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Abstract: The cumulative achievements in the fields of science and technology have allowed us
to substantially approach the solution of the phase problem in optics. Among all phasometric
methods, single-beam methods are the most promising, since they are more variable and versatile.
Single-beam methods are based either on the analysis of the intensity distribution, as is conducted
by interferometers and wavefront sensors, or on the transformation of the phase into an intensity
distribution due to spatial filtering, as is conducted by holographic methods. However, all these
methods have the problem of working with polychromatic radiation and require spectral filters to
process such radiation. This paper presents a new approach to the synthesis of Fourier holograms
used in holographic wavefront sensors that make it possible to create achromatic elements and
work with white light without the use of additional filters. The approach was numerically and
experimentally verified.

Keywords: chromatic aberration; white light; wavefront sensor; computer-generated hologram;
spatial light modulator

1. Introduction

The solution of image (field) analysis tasks associated with the problem of pattern
recognition is greatly facilitated by using the technique of optical matched filtering and
correlation analysis proposed by Vander Lugt [1]. This technique is based on the possibility
of simple implementation of complex matched filters for images of any complexity in single-
channel systems with Fourier transform components [2]. With the development of devices,
such as spatial light modulators (SLM) based on liquid crystals (LC-SLM) [3] and micromir-
rors (DMD), multichannel optical pattern recognition systems also began to develop. These
systems began to use the color component of the image as an information parameter [4,5].
Such devices allow solving pattern recognition problems by spatial and spectral parameters
in real time [6]. Color images are decomposed into three monochromatic channels (RGB)
using various techniques (time [7] and space division [8,9], SLM region division [10,11] and
spatial superposition [12,13]), which are then processed independently of each other [14].

Undoubtedly, the use of a white light source when working with such devices leads
to unwanted chromatic effects [15,16]. In addition, the LC-SLM used in the majority of
such systems, which operate primarily with monochromatic light, typically provides a
limited range of phase modulation [16,17]. These facts led to the development and use
of achromatic elements displayed on the SLM and provided the same optical power for
radiation at different wavelengths [18–20].

In addition to the recognition of 2D and 3D images, optical matching filtering and
correlation analysis methods are also used for wavefronts [21–23]. When solving such
problems, it is necessary to constantly monitor the temporal or spatiotemporal couplings
(STC) of light beams [24–26]. These STC [27] are usually inseparable chromatic aberrations,
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which can be caused by very common optical elements, such as diffraction gratings and
thick lenses, or prisms created from scattered material [28].

This one-to-one relationship of characteristics is determined using standardized in-
struments that include intensity and phase measurements. For example, shearing interfer-
ometers, Shack–Hartmann sensors, and quantitative phase imaging techniques are actively
used in phase measurement problems. The principles of reconstruction are the same [29],
and each method involves tradeoffs between dynamic range, resolution, bandwidth, and
usability. However, these methods are often inapplicable due to their peculiarities, for
example, in tasks of laser spectroscopic characterization of dielectric materials.

In our study, we propose to link the well-known method of correlation analysis of
wavefronts based on a scheme with a single SLM and a method for synthesizing a spatial
achromatic filter in the form of a computer-generated Fourier hologram (CGH); as a result,
the range of tasks to be solved will be significantly expanded.

2. Materials and Methods

Let us consider the synthesis of a spatial filter in the form of the CGH according to
the Vander Lugt scheme for colliding beams [1]. This recording scheme implies the use
of a point quasi-monochromatic radiation source, S0, displaced relative to the optical axis
of the system. Since the radiation source is in the front focal plane of the Fourier lens, the
spherical wave propagating from it is converted into a plane wave after passing through
the lens. In the mathematical model, the radiation source will be represented as an ideal
point, so we denote its field as a displaced two-dimensional Dirac delta function with a
unit amplitude.

E0 (x, y) = δ(x, y− ∆), (1)

where ∆ is the value of the shift relative to the optical axis. The transformation of the
complex amplitude of the radiation passing through the lens can be described using the
Fourier transform [30]. Using the filtering properties of the Dirac delta function and the
properties of the Fourier transform [30], it can be shown that the Fourier image of the source
in the hologram plane will be the product of the complex spectrum from the radiation
source on the optical axis of the system and the phase shift function.

Ẽ
(

x′, y′
)
∼ H0

E· exp
[
−j

2π∆
λ f

y′
]

, (2)

where λ is the wavelength of the quasi-monochromatic radiation source, f is the len’s focal
length, H0

E is the amplitude coefficient of the centered radiation source. Equation (2) is the
subject wave in the hologram formation plane. The distribution of the phase argument of
the object wave is shown in Figure 1a.
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The reference wave Rre f (x′, y′) is a laser beam with a unit amplitude and a phase
argument, which is the sum of the orthogonal basis functions

Rre f
(
x′, y′

)
= exp

[
j·2π

λ
· fre f

(
x′, y′

)]
, (3)

where fre f (x′, y′) is a spatial phase shift produced by aberration, which is independent
from λ. It can be presented as:

fre f
(
x′, y′

)
= ∑n Cn·Wn

(
x′, y′

)
, (4)

where Cn is the set of Zernike coefficients; Wn(x′, y′) is the Zernike polynomials that have
been first defined in polar coordinates and then converted into Cartesian coordinates
using well known techniques [31]. Like all other basis functions describing aberrations,
the weight coefficients of the Zernike polynomials can be defined in wavelengths. As a
result, the coefficients can be written as Cn = Nnλ, where Nn is a real number. As a result,
Equation (3) will have the form:

Rre f
(
x′, y′

)
= exp

[
j·2π

λ
·∑n Nnλ·Wn

(
x′, y′

)]
, (5)

where Nln is the aberration value presented in terms of λl . If we have another wavelength
λk in the source spectrum the same aberrated beam Rre f (x′, y′) can be presented as a
weighted sum of the same set of Zernike functions {Wn(x′, y′)} and coefficients {Cn}. The
difference is in representation of Zernike coefficients in terms of number of wavelengths λk
by the set of real valued coefficients {Nkn} which are related to {Nln} as:

Nknλk = Nlnλl , (6)

Equation (5) shows that the wavelength λ can be moved outside the weighted sum. In
this case, Equation (5) becomes independent of the wavelength of radiation. Consequently,
the resulting holograms also become independent of the wavelength of the radiation used
for reconstruction. As a consequence, they can be used to work with white light, and the
spectral selectivity will be due to diffraction. Figure 1b shows the distribution of the phase
argument of the reference wave. Actually, the hologram results from the interference of the
object wave Ẽ(x′, y′) and the reference wave Rre f (x′, y′) in the plane of their interaction,
and the amplitude pattern of the CGH can be calculated as follows:

hamp
(

x′, y′
)
= 2Re

[
Rre f

(
x′, y′

)
· exp

(
−j

2π∆
λ f

y′
)]

. (7)

The further hologram reconstruction model directly depends on the type of its mod-
ulation. In case of amplitude modulation, in the back focal plane of the Fourier lens, the
complex field amplitude will be proportional to the Fourier transform of the product of the
laser beam function and the hologram. If phase modulation is used, the CGH will be as
follows:

hph
(
x′, y′

)
= exp

[
j·µ·hamp

(
x′, y′

)]
. (8)

where µ = 2π.
According to the Jacobi–Anger property [30], the right side of Equation (8) can be

represented as the sum of weighted Bessel functions of the 1st kind of the nth order.

hph
(

x′, y′
)
= ∑

n∈Z
in Jn(µ) exp

(
j·µ·n· fre f

(
x′, y′

))
· exp

(
−j

2π∆
λ f

y′
)

. (9)

Amplitude and phase modulation of the hologram will lead to the appearance of
higher orders of diffraction in the plane of formation of the Fraunhofer diffraction pattern.
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The presence of higher orders leads to a decrease in the diffraction efficiency of the method
and can cause a decrease in the detection accuracy. However, there are methods based on
computer holography that generally allow one to increase the diffraction efficiency of a
hologram by forming only one diffraction order in the Fraunhofer diffraction pattern [30].
This effect can be obtained only with phase modulation, if we consider Equation (9) at
n = 1.

hph
(

x′, y′
)
= exp

(
j·2π·

[
fre f
(

x′, y′
)
− ∆

λ f
y′
])

(10)

When implementing this hologram with a phase SLM (Figure 2a), such a hologram
(Figure 2b) will form only one order of diffraction (+1). However, an important condition
for this is the requirement for the depth of the phase modulation. This is due to the fact that
the complex field amplitude of the object wave in Equation (2) is a one-dimensional blazed
grating. Theoretically, its diffraction efficiency can be 100%, provided that the generated
phase shift is equivalent to ~Nλ, where N is a natural number [16].
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Figure 2. (a) Principle of operation CGH; (b) distribution of the phase argument of the CGH.

From the intensity and size of a given order of diffraction, one can judge the presence
and magnitude of the aberration contained in the beam incident on the hologram. If the
distortion amplitudes in the light beam incident on the hologram and in the function
describing the aberrations in the CGH coincide, an autocorrelation impulse response will
be observed in the rear focal plane of the Fourier transform objective.

3. Experimental Demonstration

Experimental demonstration of the method was carried out using three independent
coherent quasi-monochromatic radiation sources with operating wavelengths λ1 = 473 nm,
λ2 = 532 nm, and λ3 = 561 nm. The laser beams propagating from the sources were
expanded and collimated independently of each other using the Kepler system (at the
output of these systems, the aperture of the laser beams was 4 mm). The convergence of
laser beams on one optical axis was carried out using several beam splitting cubes (BS).
Since this part of the optical scheme does not carry any information, we will not show it
further when illustrating the scheme of the experiment.

According to the simplified experimental scheme shown in Figure 3, chromatic aberra-
tion was introduced using a biconvex lens (L1). The laser radiation incident on the lens
was focused on the focal plane at a distance ~100 mm. Due to the dispersion properties
of the lens, the focal plane has an extended size along the axis of radiation propagation
when it is illuminated by a white light source. As a result, in the plane with the phase SLM,
the values of the radii of curvature of the wavefronts do not match for laser beams with
different wavelengths. In the SLM plane (Holoeye PLUTO-2-VIS-016, 1920 × 1080, pixel
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size 8 µm), the incident radiation interacts with the CGH displayed on the SLM (the phase
function of the CGH is described by Equation (10), while its size is 1920 × 1080 pixels).
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Detecting the presence of aberrations, determining their type and value is carried out
using an achromatic (in the range of 0.3–0.8 µm) Fourier lens (L2). In the focal plane of
L2, there is a matrix photodetector, which is connected to the SLM via a personal com-
puter using a feedback line. In this case, monochrome sCMOS Camera (CMOS, Thorlabs
CS2100M-USB, 1920 × 1080, pixel size 5.04 µm) was used. The process of forming the cor-
relation response and finding the main maximum of the correlation function is carried out
using the algorithm based on the method of gradient descent adapted for this problem [21].
Previously, this algorithm was demonstrated in [22], where the optimal parameters of its
operation for this problem were determined. It should be noted that the synthesis of Fourier
holograms is carried out in real time and is completely determined by the algorithm.

The laser beam passes through a nonpolarizing BS (50:50 (R:T) split ratio) before falling
on the phase reflective SLM. The scheme uses a Shack–Hartmann wavefront sensor (WFS,
Thorlabs WFS300-14AR, Newton, NJ, USA), which allows for monitoring wavefronts at a
frequency up to 15 Hz with an accuracy up to λ/50 and sensitivity up to λ/150. Since the
WFS is not capable of handling polychromatic radiation, bandpass filters were placed in
front of it, each corresponding to a different source.

The first experimental approbation was carried out using only one quasi-monochromatic
radiation source (532 nm). In this case, the SLM gamma curve provided modulation in
the [0, pi] range at a wavelength of λ2 = 532 nm. Then, using the previously developed
algorithm based on the gradient descent method, the search for the main maximum of the
correlation function was performed automatically. The algorithm [21] required an average
of 10 iterations to determine the true value of the aberrations.

After obtaining the correlation response and determining the position of the main
correlation maximum for the laser beam at λ2 = 532 nm, the SLM was reconfigured to
work with the source at λ1 = 473 nm and λ3 = 561 nm, respectively. Then, the experiment
was repeated according to the abovementioned procedure. It is worth noting that the same
CGHs were used in all these experimental series.

After successive detection of aberrations for different wavelengths, the experimental
setup was rebuilt to detect the chromatic aberration (longitudinal). The chromatic aberra-
tion longitudinal was obtained by simultaneously illuminating lens L1 with laser beams
with the wavelengths described above.

4. Results and Discussion

Based on the first three experimental tests, correlation responses were obtained for each
of the radiation sources. The normalized dependences of the amplitude of the maximum
correlation response offset are shown in Figure 4.
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As can be seen from Figure 4, the dependencies have the same profile, but have differ-
ent normalized peak parameters. For example, the height of the correlation peak or signal-
to-noise ratio (SNR) is different for all three cases: SNRλ1=473 = 3.34, SNRλ2=532 = 2.94,
and SNRλ3=561 = 2.33. The results shown in Figure 4 demonstrate the feasibility of the
purposed method to be used on different wavelengths with the same set of CGHs.

Table 1 shows the values of the obtained aberrations and their corresponding errors.
As the true value was taken from the data from the WFS, the stated error of measurement
was λ/50. The data presented indicated that this method of CGH synthesis is reliable, and
the assumption that a hologram is invariant to a change in the wavelength of the radiation
incident on it is correct.

Table 1. Values of the obtained aberrations.

Methods λ = 473 nm λ = 532 nm λ = 561 nm

WFS 0.22λ 0.45λ 0.52λ
Proposed method 0.23λ 0.43λ 0.5λ

Error λ/100 λ/50 λ/50

The fourth experimental approbation included all three coherent radiation sources to
measure the chromatic aberration (longitudinal). The two-dimensional distributions of the
recorded correlation responses are shown in Figure 5a–c for offset values of 0.23λ, 0.43λ,
and 0.5λ and for wavelengths λ1 = 473 nm, λ2 = 532 nm, and λ3 = 561 nm, respectively.
Figure 5d–f show the maximum values of the intensity distribution along the 0y axis for
these cases. By measuring the distance between the maxima of the normalized dependence
on the values of the obtained aberration values, we can determine the value of the chromatic
aberration of the complex field amplitude, which in this case is ~λ/3 relative to the central
wavelength of 532 nm.
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for wavelength λ3 = 561 nm. Maximum values of the intensity distribution along the 0y axis: (d) for
case (a); (e) for case (b); (f) for case (c).

5. Conclusions

The peculiarity of the wavefront aberration detection problem is that it is phase only,
slowly changing the function of the wave surface of the investigated light beams. In this
paper, an approach to synthesizing the spatial filters in the form of CGHs on the basis
of computer holography methods was demonstrated. This allows only one correlation
response in the analysis plane. Moreover, these holograms are invariant to changes in the
wavelength of the analyzed laser beam, which allows them to be used to detect chromatic
aberrations in white light. When working with white light, the spatial separation of the
responses is due to the basic principles and laws of diffraction.

Due to the chosen scheme for the synthesis of the CGH Fourier (scheme according to
the Vander Lugt method), the generated correlation responses are, in essence, an image of
the point-spread function of the radiation source. Therefore, in the case of simultaneous
work with several quasi-monochromatic radiation sources, it is necessary that their spa-
tiotemporal couplings be close. In the case of working with a natural source of white light
(e.g., supercontinuum), there are no such restrictions.
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