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Abstract: We demonstrate a method to enhance the transverse Anderson localization (TAL) effect of
the glass–air disordered optical fiber (G-DOF) by adjusting the number and diameter of air holes.
This method does not need to enlarge the air-filling fraction of G-DOF, leading to the mitigation of
fabrication complexity. By choosing the appropriate diameter and number of air holes, the average
localized beam radius of G-DOF with the highest air-filling fraction of 30% can be successfully
reduced by 18%. Moreover, the proposed method is always functional for the situations of the
air-filling fraction lower than 50%. We also identify that, under the same air-filling fraction, a larger
number of air holes in the G-DOF leads to the smaller standard deviation of the corresponding
localized beam radius, indicating a stable fiber structure. The results will provide new guidance on
the G-DOF design.

Keywords: disordered optical fiber; transverse Anderson localization; localized beam radius

1. Introduction

The disordered optical fiber (DOF) is a new type of optical fiber that relies on the
transverse Anderson localization (TAL) effect to confine and transmit beams [1]. Unlike
traditional optical fibers, it has no core and cladding structure [2]. The material effective
refractive index is randomly distributed across the fiber cross-section. Thus, the beam can
be transmitted along the fiber regardless of the position of the fiber cross-section on which
it is launched. Those characteristics mean that the DOF has good application prospects in
the fields of high-quality imaging [3–6], random laser generation [7], beam multiplexing [8],
and so on.

The first DOF was reported in 2012 [9]. It was fabricated by randomly mixing
40,000 pieces of polymethyl methacrylate fibers and 40,000 pieces of polystyrene fibers.
The DOF was first used for image transmission in 2014 and achieved a higher imaging
quality in comparison with some of the best commercial multicore fibers [7], thus attracting
extensive attention. In past decades, four kinds of DOFs composed of different materials
have been investigated—polymer DOF [10], glass–air DOF [11], Tellurite DOF [12–14] and
chalcogenide DOF [15,16]—in order to cover the different transmission windows including
visible light [4,17], near-infrared [12,18], and mid- infrared light [16], respectively. However,
the transmission distances of all those fibers are only several centimeters [19], which is a
major disadvantage that hinders their practical application. Generally, researchers believe
the glass–air DOF (G-DOF) can be widely used sooner than other types of DOF. Firstly,
glass has lower transmitting attenuation compared with other materials, making it easier
to achieve long-distance transmission. Secondly, the effective refractive index difference
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between glass and air is large, which contributes to a stronger TAL effect [20,21] It is
worth mentioning that, so far, one kind of G-DOF with ~30% air-filling fraction has the
longest transmission distance of about 90 cm [17,22]. Although the TAL effect of DOF will
be the strongest by increasing the air-filling fraction to 50%, it will make the fabrication
challenging [23].

In this study, for a specific air-filling fraction, we adjust the diameter and number
of the air holes arising in the G-DOF in order to reinforce its TAL effect. This method
successfully reduced the average localized beam radius by about 18% for the G-DOF with
the air-filling fraction of 30%. Additionally, this method always works for the DOF with the
air-filling fraction less than 50%. The arrangement of this article is as follows. In Section 2,
the schematic topology of the proposed G-DOF is presented. In Section 3, the impacts of
the air hole diameter and number on the average localized beam radius are investigated
and analyzed in detail. Finally, a brief conclusion is summarized in Section 4.

2. Schematic Topology and Design Principle

Figure 1 shows an example of a cross-section of G-DOF with square elements used for
our numerical simulations, the purple part represents SiO2 and the white part denotes air
holes. We can see that the material on the cross-section of fiber distributed randomly. For
the ease of observation, we zoom in on the center of the fiber, as shown in the upper part of
Figure 1. Here, we need to explain that we choose the square elements instead of circular
elements because the circular elements cannot be closely arranged without any gap.

The modeling of the DOF is constructed as below. First, we divide the transverse
cross-section into several tiny square elements. If we assume that the total number of the
square elements is N, the width of the square elements and the distance between the two
nearby elements are both equal to a. Then, the materials of those squares are all set as SiO2.
Secondly, we pick X elements from the total number of N (0 ≤ X ≤ N), to reset their size
to d (0 ≤ d ≤ a) and their material property to air. Here, to ensure the air-filling fraction
f remains constant, X and d should fulfill the function of f = Xd2/Na2. Obviously, the
relationship between X and d is the opposite. The smaller diameter d of the air hole is, the
larger the number X is. It should be mentioned that the previous studies only considered
the case of air hole diameter d equal to a. However, the impact of air hole diameter on the
TAL effect is not comprehensively investigated, when d is smaller than a.
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3. Simulation Procedure and Data Analysis

The initial simulation parameter settings are N = 170 × 170 = 28,900 and a = 0.9 µm,
while a Gaussian beam with a diameter of 4.25 µm at the wavelength of 633 nm is launched
into the fiber center. Based on those parameter settings, the optical field distribution and
the localized beam radius after the light transmission over the 2 cm DOF with different
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sets of (d, X) can be calculated by using Rsoft software based on the finite-difference beam
propagation method (FD-BPM). Here, we choose 2 cm transmission distance, because the
beam spreading will become relatively stable after such a distance.

Figure 2a presents the relationship between the diameter d and the number X of the
air holes, and the influence of different sets of (d, X) on the average localized beam radius,
when the air-filling fraction f is fixed to 30%. For each set of (d, X), the average localized
beam radius was calculated based on 50 different DOF models. It can be seen from the
curve with square marks in Figure 2a that the air hole diameter d and the air hole number
X are inversely proportional, when the air-filling fraction remains constant. From the curve
with circle marks in Figure 2a, we can see that, when the diameter of air holes maintains
the initial setting of d = a = 0.9 µm and X = 8640, the average beam radius is around 28 µm.
However, when d = 0.65 µm and X = 16,622 are satisfied, the corresponding average beam
radius can be reduced to about 23 µm. This result indicates that, for a specific air-filling
fraction of G-DOF, we still can improve the strengthen of the TAL effect simply by adjusting
the number and diameter of air holes.

Figure 2b shows the localized beam radius and the standard deviation of the localized
beam radius of 50 different fiber models with different air hole diameters of d, when the air
hole filling rate is f = 30%. It is interesting to find that, when the air hole diameter decreases,
the standard deviation of the localized beam radius decreases gradually. It reflects that the
structure of the fiber becomes stable due to the growing number of air holes for smaller
diameter. This phenomenon can be explained as follows: with the decrease in the air hole
diameter, the number of air holes must increase to ensure the constant air-filling rate f.
From the statistical perspective, while the number of air holes increases, the distribution of
the air holes will present increased randomness close to the design purpose. Additionally,
the randomly generated models obey the same random distribution, thus the difference of
localized beam radius is reduced. This finding will facilitate the realization of structurally
stable DOF designs. Therefore, by regulating the air hole diameter d from 0.9 µm to 0.65 µm,
the G-DOF can achieve not only stronger TAL effect but also better structural stability.
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Figure 2. Under the condition of f = 30%, (a) the relationship between the diameter d and the number
X of the air holes (red curve), and the influence of different sets of (d, X) on the average localized
beam radius (black curve), (b) the localized beam radius and the standard deviation of the localized
beam radius of 50 different fiber models with different diameter d.

For the ease of performance comparison, Figures 3 and 4, respectively, show the optical
field intensity distributions on the xy plane and the xz plane for the DOFs with different
air hole diameter of d = a = 0.9 µm and d = 0.65 µm. We can clearly observe that the beam
spreading range is smaller under the condition of d = 0.65 µm, in comparison with the case
under the condition of d = 0.9 µm, indicating of a stronger TAL effect.
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Furthermore, we investigate the impact of combined parameters (d, X) on the average
localized beam radius, when the air-filling fractions are set at 20%, 30%, 40%, and 50%,
respectively, as shown in Figure 5a. It is obvious that when f = 20%, 30%, 40%, and 50% are
satisfied, the DOF has the minimum average beam radius at d = 0.55 µm, 0.65 µm, 0.85 µm,
and 0.9 µm, respectively. Accordingly, it implies that when the air-filling fraction f is less
than 50%, there exists a parameter set of (d, X) to minimize the beam radius. However,
when the air-filling fraction f reaches 50%, we cannot find a better value of (d, X) to further
reduce the localized beam radius, because the fiber with initial setting has already reached
its maximum disorder, and further increasing the number of air holes will reduce the degree
of disorder. As shown in Figure 5b, we can see that no matter what air-filling fraction f
is, the greater number of air holes the fiber contains, the smaller the corresponding mean
square deviation of the beam localization radius would be.
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