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Abstract: This paper proposes and analyzes a simple surface plasmon resonance (SPR)-based ellipti-
cal air hole photonic crystal fiber (PCF) sensor. The fiber structure comprises an analyte channel of the
fiber surface coated with a gold layer on the flat surface and the fiber’s external surface. Numerical
simulations are conducted using the finite element method (FEM) with an external sensing approach.
We found that the thickness of plasmonic material (Au) is the most crucial factor that affects the full
width at half maximum (FWHM) and confinement loss amplitude. We also demonstrated that the
proposed elliptical air hole SPR-PCF is superior to circular air hole SPR-PCF in terms of confine-
ment loss and FWHM. According to the wavelength interrogation technique, the simulation results
show that the designed SPR-PCF sensor can attain a maximum sensitivity of 116,500 nm/RIU and
a resolution of 8.58 × 10−7 RIU (RIU: refractive index unit) for the analyte RI of 1.395. We believe
the proposed SPR-PCF sensor can be a potential candidate for biomolecular and biological anal-
yte detection.

Keywords: surface plasmon resonance; photonic crystal fiber; finite element method; refractive index
sensitivity; resolution

1. Introduction

The effects of surface plasmon resonance (SPR) on the surface of nanometals and
dielectrics have attracted researchers’ attention because of the unique optic properties and
the potential to overcome the diffraction limit in the nanoscale region [1–4]. SPR refers to
the coherent oscillations of conduction electrons on the surface of a plasmonic material,
resulting in localized SPRs and traveling surface plasmon polaritons (SPPs) [5,6]; these are
popular optical devices for sensing and detecting applications [7–9].

SPR biosensing and gas detection using prism coupling was first proposed in 1983 [10].
In 1993, Jorgenson first presented the SPR optical fiber sensor and claimed that the designed
sensor had the highest resolution, at 7.5 × 10−4 RIU [11]. Since then, many research groups
have developed various optic fiber SPR sensors for chemical and biochemical sensing, such
as Mach-Zehnder interferometer fiber [12], side-polishing technique fiber [13], graphene-
deposited fiber [14], air-core hole SPR fiber [15], D-shaped optical fiber [16,17], photonic
crystal fiber (PCF) [18,19], and Bragg grating SPR fiber [20,21] sensors. In the past decades,
concerning the controllability of coupling between core-guided and SPP modes, attention
has been focused on the PCF-based SPR sensor (SPR-PCF hereafter). Plasmonic materials
and PCF technology are combined to construct an SPR-PCF–based sensor, providing design
flexibility and minor size requirements [22–25].
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The mechanism of an SPR-PCF sensor operates using transient electromagnetic (EM)
wave interaction with the plasmonic materials (e.g., gold (Au), silver (Ag), copper (Cu),
etc.). The EM waves can penetrate through the fiber cladding region and generate an ev-
anescent EM wave. This then excites the free electrons of the nanometal surface and
produces an SPP wave at the interface of the metal and dielectric [26–30]. At a resonance
wavelength, the real part of the effective RI of the core-guided mode and SPP mode
is completely phase-matched. It generates a pointy confinement loss peak, which can
inspect the unknown sample/analyte [31–33].

The SPR-PCF–based sensors can categorize internal and external sensing sche-
mes [26,34,35]. For the internal sensing approach, it can be challenging to process metal
coating and liquid dropping in the inside structure of fiber [36,37]. The external sensing
method can easily detect the unknown analyte by infiltrating the analyte through the
metal surface. Therefore, the external sensing method is well known, since the practical
realization is easy and possible [17,38].

The external sensing method for SPR-PCF–based sensors has become a central topic
of interest in recent years. Kiroriwal et al. proposed an SPR-PCF refractive index (RI)
sensor with 36 air holes and obtained a wavelength sensitivity of 8000 nm/RIU in the RI
range of 1.36–1.40 [39]. Popescu et al. demonstrated a honeycomb SPR-PCF sensor with
two complementary supermodes [23]. They claimed that the sensitivity can increase from
1000 nm/RIU to 4500 nm/RIU. Shakya et al. investigated a tetra-core–based SPR-PCF
sensor containing three different dimensions of air holes [40] and obtained a wavelength
sensitivity of 5000 nm/RIU. Kumar et al. verified a D-shape SPR-PCF sensor using Mx-
ene/Au material thin film. They obtained a wavelength sensitivity of 7000 nm/RIU and
13,000 nm/RIU for the Mxene layer thicknesses of 14 nm and 27 nm, respectively [41].
Paul et al. presented a dual-core SPR-PCF sensor [42] and obtained a maximum wavelength
sensitivity of 25,000 nm/RIU, with an analyte RI of 1.38. Tong et al. displayed a three-core
SPR-PCF sensor with an outer layer of Au film [24]. Introducing the multi-core in the fiber
structure can improve the sensor performance. Zhao et al. illustrated the photonic bandgap
fiber and the Bragg fiber with various forms, including fuse-tapered fiber structure, D-
type fiber structure, and cladding-off fiber structure [43]. They fabricated the proposed
structures and confirmed that the designed devices have the merits of high sensitivity
and resolution.

All of the abovementioned SPR-PCF sensors have high wavelength sensitivity. How-
ever, the proposed SPR-PCF structures possess many air holes in the PCF cladding
(more than 20), which results in a complex fabrication. In this work, we propose a simple
SPR-PCF sensor structure with eight elliptical air holes and a fiber surface coated with an
Au layer on the polished surface and external fiber surface. The proposed SPR-PCF sensor
can detect an analyte externally. We investigate the sensing performance of the proposed
device employing the finite element method (FEM)-based COMSOL Multiphysics software.
We consider the effects of RI surrounding the fiber structure, the thickness of Au film, and
the ratio of semi-minor and semi-major axes of elliptical air holes to ensure accuracy.
The results offer an experimental basis and theoretical guidance for designing high-
sensitivity SPR-PCF sensors.

This paper organizes as follows: Section 1 is the introduction. Section 2 presents
the numerical modeling method and basic formulas. The optimization of the structural
parameters is discussed in detail in Section 3. Section 4 concerns the application as a RI
SPR-PCF sensor and compares this work with similarly reported studies. Finally, the results
are summarized in the concluding section.

2. Numerical Modeling Method and Basic Formulas

For the fiber structure’s simplicity, the number of air holes chosen is as low as possible.
We decided on eight elliptical holes with three different sizes in our design, based on
the FEM simulations. Figure 1 depicts the cross-section of the designed SPR-PCF–based
sensor, with eight elliptic air holes in the PCF’s cladding. The semi-major axis of different
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sizes of elliptic air-holes are a1y, a2y, and a3y, and their coordinates are (±d1, 0) for the
biggest ones, (0, ±d2) for the middle size ones, and (±d3, ±d2) for the smallest size ones,
correspondingly. The d1, d2, and d3 are fixed at 1.8 µm, 1.5 µm, and 1.5 µm throughout
this work. The purpose of using diverse sizes of elliptical air holes is to generate a higher
birefringence [44–47]. Their sensing performance is superior to a circular one. The ratio
of semi-minor and semi-major axes (i.e., ellipticity, e) is e = a1x/a1y = a2x/a2y = a3x/a3y.
The distance between the top elliptical air hole and the polished surface is h.
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Figure 1. Cross-section of the designed SPR-PCF sensor with structural parameters.

The Au film is covered on the top cutting flat plane and the outer surface of the SPR-
PCF sensor with a thickness of tAu, which facilitates the detection ability of the proposed
PCF sensor. The analyte layer with a thickness of 0.5 µm is located on the Au layer’s
outer surface to sense the surrounding medium. The maximum mesh element sizes are
set as the corresponding thickness layer in the Au layer. The analyte surrounds the entire
SPR-PCF structure and is a liquid with different RIs in RI sensing. A change in the resonant
wavelength (λres) occurs when the analyte’s RI changes, allowing us to detect changes in
RI. We numerically investigated the proposed PCF sensor using the full vectorial FEM-
based software COMSOL Multiphysics to optimize structural parameters and determine
the sensor sensitivity and selectivity. A circular perfectly matched layer (PML) boundary
condition with a thickness of 0.7 µm and a scattering boundary condition (SBC) were added
to the outer computational domain to absorb the artificial back-reflection at the boundaries
during the simulation. In the FEM simulations, we utilized the finer meshing elements of
17,956 domain elements and 1453 boundary elements.

The core and cladding regions are fused silica with a diameter of the silica layer of
6 µm. The RI of silica is obtained from the Sellmeier Equation [48]:

n2(λ) = 1 +
B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
(1)

where n and λ denote the wavelength-dependent RI and wavelength (in µm); B1, B2, B3,
C1, C2, and C3 are the constant values of the Sellmeier Equation, which are listed in Table 1.

Table 1. The constant values of the Sellmeier Equation.

B1 B2 B3 C1 C2 C3

0.696163 0.4079426 0.897479400 0.0046791486 0.0135120631 97.9340025
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The SPR-PCF sensing performance closely relies on the noble nanometal. Ag and Au
are commonly utilized for plasmonic sensing applications. The Ag can offer a sharper SPR
peak, but it possesses the drawbacks of being chemically unstable and easily oxidized [13].
Therefore, we used Au as the plasmonic material since it is chemically stable in an aqueous
environment and displays a sizeable λres shift compared with other novel nanometals.
The permittivity of Au is wavelength dependent and can be obtained from the Drude-
Lorentz model [49,50]:

εAu = ε∞ − ω2D
ω(ω + jγD)

− ∆εΓ2
L

jΓLω +
(
ω2 − Γ2

L
) (2)

where the value of ε∞ (the permittivity of high frequency), ω (angular frequency),
ωD (plasmon resonance frequency), γD (damping frequency), ΩL (oscillation strength
of the Lorentz oscillators), and ΓL/2π (spectrum width) are listed in Table 2.

Table 2. The constant values of Equation (2).

ε∞ ω ωD/2π γD/2π ΩL ΓL/2π

5.9673 2πc/λ 2113.6 THz 15.9 THz 650.07 THz 104.86 THz

The confinement loss (CL) spectrum of the core-guided mode can evaluate the sensing
performance, and the CL of the core-guided mode can be described as follows [51,52]:

α ∼= 8.686 × 2π

λ
× Im

[
ne f f

]
× 104 dB

cm
(3)

where Im (neff) is an imaginary part of the effective RI of the core-guided mode.
Sensitivity is obtained by

SA(λ)[nm/RIU] = ∆λpeak/∆nana (4)

where ∆λpeak is the change in peak wavelength, and ∆nana denotes the shift in two succes-
sive RIs.

Sensor resolution can be expressed by [28]

R[RIU] = nana ×
∆λmin
∆λpeak

(5)

where ∆λmin is the wavelength resolution.
L indicates the length of the sensor in cm (i.e., how long the sensor is for the specific

RI), which can be computed as follows [29]:

L =
1

α(λ, nana)
(6)

where α(λ, nana) is the overall CL for a particular wavelength.
The proposed SPR-PCF sensor can be fabricated with nanofabrication technology.

To manufacture the proposed SPR-PCF sensor, PCF may utilize stack and drawing, extru-
sion, or capillary stacking techniques to make the prefabricated rod [53]. To adjust the air
holes’ size and obtain the elliptical air hole, the thin walls of the air holes are squeezed by
controlling the pressure to obtain the ellipse [54]. In this manner, the proposed SPR-PCF
can be fabricated successfully. Au can be deposited on the surface of the SPR-PCF by
customized vapor deposition (CVD) or atomic layer deposition (ALD) [55] and exterior
vapor deposition (EVD) [56]. However, this work focuses on something other than the fab-
rication procedures. As an alternative, several potential articles that investigated in-depth
fabrication of the elliptical air holes in PCF are suggested [57–59].
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3. Optimization of the Structural Parameters

The initial values of the geometrical parameters of the designed SPR-PCF structure
are specified in Table 3.

Table 3. Initial geometrical parameters of the designed SPR-PCF.

a1x
(µm)

a1y
(µm)

a2x
(µm)

a2y
(µm)

a3x
(µm)

a3y
(µm) e tAu

(nm)
h

(µm) nana

0.8e 0.8 0.7e 0.7 0.2e 0.4 0.6 30 0.4 1.38
Note: e is ellipticity.

The real parts of the effective RIs of the core-guided mode (red dashed line) and SPP
modes (black dashed line) and the CL spectrum of the core-guided mode (blue curve)
in the proposed SPR-PCF sensor are shown in Figure 2, where the geometrical parameters
of the PCF are as specified in Table 3. Figure 3a,b are the E-field distributions of the SPP
and core-guided modes (y-polarization) at λpeak = 694 nm. In Figure 2, the λpeak happens
when the line of effective RIs of the core-guided mode overlaps with a high-order SPP
mode. In this situation, the energy can transfer from the core-guided mode to the SPP
mode, resulting in the CL peak of 79.92 dB/cm, which can be acquired at λpeak = 694 nm for
nana = 1.38. Note that the SPR effect of SPP mode (see Figure 3a) on the top-flat surface of
Au film is higher than that of the side-throw surface.
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The geometrical parameters, such as the Au thickness (tAu), semi-major axes (a1y, a2y,
and a3y), ellipticity (e), and the distance between the top elliptical air hole and the polished
surface (h), are the pivotal factors that can effectively affect the sensing performance of the
designed device. In the following simulations, we change one of the geometrical parameters
while fixing the other parameters specified in Table 3.

The thickness of coated plasmonic material, tAu, has a potential impact on the CL
of the SPR-PCF sensor. The tAu strongly influences the λpeak shift, which can be used in
measuring the testing medium interaction with the surface of the Au layer. When the
tAu increases from 10 to 50 nm, which is comparable with the skin depth of the Au in the
visible wavelength range [60]. Figure 4 shows the CL spectra of the core-guided mode
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for various tAu, ranging in 10 nm ≤ tAu ≤ 50 nm. As seen, the CL peak redshifts with the
increase of tAu from λpeak = 498 nm to λpeak = 821 nm when 10 nm ≤ tAu ≤ 50 nm. When
the tAu is relatively thin (e.g., tAu = 10, 15, 20, and 25 nm), the energy of the evanescent EM
wave on the Au surface is also weak. When the tAu increases, the coupling effect between
the core-guided mode and the SPP mode can be enhanced and reach the highest value of
λpeak = 694 nm when tAu = 30 nm. The loss increases from 3.18 dB/cm to 79.92 dB/cm when
tAu changes from 10 nm to 30 nm. A thicker tAu (e.g., tAu = 35, 40, and 50 nm) mitigates
the coupling effect between the core-guided mode and the SPP mode due to the shielding
of the EM wave from the core region to the outer Au surface, leading to the decrease of
the CL peak. As a result, the CL peak drops from 79.92 dB/cm to 41.02 dB/cm when tAu is
30 nm ≤ tAu ≤ 50 nm. From Figure 4, we can conclude that the tAu is the most crucial factor
that affects the full width at half maximum (FWHM) and the amplitude of the CL peak.
One can explain the matching impedance and SPR resonance conditions between the core
region and the Au surface. The variation of tAu results in impedance when the resonance
condition of the fiber is satisfied.
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Meanwhile, λpeak should increase to guarantee the impedance between the fiber core
region and Au surface when the resonance condition of the fiber is changed by tAu. It is
noticeable that there is a sharp transition in the CL value when tAu is increased from 25 to
30 nm. The reason can be understood from the resonance condition between the core-
guided and SPP modes at various tAu. This indicates that the highest energy exchange
between guided and SPP modes occurs when tAu = 30 nm.

The size of the major axis in the elliptical air holes is essential in affecting the CL.
Based on the FEM simulations, the major axis of the elliptical air holes, i.e., a1y, a2y, and a3y,
can significantly affect the coupling effect between the core-guided mode and SPP mode.
Figures 5–7 display the CL versus wavelength for a1y = (0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.9) µm,
a2y = (0.68, 0.70, 0.72, 0.74, 0.76, 0.78)µm, and a3y = (0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42) µm,
respectively. The increase in CL indicates the nature of the coupling effect, and a higher CL
can facilitate the energy transformation from the core-guided to the SPP mode.
As observed in Figure 5, the CL peak occurs at λpeak = 695 nm for all cases except that of
a1y = 0.6 µm. The case of a1y = 0.65 µm shows the highest CL peak of 261.01 dB/cm
but reveals a larger FWHM of 30 nm. In contrast, a smaller CL peak for the cases of
a1y = 0.75, 0.80, 0.85, and 0.9 µm are 111.33, 79.92, 63.49, and 55.97 dB/cm, correspondingly.
It is noticeable that the CL spectrum curve of a1y = 0.60 µm displays a broad range of peak
values. A larger FWHM (around 60 nm) negatively influences the sensing performance.
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Therefore, the best result is a1y = 0.7 µm based on a CL value of 166.69 dB/cm and FWHM
width of 20 nm.
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In Figure 6, the CL peak redshifts and has a higher value with the increasing a2y range
being a2y = (0.68, 0.70, 0.72, 0.74, 0.76, 0.78) µm. These values of a2y are available in the
proposed SPR-PCF and imply that we can manipulate the desired operation wavelength
by varying the a2y. In this case, we choose a2y = 0.78 µm as an optimal value due to its
higher CL value of 93.67 dB/cm and an acceptable FWHM of 20 nm. It can be seen in
Figure 7 that the CL peaks exhibit a slight blueshift from λpeak = 697 nm to λpeak =693 nm,
and the CL values drop from 159.82 dB/cm to 59.01 dB/cm when a3y varies in the range of
a3y = (0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42) µm. The smaller a3y experiences a higher
CL value because the scaled-down a3y facilitates driving the EM wave away from the PCF
core region to the PCF surface. Note that in the structure optimization process, the change
of a2y will cause the CL peak to show a regular λpeak shift and an increased CL value, while
a1y and a3y only affect the CL value. The CL value depends on the contribution of the
coupling effect from the core-guided mode to the SPP mode, and the λpeak shift is related to
the resonance condition and the variation of Im(neff) in the SPR-PCF. As seen in Figure 6,
one can obtain the desired working wavelength by changing the size of a2y.

The ellipticity of elliptical air holes can remarkably affect the light energy coupling
between the core-guided and SPP mode [19]. Figure 8 displays the CL versus wavelength
for ellipticity e = 0.4, 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, and 1.00. It is evident in Figure 8
that the CL redshifts from 688, 691, 693, 694, 698, 702, to 703 nm when the ellipticity
increases from 0.4 to 1.00, while the intensity of CL and the width of FWHM decreases from
(CL, FWHM) = (235.66 dB/cm, 25 nm), (137.14 dB/cm, 22 nm), (104.80 dB/cm, 20 nm),
(79.92 dB/cm, 20 nm), (60.39 dB/cm, 19 nm), (44.99 dB/cm, 18 nm), (32.46 dB/cm, 17 nm)
to (2.73 dB/cm, 60 nm). Compared to the elliptical air-hole cases, the circular air-hole case
(i.e., e = 1.00) shows a lower amplitude of CL peak and a broadened FWHM. These results
demonstrate that the elliptical air holes in the designed SPR-PCF sensor are superior to the
case of circular air holes in terms of the CL and FWHM. The smaller ellipticity can facilitate
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the energy transformation from the core-guided to the SPP mode. However, the smaller
ellipticity will exhibit a larger FWHM, as observed in the dashed arrow lines in Figure 9.
As a result, we choose the optimal value of e = 0.55 in the viewpoint of the CL value and
the width of FWHM (CL = 104.80 dB/cm, FWHM = 19 nm).
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Subsequently, we inspected the distance between the top elliptical air hole and the
flat surface, h. As illustrated in Figure 9, the CL amplitude decreases with the increasing
h. When h increases from 0 to 0.6 µm in the step of 0.1 µm, there is a slight blueshift from
λpeak = 695 nm to λpeak = 692 nm, and the CL amplitude decreases from 110.76 dB/cm to
69.29 dB/cm. According to the CL spectrum, as shown in Figure 9, the available range
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of h in the proposed structure can be selected as 0 µm ≤ h ≤ 0.6 µm. The Au-coated flat
surface can facilitate the coupling effect between the SPP wave and analyte, and the length
of the Au-coated flat surface depends on different sizes of h value. Note that if h = 0 µm,
the proposed SPR-PCF structure exhibits a circular outer surface (i.e., no flat surface),
the CL amplitude can reach the highest value but shows a bigger FWHM (25 nm) and
an unsmooth CL curve range of 640 nm ≤ λ ≤ 680 nm. As a result, we selected h = 0.4 m
for the following simulation in terms of a smooth CL curve and a smaller FWHM (18 nm).
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4. Application as a Refractive Index SPR-PCF Sensor

Finally, the application of the RI sensor based on the optimized designed structure
was inspected. Table 4 shows the optimal geometrical parameters of the designed SPR-PCF
based on the optimization of the structural parameters mentioned above.

Table 4. Optimal geometrical parameters of the proposed SPR-PCF.

a1x
(µm)

a1y
(µm)

a2x
(µm)

a2y
(µm)

a3x
(µm)

a3y
µm) e tAu

(nm)
h

(µm)

0.7e 0.7 0.78e 0.78 0.35e 0.35 0.55 30 0.4
Note: e is ellipticity.

To achieve precise RI detection, we examined the RI of the analyte, nana = 1.31, 1.32,
1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.391, 1.392, 1.393 and 1.395, as the surrounding media.
Figure 10a,b present the CL spectra of the core-guided mode for the different RIs of analytes
(nana). Figure 10a illustrates nana = 1.31–1.36 in the step of 0.01, and Figure 10b exhibits
nana =1.37, 1.38, 1.39, 1.391, 1.392, 1.393, and 1.395. Note that the CL spectrum increases
precipitously when the RI is in the range of 1.39–1.395 due to the abrupt change of resonance
condition between the core-guided mode and SPP mode. These results are similar to other
studies (see [61–63]). We can explain this phenomenon in that the CL is proportional to
Im(neff). The maximum nana value of 1.395 is chosen since there is no valid CL peak in the
proposed structure when nana ≥ 1.395, i.e., for target analyte RI ≥ 1.3950, the λpeak was not
obtained, and consequently the overall sensitivity reduces. As observed in Figure 10a,b,
all curves experience a redshift with an increase in nana. The positions of the CL peaks
change slowly for a smaller value of nana; e.g., CL peaks vary from 25 dB/cm to 132 dB/cm
as nana increases from 1.31 to 1.36 in the step of 0.01. Meanwhile, the positions of the CL
peaks change rapidly with a higher value of nana, e.g., CL peaks vary from 252 dB/cm to
3122 dB/cm as nana rises from 1.37 1.38, 1.39, 1.391, 1.392, 1.393 to 1.395. Note that the CL
spectrum displays a significant redshift when nana ≥ 1.37 (see Figure 10b). Remarkably,
the designed SPR-PCF is susceptible to minimal variations in RI in the order of ±0.001.
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One of the critical findings of the proposed SPR-PCF sensor is that it can detect the RI of
the analyte higher than that of the fiber background.
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Various RIs can be obtained in the wavelength interrogation mode by calculating
the ∆λpeak. Figure 11 plots λpeak and CL spectra of the core-guided mode for differ-
ent analytes (nana) ranging from 1.31–1.3950. The RI sensitivity S can be attained from
Equation (4). As can be seen in Figure 11, the RI sensitivity S of the two adjacent points is
SAB = 116,500 nm/RIU, SBC = 16,000 nm/RIU, SCD = 18,000 nm/RIU, SDE = 16,000 nm/RIU,
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SEF = 8800 nm/RIU, SFG = 5100 nm/RIU, SGH = 3100 nm/RIU, SHI = 2400 nm/RIU,
SIJ = 1700 nm/RIU, SJK = 1300 nm/RIU, SKLJ = 1100 nm/RIU, and SLM = 1100 nm/RIU,
corresponding to the wavelength interval of 550 nm to 1200 nm. The proposed SPR-
PCF sensor’s RI resolution can be obtained from Equation (5). The ∆nana and ∆λpeak in
SAB shown in Figure 11 are ∆nana = 0.002 and ∆λpeak = 233 nm, respectively. We assume
∆λmin = 0.1 nm. Consequently, the minimum resolution can be obtained: 8.58 × 10−7 RIU.
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Figure 11. Resonance wavelength (nm) and confinement loss spectra of the core-guided mode for
different analytes (nana) ranging from 1.31 to 1.3950.

Concerning the performance of the proposed SPR-PCF, Table 5 contains the required
data from Figure 11, including nana, CL (dB/cm), λpeak (nm), sensor length (cm, based on
Equation (6)), sensitivity (nm/RIU), and resolution (RIU), concerning the variation of RIs
in the interval of 1.31–1.395.

Table 5. Observation of the performance of the designed SPR-PCF sensor for variation of RIs in the
interval of 1.31–1.395.

nana CL (dB/cm) λpeak (cm) Sensor Length (cm) Sensitivity (nm/RIU) Resolution (RIU)

1.31 24.62 554 0.0406 1100 9.0909 × 10−5

1.32 31.55 565 0.0316 1100 9.0909 × 10−5

1.33 41.78 576 0.0239 1300 7.6923 × 10−5

1.34 57.31 589 0.01744 1700 5.8823 × 10−5

1.35 81.86 606 0.01221 2400 4.1667 × 10−5

1.36 132.2 630 0.00756 3100 3.2258 × 10−5

1.37 252.34 661 0.00396 5000 2.0000 × 10−5

1.38 478.11 711 0.00209 8800 1.1363 × 10−5

1.39 1205.00 799 0.00083 16,000 5.8823 × 10−5

1.391 1288.20 815 0.00078 18,000 5.56 × 10−6

1.392 1297.90 833 0.00077 16,000 6.25 × 10−6

1.393 1367.00 849 0.00073 116,500 8.58 × 10−7

1.395 3121.80 1082 0.00032 N/A N/A

Table 6 summarizes the performance analysis comparison (including published year,
RI range, wavelength range, maximum wavelength sensitivity, and sensor resolution)
between the proposed SPR-PCF sensor and previously reported sensors. Table 6 shows that
our proposed SPR-PCF sensor reveals better sensing performance with higher sensitivity
and better resolution.
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Table 6. Performance analysis comparison between the proposed SPR-PCF sensor and previously
reported sensors.

Refs./Year RI Range Wavelength Range (nm) Max. Sensitivity (nm RIU−1) Resolution (RIU)

[64]/2017 1.32–1.35 650–850 5600 9.650 × 10−6

[65]/2018 1.40–1.43 904–1359 15,180 5.600 × 10−6

[66]/2019 1.414–1.424 1900–2200 50,000 4.000 × 10−4

[67]/2020 1.39–1.43 650–1400 21,200 4.720 × 10−6

[68]/2020 1.33–1.36 400–800 3083 3.200 × 10−5

[69]/2021 1.35–1.50 1800–2200 4000 2.940 × 10−5

[70]/2021 1.43–1.49 900–1250 12,719 7.460 × 10−6

[41]/2022 1.33–1.39 600–960 13,000 1.075 × 10−6

[71]/2022 1.30–1.44 800–1100 1100 9.090 × 10−6

This work 1.31–1.3950 550–1200 116,500 8.58 × 10−7

5. Conclusions

In summary, we designed a simple and high-sensitivity elliptical air hole SPR-PCF–
based sensor where Au is deposited as a plasmonic material to deploy an external sensing
approach. We used FEM-based COMSOL Multiphysics software to simulate the sensor
and further characterize the performance. Through FEM simulations, the influences of
RI on structural parameters of the SPR-PCF were discussed and calculated. We found
that the thickness of plasmonic material (Au) is the most important factor affecting the
FWHM and CL amplitude. We also demonstrated that the proposed elliptical air hole
SPR-PCF is superior to the circular air hole SPR-PCF based on CL and FWHM. Under
the optimized structural parameters, the proposed SPR-PCF sensor verifies the highest
wavelength sensitivity of 116,500 nm/RIU with an 8.58 × 10−7 RIU sensing solution for
the analyte RI of 1.395. The device can detect highly active chemical and biological liquid
samples because of its excellent sensing performance.
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