%, 89.3%, 93.3%, and 95.3%, respectively.

In Figure 7, the identification accuracy of the seven types of signals gradually increases
as the OSNR increases until they all reach 100%. Among them, the identification accuracy
of QPSK and 8QAM is always 100%. In Figure 7a, the OSNR values of 16QAM, 32QAM,
64QAM, 128QAM, and 256QAM when reaching 100% identification accuracy are around
5 dB, 2.5 dB, 7.5 dB, 10 dB, and 2.5 dB, respectively. In Figure 7b, the OSNR values of
16QAM, 32QAM, 64QAM, 128QAM, and 256QAM at 100% identification accuracy are
around 5 dB, 2.5 dB, 5 dB, 10 dB, and 7.5 dB, respectively. The above analysis shows that
the proposed MFI scheme can significantly improve the signal identification accuracy, thus
improving the classifier’s performance.
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Figure 7. Comparison of seven types of signal identification accuracy. The fiber distance is set as
(a) 80 km, (b) 120 km.
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To verify the superiority of the proposed MFI scheme in this paper, different MFI
schemes are compared at fiber lengths of (a) 80 km and (b) 120 km, as depicted in Figure 8.
The results show that the proposed MFI scheme quickly achieves 100% overall identification
accuracy and remains stable when OSNR ≥ 10 dB. High overall identification accuracy
is also achieved at low OSNR. Because of the influence of high-order QAM signals in
seven kinds of signals, such as 64, 128, and 256QAM, the overall identification accuracy of
GLCM features and FD features is not good. Although the overall identification accuracy of
MFI based on HOS features is high, it fails to achieve 100% identification accuracy within
the set OSNR. In summary, the proposed MFI scheme has better stability and superiority
compared with other MFI schemes.
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Figure 8. Comparison of the overall identification accuracy of the seven signals with different MFI
schemes. The fiber distance is set as (a) 80 km, (b) 120 km.

Finally, to understand the computational complexity of the proposed algorithm, we
calculated the CPU running time required to extract the features of a single constellation
diagram and compared it with the other three algorithms, as shown in Figure 9. CPU
running time tests were conducted on an Intel Personal Computer with Processor Core
i5-10210U CPU at 1.60 GHz, 16 GB Random Access Memory, and Windows 10 Home
Edition operating system. Combined with Figure 8, it can be seen that the proposed
MFI scheme achieves a significant improvement in identification accuracy and stability at
the cost of minor computational complexity and is the result of balancing accuracy and
stability optimally.
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Figure 9. Comparison of CPU running time of different algorithms for extracting constellation
diagram features.
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4. Conclusions

In this paper, an MFI scheme based on signal constellation diagrams and SVM is
proposed. Firstly, the signal constellation diagrams are divided by the WLS-FD algorithm,
and each region’s FD is calculated, regarded as one of the image features. Then, the feature
values of the image in different directions are extracted by the GLCM, and their mean and
variance are calculated, which is regarded as another feature. Finally, the two features
are input into the modulation format classifier constructed by the SVM to achieve MFI
in coherent optical communication systems. To verify the feasibility and superiority of
the scheme, a 30 GBaud coherent optical communication system with fiber lengths of
80 km and 120 km is constructed. The results show that compared with other traditional
schemes, the proposed MFI scheme greatly improves the identification accuracy with the
same OSNR.
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