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Abstract: By combining the nonlinear impairment features derived from the first-order perturba-
tion theory, we propose a nonlinear impairment compensation (NLC) scheme based on the transfer
learning-assisted convolutional bidirectional long short-term Memory (CNN-BiLSTM) neural net-
work structure. When considering the correlation of nonlinear impairment between preceding and
succeeding consecutive adjacent symbols on the current moment symbol and integrating the mul-
tidimensional feature extraction and time memory characteristics of CNN-BiLSTM, the nonlinear
impairment information contained in the input feature can be fully utilized to accurately predict
the nonlinear impairment showing significant compensation effect. Meanwhile, transfer learning
(TL) is introduced to greatly reduce the complexity of the scheme on the basis of high compensation
performance. To verify the effectiveness of the proposed scheme, we construct single-channel (SC)
and 5-channel 28 GBaud polarization division multiplexing 16 quadrature amplitude modulation
(PDM-16QAM)/85 GBaud PDM-64QAM simulation systems, and SC and 3-channel 28 GBaud PDM-
16QAM experimental systems. The experimental results show that when compared with simple
recurrent neural network (SRNN) NLC and DBP 20 steps per span (DBP20StPs), the Q-factor gain of
our scheme is about 1 dB and 1.7 dB in the SC system, and about 1.1 dB and 1.5 dB in the 3-channel
system at the optimal launch power, respectively. It is interesting to highlight that, by applying TL
to the simulation and experimental systems, our scheme based on only 5% of the training samples
can achieve compensation performance comparable to or higher quality than retraining at various
launch powers.

Keywords: coherent optical communication; nonlinear impairment compensation; neural network;
transfer learning

1. Introduction

The optical transmission network is the underlying infrastructure of global com-
munication network. Nowadays, with the rapid increase in network traffic, the optical
transmission network is evolving towards the direction of a high-speed, long-distance
and large-capacity dynamic optical transmission network [1]. However, the transmission
capacity and distance of the current optical fiber communication system are jointly limited
and constrained by both linear and nonlinear impairment of optical fiber, especially the
nonlinear impairment. By increasing the input fiber power, it will cause a significant
accumulation of the Kerr nonlinear effect in fiber channel, resulting in serious nonlin-
ear phase modulation and leading to an obvious degradation in signal quality [2]. At
present, the linear impairment of optical fiber can be effectively compensated, while the
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nonlinear impairment becomes the main obstacle for further development of optical fiber
communication due to the difficulty of compensation processes [3]. Therefore, an effective
compensation of nonlinear impairment is considered crucial to improve the capacity and
maximum transmission distance in the optical fiber communication system.

To solve the problems caused by nonlinear impairment, researchers had proposed a
series of classical NLC algorithms, mainly including digital back propagation (DBP) [4],
Volterra series-based nonlinear equalizers (VSNE) [5,6], perturbation-based nonlinear
equalization and its improvement [7–9]. In those approaches, both DBP and VSNE involve
many Fast Fourier transform (FFT) operations. Moreover, with the increase in transmission
distance, their complexities need to be further increased to ensure the compensation
performance. Although only one sample per symbol is required in the compensation
process of the perturbation-based nonlinear equalization, the calculation of nonlinear
perturbation coefficient limits the flexibility of the algorithm. These algorithms above
perform NLC under the conditions that the nonlinear impairment model was determined.
However, it is often difficult to obtain accurate link parameters in complex dynamic
optical networks.

With the rapid development of machine learning, Neural Network (NN) based com-
pensation algorithm has been widely used in NLC field for coherent optical communication
systems. Such applications take the advantages of its strong nonlinear fitting ability and
fast calculation speed. Compared with classical compensation algorithms, the NLC al-
gorithm based on NN can adaptively evaluate the degree of nonlinear impairment by
learning the data set composed of nonlinear impairment symbols and obtain the NN model
independent from the system parameters, so as to achieve the NLC effect. Moreover, NN-
based compensation algorithm can provide almost the same or even better compensation
performance at a lower complexity. One kind of method is to use NNs to simulate linear
and nonlinear steps of traditional DBP algorithm. Some researchers have proposed the
Learning DBP (LDBP) algorithm and its improvement [10–13], which performed better
than DBP. Nevertheless, the LDBP algorithm required at least two samples for each sym-
bol in the compensation process and generated extra complexity. Another study was to
treat NNs as black box models and learn directly from the received data to realize NLC.
For examples, convolutional neural network (CNN) [14,15], bidirectional long short-term
memory (BiLSTM) neural network [16], bidirectional gated recurrent unit (Bi-GRU) neural
network [17] and center-oriented long short-term memory (Co-LSTM) neural network [18]
have been used successively. The third method combines the perturbation theory with
NNs, using the triplet feature vector that can characterize the intra-channel cross-phase
modulation (IXPM) and intra-channel four-wave mixing (IFWM) to provide the nonlinear
impairment features. It is interesting that triplet feature vector can be used as the input
of deep neural network (DNN) [19,20], complex-valued DNN [21], CNN [22], simple re-
current neural network (SRNN) [23] and embedded bidirectional long short-term memory
(BiLSTM) neural network [24] for equalization processing, thereby predicting the nonlinear
impairment of fiber directly and achieve better compensation effect. However, the nonlin-
ear impairment between consecutive adjacent symbols is correlated, where the studies only
consider the influence of the current moment symbol or the previous moment symbol on
the current moment symbol. So, the nonlinear impairment information carried in triplet
feature vector is still not fully utilized.

Considering the above research findings, a NLC scheme based on transfer learning-
assisted convolutional bidirectional long short-term memory (CNN-BiLSTM) neural net-
work is proposed in this paper. This scheme takes into account the nonlinear influence of
the k preceding and k succeeding consecutive adjacent symbols on the current moment
symbol and intends to combine the powerful information extraction ability of CNN with
the time memory characteristics of BiLSTM. It is believed that there is no need to include all
the nonlinear impairment information of current moment symbol in the input feature, and
the input feature with only a small amount of nonlinear impairment information can be ad-
equately utilized to estimate more accurate nonlinear impairment for NLC. Importantly, the
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scheme introduces transfer learning (TL), which is expected to achieve fast power transfer
with fewer input features and iterative periods at other launch powers. The complexity of
the scheme is to be further reduced on the basis of ensuring the compensation performance.

2. NLC Principle of Transfer Learning-Assisted CNN-BiLSTM Neural Network

Based on CNN-BiLSTM neural network, the NLC module proposed in this paper is
located at the end of the digital signal processing (DSP), that is, after the carrier phase
recovery module. As shown in Figure 1, symbols received by the coherent receiver are
first processed through a series of DSP, such as resampling, dispersion compensation
in frequency domain, multimode algorithm (MMA) for polarization demultiplexing, m-
power feedforward algorithm for frequency offset estimation and blind phase search
algorithm (BPS) for carrier phase recovery. Under these experimental conditions, the
received symbols are only affected by nonlinearity. Subsequently, the feature vector Tx/y
is provided by calculating the IXPM and IFWM triplets from the received symbols. To
manifest the nonlinear effects between consecutive adjacent symbols, we reconstruct the
triplet feature vector as multidimensional input feature that is able to be inputted into
the CNN-BiLSTM neural network for learning. Then, the nonlinear impairment learned
through NN is subtracted from the received symbols to obtain NLC symbols. At last, we
save the NN model at high launch power. The corresponding nonlinear impairment at
other low launch powers are acquired by transfer learning, aiming to accomplish power
transfer, save training cost, and reduce implementation complexity. In brief, our scheme
consists of three parts: the construction of multidimensional input feature, the learning of
nonlinear impairment by CNN-BiLSTM neural network, and the introduction of transfer
learning. These three parts will be described in detail below.
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Figure 1. Schematic diagram of NLC scheme based on transfer learning-assisted CNN-BiLSTM. 
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2.1. Construction of Multidimensional Input Feature

According to the first-order perturbation principle, the nonlinear term in the Manakov
equation of the polarization multiplexing system can be directly regarded as the first-order
perturbation ∆ux/y [25], which can be expressed as

∂

∂z
∆ux/y + j

β2

2
∂2

∂t2 ∆ux/y = j
8
9

γ

[∣∣∣ux/y,0

∣∣∣2+∣∣∣uy/x,0

∣∣∣2]ux/y,0 (1)

where β2 is the group velocity dispersion, γ is the nonlinear coefficient, and ux/y,0 is the
linear term solution of x/y polarization. Assuming much larger accumulated dispersion
than symbol duration, the nonlinear perturbation terms for the symbol at t = 0 can be
approximated expressed as

∆ux/y = ∑
m,n

P3/2
0

(
Ax/y,n+t A∗x/y,m+n+t Ax/y,m+t + Ay/x,n+t A∗y/x,m+n+t Ax/y,m+t

)
Cm,n, (2)

where P0 is the launch power, Ax/y are the received symbols of x and y polarization, m and
n are the symbol indexes, and Cm,n is the nonlinear perturbation coefficient which generally
needs to be calculated by determined link parameter information.

To carry out the NN-based compensation scheme that is independent of link and contain
nonlinear impairment features, we directly extract the triplets Tx/y = Ax/y,n+t A∗x/y,m+n+t
Ax/y,m+t + Ay/x,n+t A∗y/x,m+n+t Ax/y,m+t, which can represent the IXPM and IFWM infor-
mation. The values of m and n are depend on the rule |mn| ≤ C, |m|, |n| ≤ L. C and L
can be valued according to the contribution degree of triplets to nonlinear perturbation.
Meanwhile, a balance between the performance and algorithm complexity needs to be
guaranteed. The number of triplets can be determined by the range of symbol indexes m
and n, so each symbol will contain Nt triplets at t-th time by determining the values of
m and n. According to perturbation theory, the contribution degree of triplets is mainly
determined by the nonlinear perturbation coefficient Cm,n in Equation (2). Figure 2a,b
show the normalized perturbation coefficients Cm,n for 28/85 GBaud PDM-16/64QAM
after 1600/400 km transmission, respectively, and their cutoff threshold is -35 dB, namely
20 log10(|Cm,n|/|C0,0|) ≥ −35. It is interesting to see that the closer the values of m and
n are at the center position, showing greater contribution to the nonlinear perturbation.
When the cutoff threshold is -10 dB, all triplets that significantly contribute to the nonlinear
perturbation have been included. At this time, the corresponding maximum value of L is
13, as shown in the Figure’s black box. Therefore, we can set the maximum value of L to
13 for the purpose of balancing the performance and complexity of the proposed scheme.
At the same time, we can set three selection rules for triplets as shown in Figure 2c–e,
respectively, to verify the influence of the number of triplets on the NLC performance.

Since the nonlinear impairment between consecutive adjacent symbols is correlated,
we need to consider the influence of k preceding and k succeeding consecutive adjacent
symbols on the current symbol at t-th time. The triplets Tx/y are then reconstructed into
Tt,M = [Tt−k, . . . , Tt−1, Tt, Tt+1, . . . , Tt+k] as the multidimensional input feature of the NN,
where M is the memory size which is equal to 2k+ 1. The nonlinear impairment information
in the multidimensional input feature can be adequately extracted by using NN, which is
expected to further improve the estimation accuracy of the nonlinear impairment and to
compensate more effectively.
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2.2. Nonlinear Impairment Learning Principle Analysis of CNN-BiLSTM Structure

As shown in Figure 3, through combining the step of the 1D-convolutional layer with
the BiLSTM layer [26], we construct the CNN-BiLSTM neural network structure to fully
extract the information in the multidimensional input feature and make a full use of the
correlation of nonlinear impairments between k preceding and k succeeding consecutive
adjacent symbols, so as to achieve accurate estimation of nonlinearity.

As demonstrated in the literature [22], CNN is better at extracting high-dimensional
features. Consequently, for longer triplet input features, a 1D-convolutional layer can be
introduced as a preprocessing step to perform convolution calculations on the input data,
and a specific activation function may be utilized to extract the main local feature informa-
tion for further processing. Being a recurrent neural network, RNN can use its memory
ability to deal with time series problems. However, in the process of back propagation,
RNN will encounter the gradient being too large or too small. This problem prevents
it from remembering what it has learned in longer sequences, causing disappearance of
the gradient [27]. It is necessary to highlight here that LSTM can improve the internal
structure of RNN by introducing “gates” to control the transmission information and solve
the problem on long-term sequence dependence [28]. In this paper, Figure 4a shows the
internal structure of LSTM unit, while the BiLSTM layer structure is adopted, as shown
in Figure 4b. The local feature information extracted from the 1D-convolutional layer is
further processed by the forward and backward structures of BiLSTM as the final output
of the BiLSTM layer to deal with the nonlinear interference between adjacent symbols.
After converting the output of BiLSTM layer into a 1D-vector through a flatten layer, we
then concatenate it to the fully connected layer containing two neurons. The real and
imaginary parts of the estimated nonlinear impairment are output by regression operation
subsequently. To prevent overfitting of the network, a dropout layer is added after both the
1D-convolutional layer and the BiLSTM layer.
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The specific internal operation process of CNN-BiLSTM neural network structure can
be expressed as:

xt = ϕ(Wx ∗ Tt,M + bx)

ct = σ
(

W f [ht−1, xt] + b f

)
∗ ct−1 + σ(Wi[ht−1, xt] + bi) ∗ tanh(Wc[ht−1, xt] + bc)

ht = σ(Wo[ht−1, xt] + bo) ∗ tanh(ct)

Âx/y,NLC =
t+k
∑

j=t−k
Wjhj + bj

(3)

where Wx, W f , Wi, Wo, Wc and Wj are the weight matrix of the 1D-convolutional layer,
forget gate ft, input gate it, output gate ot, cell state of the BiLSTM layer and the fully
connected layer, respectively. Furthermore, b is corresponding bias vectors, xt is the output
of the 1D-convolution layer, ct, ht represent the memory cell state and output state of
BiLSTM layer. ϕ is the LeakyRelu activation function and tanh is the hyperbolic tangent
activation function, σ is the logistic sigmoid function. Âx/y,NLC represents the nonlinear
impairment estimated by CNN-BiLSTM neural network structure.
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Finally, the minimum mean square error (MSE) is used as loss function of the NN with
the expression below. Moreover, when applying Adam optimizer with a learning rate of
0.001, we aim to achieve the minimum error between the estimated nonlinear impairment
and the label.

MSE =
1
B

B

∑
i=1

(
Ax/y,label − Âx/y,NLC

)2
, (4)

where B is batch size. Ax/y,label represents the label of CNN-BiLSTM neural network, and it
is equal to the difference between received symbols and transmitted symbols.

2.3. Transfer Learning Simplified CNN-BiLSTM Structure

As we know, optical fiber nonlinear effects with different launch powers have different
influence on the system performance. When the launch power changes, the NN model
needs to be retrained, which inevitably brings additional training overhead. Hence, transfer
learning is introduced into the training process in this work. As shown in Figure 5, the
parameter transferring based on the network model has been adopted to identify the
knowledge learned by the NN from the source domain and then transfer it to different but
relevant target domain. As demonstrated, using a small amount of sample data can realize
the rapid reconstruction of NN parameters and save training costs [29,30]. In this study,
we can save the NN model trained at high power to ensure that the NN adequately learns
the influence of nonlinearity on the data. In the case of launch power changes, it is only
necessary to call the saved network model, freeze the 1D-convolutional layer and BiLSTM
layer, so that it does not participate in new training. We design this to keep the training of
the fully connected output layer to output the real and imaginary parts of the nonlinear
impairment. Through a very small amount of training data and iteration, satisfactory
compensation effects are acquired.
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3. Simulation System and Result Analysis
3.1. Description of the Simulation System

To validate the effectiveness and performance of our scheme, we construct SC and
5-channel wavelength division multiplexing (WDM) numerical simulation platform based
on Virtual Photonics Inc. (VPI) Transmission Maker 11.1, as shown in Figure 6. At the
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transmitter, signals as 28 GBaud PDM-16QAM and 85 GBaud PDM-64QAM are generated,
respectively. The data sequence in each polarization from pseudo random binary sequence
(PRBS) generators with the length of 215. The corresponding channel spacing in WDM
systems are 50 GHz and 100 GHz. The linewidth and frequency offset of each laser are set
as 100 KHz and 100 MHz, and the root-raised-cosine pulses with a roll-off factor of 0.1 are
performed. The SC and 5-channel WDM systems are switched by optical switches. The
modulated signals output by optical transmitters are transmitted to the fiber loop which
consists of 80 km standard single mode fiber (SSMF) with attenuation, chromatic dispersion,
polarization mode dispersion and nonlinear coefficient of 0.2 dB/km, 16 ps/(nm·km),
0.1 ps/

√
km and 1.3 W−1/km. An erbium-doped fiber amplifier (EDFA) is added to each

loop to compensate for the loss in the link and the amplified spontaneous emission (ASE)
noise is introduced. For the PDM-16QAM signal, the transmission distance is detected as
1600 km with the EDFA noise figure of 6 dB. Subsequently, for PDM-64QAM signal, the
transmission distance is only detected as 400 km with the noise figure of 4 dB. To improve
our scheme further, an optic band-pass filter (OBPF) is placed in the loop to restrain the
accumulation of out-band ASE noise. In the 5-channel WDM system, at the receiver, we
choose the third channel signal with the center wavelength of 1550 nm which is most
affected by nonlinearity to simulation. The coherent receiver is used to realize photoelectric
conversion and output the four electrical signals of Ix, Qx, Iy and Qy. After a series of digital
signal processing (DSP) modules, we then sent them to our proposed NLC module.
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3.2. Results and Discussion

Considering the complexity of activation function, the adder, look-up table and com-
parator are much smaller than that of multipliers, where we only consider the complexity
of multipliers, namely, the real number multipliers per symbol (RMPS) will be regarded as
the computational complexity metric. Table 1 shows the complexity results of the proposed
scheme, SRNN NLC and DBP algorithms. The complexity of our proposed scheme is
mainly manifested in three aspects: input structure, NN and introduced transfer learning.
However, when transfer learning is introduced, it mainly reduces the complexity of the
training process by reducing iteration periods and the number of symbols involved in
NN training. Hence, only the complexity of the input structure and the NN needs to be
considered, while transfer learning is not involved in the RMPS analysis process of this
scheme. For the input structure, each operation requires four complex multipliers, and each
complex multiplier is equivalent to four real multipliers, so a total of 16 real multipliers
are required to generate a multidimensional input feature. If 16Nt is used to represent the
complexity of input structure, then the input structure complexity of the CNN-BiLSTM and
SRNN neural network is 16Nt,CNN−BiLSTM, 16Nt,SRNN , respectively. Referring to the NN,
the number of neurons in the input layer of the two NLC schemes is denoted as ni, and
the number of neurons in both the SRNN and the BiLSTM hidden layers is expressed as
nh. The output layer neurons of the two NNs are no = 2. We fix the default convolutional
layer configuration with the padding, the stride and the dilation are equal to 0, 1 and
1. ns is the number of time steps and equal to M in Section 2.1. The number of filter is
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n f , the kernel size is nk, and the output size of each filter of 1D-convolutional layer is
nl = ns − nk + 1 [26].

Table 1. Complexity analysis results of different schemes.

NLC Scheme RMPS

DBP [18] 4nspannstepnup(2(log2 NFFT + 1) + 1)
SRNN [23] ninh + nhnh + nhno + 16Nt,SRNN

CNN-BiLSTM nin f nknl + 2nlnh

(
4n f + 4nh + 3 + no

)
+ 16Nt,CNN−BiLSTM

Likewise, the DBP algorithm also only considers the complexity of real multipliers.
The RMPS of DBP is given by the number of fiber spans nspan, the number of steps per span
nstep, the oversampling ratio nup and the FFT size NFFT [18].

To analyze the valid influence range of nonlinear effects, we need to decide the number
of consecutive adjacent symbols to be used by changing the size of k, which is equivalent
to the number of time steps ns (ns = 2k + 1). Therefore, we firstly discuss the Q-factor
performance with optimal launch power of the SC and WDM systems versus ns with the
corresponding RMPS in Figure 7. A Q-factor is utilized as system performance metric
in this paper, which can be calculated from the bit error rate (BER) using the equation
Q = 20 log10

[√
2er f c−1(2BER)

]
. When k values are set as 0, 1, 2, . . . , 10, the numbers of

time steps ns are 1, 3, 5, . . . , 21. As demonstrated in Figure 7, we find that increasing the
numbers of time steps ns has improved the Q-factor performance. In other words, when Nt
is equal to 69, and if the number of time steps ns exceeds 11, the Q-factor performance tends
to converge. Additionally, to balance the performance and complexity well, we should
choose an appropriate value of ns, and define a measurement parameter P, that is, the ratio
of Q-factor performance to complexity RMPS as a metric. While achieving a larger value
of P, the results correspond ns, thus being more suitable to be selected. The red curve in
Figure 7a and the black curve in Figure 7b are taken as examples for illustration purpose. In
Figure 7a, when ns is 11, the corresponding P is 2.3 × 10−4, and when ns is 15, the value of
P is 1.7 × 10−4. Differently in Figure 7b, when ns is 11, the corresponding P is 3.5 × 10−4,
and when ns is 15, the value of P is 2.7 × 10−4. The findings demonstrate that choosing ns
at 11 is more suitable than 15. Consequently, after comprehensive consideration, we finally
choose 11 as optimal value of ns for subsequent simulations.
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When comparing performance of the schemes selected, we set the SRNN input features
to contain 109 triplets, which L and C are equal to 11 and 7, respectively. To reflect
the learning ability of the CNN-BiLSTM neural network for a small amount of feature
information between consecutive adjacent symbols, where the number of triplets contained
in the multidimensional input feature is reduced. Following that, we determine the number
of triplets Nt to be 69 by setting L and C to 7 and 5, respectively. The performance of
our proposed scheme is compared with SRNN NLC at the equivalent complexity through
changing the parameters involved.

By dividing the sample dataset, we consider 50% for training, 20% for validation, and
30% for testing with unknown data. To improve the generalization ability of NN, we use
“early stopping” when the verification accuracy of 10 successive epochs is not improved.
When reviewing the simulation results of the PDM-16QAM/64QAM SC system in Figure 8,
the performance of the proposed scheme observed is significantly better than SRNN NLC
involving the equivalent complexity. For the 28 GBaud PDM-16QAM signal, the optimal
launch power of this scheme is increased from -1 dBm to 0 dBm. The SNR of this scheme is
improved by about 4.7 dB and 0.5 dB, and the Q-factor gain is about 1.36 dB and 0.28 dB,
respectively, when compared with the scheme without nonlinear compensation (w/o NLC)
and SRNN NLC. Different from DBP20StPs, this scheme shows a greater advantage of
performance in three scenarios with different numbers of triplets, and its complexity is
considerably lower than DBP20StPs. In the case of the lowest complexity, namely Nt = 69,
the SNR of the proposed scheme is about 0.7 dB higher than that of DBP20StPs and the
Q-factor gain is about 0.37 dB. For the 85 GBaud PDM-64QAM signal, the optimal launch
power of this scheme has been increased from 3 dBm to 4 dBm. It is worth noting that
the SNR of this scheme has been improved by about 3 dB and 0.5 dB, and the Q-factor
gain is about 0.7 dB and 0.29 dB, respectively, compared with w/o NLC and SRNN NLC.
When the complexity of our scheme (Nt = 69) is equivalent to that of DBP20StPs, the
performance outcomes are also similar. However, when using DBP20StPs for NLC, we need
to compensate separately at each launch power, and for our proposed scheme, the NN
model at high launch power can be used through transfer learning to realize NLC at low
launch power with a small number of sample data, which greatly reduces the complexity
of implementation with similar performance.

Photonics 2022, 9, x FOR PEER REVIEW 11 of 19 
 

 

-5 -4 -3 -2 -1 0 1 2 3 4
4

5

6

7

8

9

10

11

Q
-f

a
ct

o
r(

d
B

)

Launch Power (dBm)

 w/o NLC
 DBP20StPs
 SRNN NLC

 CNN-BiLSTM NLC(Nt=69)

 CNN-BiLSTM NLC(Nt=109)

 CNN-BiLSTM NLC(Nt=169)

HD-FEC Threshold

4.7dB

(a)

1.36 dB

-2 -1 0 1 2 3 4 5 6 7

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Q
-f

a
ct

o
r(

d
B

)

Launch Power (dBm)

 w/o NLC

 DBP20StPs
 SRNN NLC
 CNN-BiLSTM NLC(Nt=69)

 CNN-BiLSTM NLC(Nt=109)

 CNN-BiLSTM NLC(Nt=169)

HD-FEC Threshold

3dB

(b)

0.7 dB

 

Figure 8. Q-factor of different NLC schemes versus launch power for SC systems. (a) 28 GBaud 

PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission. 

Figure 9 shows the simulation results of the comparison between transfer learning 

and retraining performance in PDM-16QAM/64QAM SC system. The constellation dia-

gram inserted in the figure is the result of transfer learning and retraining at the optimal 

launch power and the highest launch power. Interestingly, with only 5% of training sam-

ple data, transfer learning can achieve compensation performance comparable to or 

higher quality than retraining at each launch power. 

-5 -4 -3 -2 -1 0 1 2 3

6

7

8

9

10

11

Q
-f

a
c
to

r
(d

B
)

Launch Power (dBm)

 PDM-16QAM 28GBaud 1600km CNN-BiLSTM NLC w/o TL

 PDM-16QAM 28GBaud 1600km TL-CNN-BiLSTM NLC(5%)

HD-FEC Threshold

-2 -1 0 1 2 3 4 5 6

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Q
-f

a
c
to

r(
d

B
)

Launch Power (dBm)

 PDM-64QAM 85GBaud 400km CNN-BiLSTM NLC w/o TL

 PDM-64QAM 85GBaud 400km TL-CNN-BiLSTM NLC(5%)

HD-FEC Threshold

(a) (b)

 

Figure 9. Q-factor of transfer learning versus retraining for different launch powers. (a) 28 GBaud 

PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission. 

We also verify the effectiveness and performance of the proposed scheme in the 5-

channel WDM system with results shown in Figure 10. It shows that the proposed scheme 

has certain performance improvement compared with SRNN NLC with the equivalent 

complexity. For the 28 GBaud PDM-16QAM WDM signal, the optimal launch power of 

this scheme is increased from −1 dBm to 0 dBm. Compared with w/o NLC and SRNN NLC, 

Figure 8. Q-factor of different NLC schemes versus launch power for SC systems. (a) 28 GBaud
PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission.



Photonics 2022, 9, 919 11 of 18

Figure 9 shows the simulation results of the comparison between transfer learning and
retraining performance in PDM-16QAM/64QAM SC system. The constellation diagram
inserted in the figure is the result of transfer learning and retraining at the optimal launch
power and the highest launch power. Interestingly, with only 5% of training sample data,
transfer learning can achieve compensation performance comparable to or higher quality
than retraining at each launch power.

Photonics 2022, 9, x FOR PEER REVIEW 11 of 19 
 

 

-5 -4 -3 -2 -1 0 1 2 3 4
4

5

6

7

8

9

10

11

Q
-f

a
ct

o
r(

d
B

)
Launch Power (dBm)

 w/o NLC
 DBP20StPs
 SRNN NLC

 CNN-BiLSTM NLC(Nt=69)

 CNN-BiLSTM NLC(Nt=109)

 CNN-BiLSTM NLC(Nt=169)

HD-FEC Threshold

4.7dB

(a)

1.36 dB

-2 -1 0 1 2 3 4 5 6 7

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

Q
-f

a
ct

o
r(

d
B

)

Launch Power (dBm)

 w/o NLC

 DBP20StPs
 SRNN NLC
 CNN-BiLSTM NLC(Nt=69)

 CNN-BiLSTM NLC(Nt=109)

 CNN-BiLSTM NLC(Nt=169)

HD-FEC Threshold

3dB

(b)

0.7 dB

 

Figure 8. Q-factor of different NLC schemes versus launch power for SC systems. (a) 28 GBaud 

PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission. 

Figure 9 shows the simulation results of the comparison between transfer learning 

and retraining performance in PDM-16QAM/64QAM SC system. The constellation dia-

gram inserted in the figure is the result of transfer learning and retraining at the optimal 

launch power and the highest launch power. Interestingly, with only 5% of training sam-

ple data, transfer learning can achieve compensation performance comparable to or 

higher quality than retraining at each launch power. 

-5 -4 -3 -2 -1 0 1 2 3

6

7

8

9

10

11

Q
-f

a
c
to

r
(d

B
)

Launch Power (dBm)

 PDM-16QAM 28GBaud 1600km CNN-BiLSTM NLC w/o TL

 PDM-16QAM 28GBaud 1600km TL-CNN-BiLSTM NLC(5%)

HD-FEC Threshold

-2 -1 0 1 2 3 4 5 6

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

11.0

Q
-f

a
c
to

r(
d

B
)

Launch Power (dBm)

 PDM-64QAM 85GBaud 400km CNN-BiLSTM NLC w/o TL

 PDM-64QAM 85GBaud 400km TL-CNN-BiLSTM NLC(5%)

HD-FEC Threshold

(a) (b)

 

Figure 9. Q-factor of transfer learning versus retraining for different launch powers. (a) 28 GBaud 

PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission. 

We also verify the effectiveness and performance of the proposed scheme in the 5-

channel WDM system with results shown in Figure 10. It shows that the proposed scheme 

has certain performance improvement compared with SRNN NLC with the equivalent 

complexity. For the 28 GBaud PDM-16QAM WDM signal, the optimal launch power of 

this scheme is increased from −1 dBm to 0 dBm. Compared with w/o NLC and SRNN NLC, 

Figure 9. Q-factor of transfer learning versus retraining for different launch powers. (a) 28 GBaud
PDM-16QAM after 1600 km transmission; (b) 85 GBaud PDM-64QAM after 400 km transmission.

We also verify the effectiveness and performance of the proposed scheme in the 5-
channel WDM system with results shown in Figure 10. It shows that the proposed scheme
has certain performance improvement compared with SRNN NLC with the equivalent
complexity. For the 28 GBaud PDM-16QAM WDM signal, the optimal launch power of
this scheme is increased from −1 dBm to 0 dBm. Compared with w/o NLC and SRNN
NLC, the SNR of this scheme is improved by about 3.7 dB and 0.4 dB, and the Q-factor
gain is about 1.14 dB and 0.2 dB, respectively. Similar to the results of the SC system,
this scheme (Nt = 69) improves the SNR and the Q-factor gain by 1.4 dB and 0.55 dB
compared with the DBP20StPs when its complexity is lower than that of DBP20StPs. For
the 85 GBaud PDM-64QAM WDM signal, the optimal launch power of this scheme is
increased from 2 dBm to 3 dBm. Compared with w/o NLC and SRNN NLC, the SNR of this
scheme is improved by about 2.7 dB and 0.1 dB, respectively. In the case of the equivalent
complexity as DBP20StPs, the performance of this scheme is similar at a low launch power,
while its performance is significantly improved at high launch power. In the 5-channel
WDM system, this scheme can also introduce transfer learning to achieve effective power
transfer. Figure 11 shows the simulation results of the comparison of transfer learning and
retraining performance for the PDM-16/64QAM WDM system. It can be observed that
their performance trends are similar to the SC system.
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Table 2 shows the specific usage parameters and corresponding RMPS complexity
of different compensation schemes in the simulation system. Two different RMPS com-
plexities represent the analysis results under two different modulation formats (PDM-
16QAM/64QAM). In the second and third lines of our scheme, Nt is expanded to 109 and
169 to observe the influence of the number of triplets on NLC performance. The upper and
lower rows of the last column of each NLC scheme correspond to the Q factor gain ∆Q of
the 16/64QAM SC and WDM systems, respectively.

Table 2. Comparison results of specific complexity of different schemes in simulation system.

NLC Scheme ni ns nf nk nh no nspan nstep nup RMPS ∆Q (dB)

DBP [18] / / / / / / 20/5 20 2 118,400/29,600 1.08/0.59

0.71/0.49

SRNN [23] 218 / / / 120/90 2 / / / 42,544/29,644 0.99/0.95

0.43/0.42

CNN-BiLSTM

138 11 25/17 11 10 2 / / / 41,954/29,170 1.36/1.14

0.70/0.47

218 11 25/17 11 10 2 / / / 64,594/44,770 1.62/1.44

0.72/0.48

338 11 25/17 11 10 2 / / / 98,554/68,170 1.97/1.57

0.77/0.48

4. Experimental System and Result Analysis
4.1. Description of Experimental System

To further verify our scheme, we carry out 28 GBaud PDM-16QAM experimental
transmissions in both the SC and 3-channel WDM systems, where the corresponding
schematic diagrams are shown in Figure 12. At the transmitter, the center frequency of the
external cavity laser (ECL) in SC system is detected as 193.4 THz, and the channel spacing
in 3-channel WDM system is set to 50 GHz, ECL1, ECL2 and ECL3 with center frequencies
as 193.35 THz, 193.4 THz and 193.45 THz being coupled by polarization-maintaining
optical coupler (PM-OC). The linewidth and frequency offset of the laser employed are
approximately 100 kHz and 100 MHz, respectively. We construct bit sequences of length
215, which are PRBS generated by MATLAB built-in function. Through 65 GSa/s arbitrary
waveform generator (AWG, Keysight M8195A), PDM-16QAM signals are generated to
drive the IQ modulator. The signal is pulse shaped using a root-raised-cosine filter with
a roll-off factor of 0.1. The IQ-modulated PDM signal is then adjusted to an appropriate
optical power through EDFA with a noise figure of 6.5 dB and variable optical attenuator
(VOA) and is then sent into the fiber loop. The loop consists of 100 km/span SSMF, EDFA,
OBPF and optical loop controller, where the transmission distance is set as 800 km. The
attenuation, chromatic dispersion, polarization mode dispersion and nonlinear coefficient
of SSMF are 0.19 dB/km, 16.7 ps/(nm·km), 0.2 ps/

√
km and 1.27/W/km, respectively. At

the receiving end, a waveform shaper (WS, Waveshaper 4000s) is applied to the 3-channel
WDM system for demultiplexing, which can equalize the optical power of each channel and
obtain intermediate channel signals. The received optical signals are detected by a coherent
receiver and sampled by a real-time oscilloscope at 80 GSa/s for off-line DSP processing.
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(a) SC system; (b) 3-channel WDM system.

4.2. Results and Discussion

Similarly to the idea in the simulation, we initially test the Q-factor performance with
optimal launch power of the SC and WDM systems versus ns with the corresponding
RMPS. We notice that when ns values exceed 11, the Q-factor performance curve tend to
flatten out. In Figure 13, the black curve displays when ns is 11, the corresponding P is
4.1 × 10−4, and when ns is 17, the value of P is 2.9 × 10−4. In the same figure, on the red
curve, when ns is 11, the corresponding P is 3.9 × 10−4, and when ns is 17, the value of
P is 2.7 × 10−4. The results strongly point out that it is more appropriate to choose ns as
11 than 17. Therefore, in the experimental systems, ns is chosen as 11 to trade off complexity
and performance.

Since the transmission distance of the experimental system is smaller than that of
the simulation system, the correlation of nonlinear impairment between consecutive ad-
jacent symbols will be reduced accordingly. Additionally, the triplet feature vector in
the multidimensional input feature can break the pattern of PRBS without causing the
performance to be overestimated [23]. The transmission performance results are shown in
Figure 14, where only the results are used when Nt is 69, 109 for experimental performance
comparison. Figure 14a, b show that the optimal launch power of this scheme (Nt = 69)
can be increased by 1 dB in both the SC and 3-channel WDM experimental systems. In
the SC system, compared with w/o NLC, DBP20StPs and SRNN NLC, the Q-factor gain of
this scheme (Nt = 69) is about 2.2 dB, 1.7 dB and 1 dB, respectively. Under the 3-channel
WDM system, the Q-factor gain is about 1.8 dB, 1.4 dB and 1.1 dB, respectively. In addition,
whether it is for the SC or 3-channel WDM experimental systems, when Nt = 109, its
performance will be further improved.
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Figure 13. Q-factor versus the number of time steps ns with the corresponding RMPS for 28 GBaud
PDM-16QAM SC and 3-channel WDM systems.
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Figure 14. Q-factor of different NLC schemes versus launch power for 28 GBaud PDM-16QAM
transmission system over 800 km. (a) SC; (b) 3-channel.

Table 3 shows the key parameters and corresponding RMPS complexity of different
NLC schemes for the experimental system. The second line of the proposed scheme is the
result while increasing the numbers of triplets in the multidimensional input feature to
further improve the performance. The upper and lower rows of the last column of each
NLC scheme correspond to the Q factor gain ∆Q of the SC and WDM systems, respectively.
It can be seen that our scheme (Nt = 69) has obvious performance advantages compared
with the results of other two NLC schemes in the case of low complexity.
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Table 3. Comparison results of the specific complexity of different schemes for experimental system.

NLC Scheme ni ns nf nk nh no nspan nstep nup RMPS ∆Q (dB)

DBP [18] / / / / / / 8 20 2 47,360
0.45

0.39

SRNN [23] 218 / / / 80 2 / / / 25,744
1.15

0.69

CNN-BiLST

138 11 15 11 10 2 / / / 25,974
2.17

1.85

218 11 15 11 10 2 / / / 39,814
2.52

2.06

Figure 15 shows the Q-factor comparison curve of transfer learning and retraining
in our experimental system. In order to validate the effectiveness of transfer learning
from different high launch powers to low launch powers, this paper uses the training
model with the launch power set as 3 dBm in the experimental system. The constellation
diagrams inserted in the figure are the results of transfer learning and retraining when the
launch power being 2 dBm. Under our experimental conditions, the transfer learning of
the experimental system has achieved similar effects as the simulation system.
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Figure 15. Q-factor of transfer learning versus retraining for 28 GBaud PDM-16QAM after 800 km
transmission at different launch powers. (a) SC; (b) 3-channel.

In addition, we roughly analyze the running time of the proposed scheme, which is a
simple and intuitive way to measure the efficiency, describing the time required to run. In
this analysis, the computer processor is Intel(R) Core(TM) i7-9700 CPU @ 3.00 GHz, random
access memory (RAM) is Kingston DDR4 3200 MHz and memory capacity is 32 GB. The
generation time of input features corresponding to each symbol is 0.016107 s, the test time
of neural network retraining is 0.8546 s, and the test time after transfer learning is reduced
to 0.09075 s. Therefore, the total running time of the proposed NLC scheme is 0.106857 s.
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5. Conclusions

In this study, we propose a fiber NLC scheme based on transfer learning-assisted CNN-
BiLSTM neural network structure. The input part of the CNN-BiLSTM neural network is
provided with the nonlinear impairment information of multidimensional input feature for
learning to make a full use of the correlation of nonlinear impairment between preceding
and succeeding consecutive adjacent symbols on the current moment symbol. Subsequently,
the scheme is verified by the simulation and experiment of the SC and WDM system,
respectively. Through investigating the influence range of nonlinear effects, we observe the
effect regarding the number of time steps on the Q-factor performance and find its optimal
value applied in the simulation and experiment. For 28 GBaud PDM-16QAM signal,
this scheme shows a significant improvement in SNR and Q-factor gain compared with
SRNN NLC and DBP20StPs. Our scheme also reveals adequate suitability for 1.020 Tbps
ultra-high speed optical communication system, which shows a similar compensation
performance with DBP20StPs, but with certain performance advantages at higher launch
powers. To further reduce the complexity of the scheme, transfer learning is introduced, and
it is demonstrated that this scheme can achieve higher quality comparable compensation
performance as retraining on the basis of only 5% of the training samples. Therefore, in
comparison with other two NLC schemes, our scheme achieves a significant improvement
in compensation effect with lower complexity. Furthermore, based on the design of this
paper, we are confident that we can find more valuable inter-channel nonlinear impairment
features in our future research work, thus providing suitable options for solving the problem
on inter-channel NLC.
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