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Abstract: Silicon photomultiplier’s relatively large area and ability to detect single photons makes
them attractive as receivers for visible light communications. However, their non-linear response
has a negative impact on the receiver performance, including making them particularly sensitive to
ambient light. Experiments and Monte Carlo simulations have been used to study this non-linearity.
The resulting detailed understanding of the origins of the non-linear response leads to concerns
over the accuracy of some previous simulations of SiPMs. In addition, it leads to simple methods to
determine the maximum rate at which an SiPM can count photons and of determining the impact of
a SiPMs non-linearity on its performance of a receiver. Finally, a method of determining which filters
should be used to protect an SiPM from ambient light is proposed.
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1. Introduction

Visible light communications (VLC) and optical wireless communications (OWC) have
been proposed as approaches to increasing local wireless communications capacity using
visible or optical wavelengths [1]. An important parameter for any communications system
is the rate at which it makes errors. This is characterized by the bit error rate (BER), which
depends upon the signal to noise ratio (SNR) at the output of the receiver. One approach to
increasing the SNR of a VLC or OWC systems that are designed to operate at data rates of
more than 100 Mbps is to use a silicon photomultiplier (SiPM) as a receiver [2–16]. These
devices are arrays of microcells, containing a single photon avalanche diode (SPAD), and
each microcell is designed so that an output pulse is generated whenever a photon initiates
an avalanche event. It is the resulting ability to detect single photons which allows SiPM
receivers to operate within a few photons per bit of the noise floor determined by Poisson
statistics [5]. However, an intrinsic part of the microcell’s photon detection mechanism is
the quenching of the avalanche process by reducing the bias voltage across its avalanche
photodiode (APD). After the avalanche process has been quenched, the microcell has to be
recharged so that another photon can be detected. Unfortunately, this means that the SiPM
has a non-linear response [4].

SiPMs are commercially available with different characteristics, including area, num-
bers of microcells, photon detection efficiencies (PDEs), recharge times and output band-
widths, which are expected to impact their performance in receivers. The performance of
receivers containing SiPMs can be determined experimentally [3–7,9–16]. However, these
experiments should be performed very carefully and are time consuming. In addition,
other parts of the system, particularly the transmitter, can have a significant impact on the
performance of a system. Furthermore, even when this does not happen, it can be difficult
to separate the impact of different SiPM characteristics. Finally, it is not always possible to
test a receiver in some environments, for example, outside. These issues mean that a model
or simulation of a SiPM receiver can complement experimental results.

Previously, SiPMs have been modelled using equivalent circuits or Monte Carlo
simulations [17]. However, numerical methods, including Monte Carlo simulations, have
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been preferred when the performance of SiPMs in receivers is modelled. Some Monte Carlo
simulations have focussed on the impact of the SiPM’s non-linear response on their ability
to count photons [18]. However, this means that it is not necessary to take the finite width
of the SiPMs output pulses into account. Furthermore, it was assumed that a microcell
cannot detect photons whilst it is recovering [18]. Alternatively, the performance of SiPM
receivers has been studied by evaluating relevant equations [19–22]. It should be possible to
evaluate a series of equations in less time than it takes to perform Monte Carlo simulations.
Unfortunately, sometimes these equations assume a feature, such as a digital output, which
are not relevant to commercial SiPMs [19]. Alternatively, they are relevant to OFDM [22],
which is not as energy efficient as on-off keying (OOK) [23] and currently gives a lower data
rate than OOK at eye safe irradiances [14]. In other cases, the equations assume that, since
the microcells are passively quenched, they are paralysable [18,20]. This assumption is
correct when the microcells have a digital output [19], but, commercial SiPMs have analog
outputs and they are therefore not necessarily paralysable. To create a simulation that is
based upon the fewest possible assumptions, a Monte Carlo simulation of the physical
processes in a SiPM has been created.

The parameters in the simulation are obtained from either the relevant data sheet or the
experimental results. The results of the simulations are then validated by comparing them
to the results of the experiments. In particular, they are compared to the measurements of
the bias current needed to sustain an over-voltage on the SiPM and the impact of ambient
light on the performance of receivers containing SiPMs. The simulation results are then
used to show that microcells are able to detect photons whilst they are recharging. The
simulation results also lead to a new simple method of predicting the impact of the non-
linear response of the SiPM on receiver performance in ambient light and a method for
selecting optical filters that should be used in receivers. In the future, it should be possible
to use the Monte Carlo simulation to devise an efficient means of compensation for any
SiPM non-linear caused by the transmitted data or to predict the performance of receivers
containing existing or future SiPMs in a wide variety of situations.

This paper is organized as follows. Section 2 contains descriptions of the operation
of a SiPM, the experimental procedure used to test receivers containing SiPMs and the
Monte Carlo simulation. This is followed in Section 3 by the results of the experiments to
determine the voltage dependence of the microcells PDE. This section also contains the
results of the experiments to determine either the irradiance dependence current needed
to sustain an over-voltage or the impact of ambient light on the performance of receivers
containing SiPMs. In both cases, these experimental results are compared to the results
of Monte Carlo simulations of the same experiments. Finally, Section 4 contains results
which show that microcells can detect photons before they are fully charged. Results
are also presented which show that despite this behavior, the maximum count rate of an
SiPM can be determined using an equation that was derived assuming that there was a
minimum time between photons that could be detected, a time previously known as the
dead time. The non-linear response of the SiPM is then shown to arise from a combination
of changes to the average PDE and microcell charge when photons are detected. This leads
to a simple method of predicting the impact of the SiPM’s non-linearity on the performance
of a receiver in ambient light. Finally, this section includes a suggested method for selecting
optical filters to use with SiPMs in receivers and a discussion of the possible future uses of
the Monte Carlo simulation.

2. Experimental Procedure and Monte Carlo Simulation of SiPMs
2.1. Description of SiPMs and Their Response to Light

A SiPM is an array of microcells that is connected in parallel. Each microcell contains
an APD which is biased above its breakdown voltage, Vbreakdown, by an amount known as
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the over-voltage, Vov. The probability that an avalanche will occur [24] means that the PDE
of a microcell can be calculated using

PDE(λ, t) = PDEmax(λ)× (1− exp(−Vov(t)/Vchar)) (1)

where Vov(t) is the instantaneous over-voltage, PDEmax(λ) is the maximum possible PDE
at a particular wavelength and Vchar is a characteristic voltage at this wavelength for
the APD.

If the over-voltage is positive and the microcell only contained an APD, then a photon
could initiate a self-sustained avalanche event. This means that only one photon could be
detected. This avalanche event therefore has to be quenched so that other photons can be
detected. In the case of the commercially available SiPMs manufactured by Broadcomm,
Hamamatsu and Onsemi, a resistor is placed in series with the APD within each microcell.
Consequently, the current caused by an avalanche process results in a voltage drop across
the resistor, which reduces the voltage across the APD. Once this voltage equals the APDs
breakdown voltage, the self-sustained avalanche process is quenched. The capacitance in
the microcell is then recharged via this resistor and the resistance between the microcell
and the source of the SiPM bias voltage. This means that the recharging process can be
represented by the equation

Vov(t) = Vov(1− exp(−t/τRC)) (2)

where t is the time since the avalanche process was quenched and τRC is the time constant
for the recharging process. This time constant can be determined from individual pulses that
occur when photons are detected and is typically tens of nanoseconds. If the capacitance
of the microcell is Ccell, then the additional charge stored in the microcell will be CcellVov.
The results in Figure 1 show that the sensitivity of the PDE to the over-voltage means that
it recovers more quickly than the over-voltage. Since the additional charge stored on the
microcell is proportional to the over-voltage, the PDE also recovers more quickly than the
additional charge stored in the microcell.
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Figure 1. The recovery of the over-voltage and the photon detection efficiency determined using
Equations (1) and (2).

Photons can be detected by monitoring the bias current that flows into the SiPM to
recharge each microcell. This current flows because the microcell is discharged when it
detects a photon, and since the amount of charge on the microcell is independent of the
photon wavelength, the current is independent of the wavelength of the detected photon.
If the interval between photons being detected by the SiPM is significantly longer than
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τRC, then each detected photon results in a pulse with a fast rising edge, followed by the
exponential decay expected from Equation (2). This mechanism can be used to detect and
count photons using any of the commercially available SiPMs.

Figure 2 is a schematic diagram showing how a bias voltage was applied to a SiPM
manufactured by Onsemi and how a digital multimeter was connected to measure the
current flowing to sustain this voltage. This figure also shows that these particular SiPMs
have an output known as the fast output. In addition, a second output can be created by
placing a resistor between the SiPM’s anode and ground. This output is equivalent to the
output of SiPMs manufactured by other companies and it is possible to detect individual
photons using this output. However, the width of the voltage pulses on this output is
determined by the recharge time constant of the microcells. Since this time is longer than
the fast output pulse width, this output is referred to as the slow output.
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Figure 2. A schematic diagram showing three microcells in a representative Onsemi SiPM. The
diagram also shows how these are connected the source of the bias voltage and a digital multimeter
that is used to measure the bias current needed to sustain the bias voltage.

As shown in Figure 2, the fast output is created by capacitively coupling a common
output to the connection between the APD and the quenching resistor in each microcell [25].
This capacitive coupling means that the signal on this fast output line is proportional to the
rate of change of the voltage across the APD. The charging of the node between the APD
and the resistor form the slow output pulses. This capacitance therefore means that the
pulses on the fast output are a high pass filtered version of the slow output pulses. This
removes the dc level component of the signal and explains why the fast output pulses are
at least an order to magnitude narrower than the pulses on the slow output.

At low irradiances, each microcell has time to recover before the next photon is
detected and the SiPM has a linear response. However, increasing the irradiance falling
on the microcells reduces the average time between successive photons passing through
each microcell. Eventually, photons arrive at microcells whilst they are still recharging. The
result is that the SiPM has a non-linear response. Previously, this non-linear response has
been observed by measuring the bias current needed to sustain the over-voltage on the
SiPM as the irradiance falling on the SiPM is increased [10].

2.2. Experimental Procedure

A schematic diagram of the equipment used to characterise a SiPM and determine
its performance as a VLC receiver is shown in Figure 3. Previously, experiments were
performed with J series SiPMs mounted on SMA evaluation boards. These boards are
convenient to use. However, they contain a resistor in series with the SiPM so that slow
output pulses can be detected. Unfortunately, this resistor both increases the time needed
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for each microcell to recharge and decreases the effective over-voltage, and hence PDE, at
high irradiances [16]. Since the fast output is used for data transmission experiments, this
resistor is not needed. More recently, experiments have therefore been performed using
a J series 30020 SiPM mounted on an SMPTA board, whose key characteristics are listed
in Table 1. Without a resistor in series with the SiPM, the SMTPA boards have a shorter
recharge time, and their PDE is not degraded at high ambient light levels. This means a
SiPM on an SMTPA board is both easier to model and, more importantly, is a better receiver.
As shown in Figure 2, in the absence of a resistor in series with the SiPM on the SMPTA
board, the current needed to sustain the over-voltage was measured with a Keithley 196
digital multimeter.
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Figure 3. System block diagram describes the experimental setup used to evaluate the ambient light
performance of the SiPM. The AWG was a 25 GS/s AWG70002A, the Power Amplifier is a Fairview
FMAM3269 10 MHz to 6 GHz Amplifier, which feeds a Bias Tee (Thorlabs ZFBT-4R2GW+) and the
Laser Diode a ThorLabs L405P20. The LED ring includes eight UV3TZ-405-15 LEDs, and is driven by a
Keithley 224 Source Meter. During some experiments, the bias voltage applied to these 405 nm LEDs
was varied to control the effective ambient light level. On the receiver side, the SiPM is coupled to a
ZX60-43-S+ 4 GHz Low Noise Amplifier, which feeds a Keysight MSO64 (4 GHz, 25 GS/s) oscilloscope.
The polarizer, source meter, AWG and oscilloscope are computer-controlled by MATLAB®.

Table 1. Key parameters obtained from the manufactures data sheet for a j series 30020 [26].

Parameter 30020

Number of microcells 14,410

Microcells active area diameter (µm) 20

Fill factor (%) 62

Recharge/recovery time constant (ns) 15

Dark Count Rate (MHz) 1.2 (@ 5 Vov)

Fast output pulse width (ns) 1.4
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To obtain reproducible results from data transmission experiments, particular care had
to be taken to minimize the impact of RF interference. When the beam from the transmitter
to the receiver was blocked, a 5 mVpp interference signal was initially observed. Since the
signal when a photon was detected was 15 mVpp, this level of interference was unacceptable.
A near field probe was therefore used to determine that the source of the interference was
the transmitter. The optical cage system containing the transmitter and the SMA cable
connecting the transmitter to the AWG was therefore covered with a metallized cloth and
the probe was then used to confirm that this cloth prevented this type of interference.

Even with this precaution, it was sometimes impossible to obtain reproducible BER
measurement results consistently. By watching the oscilloscope as it captured data, it
became clear that a 20 mVpp signal occurred frequently enough to explain the difficulties
in reproducing results. A subsequent investigation showed that the frequency spectrum
of this intermittent interference was consistent with it being caused by Wi-Fi and other
RF signals transmitted by colleagues’ electronic devices. The experimental procedure was
therefore changed so that any data captured when there was a significant level of this
interference was discarded and the data was transmitted again. However, there was so
much interference during normal working hours that most results were captured overnight.

2.3. Monte Carlo Simulation of an SiPM

Results from experiments with a 30020 on an SMPTA board have been compared to
results from a Monte Carlo simulation of this SiPM. These simulations were performed
with a time variable that increased by the minimum of one twentieth of a nanosecond and
one twentieth of the bit time of the OOK data. Since the charge on the microcell and the
microcell’s recovery are independent of the detected photons wavelength, all the simulated
photons are assumed to have the same wavelength as the transmitters’ output. This means
that the impact of ambient light is represented by the irradiance at this wavelength, which
gives rise to the same count rate.

In some simulations, the irradiance on the SiPM was assumed to be constant. However,
when simulating data transmission experiments, the irradiance was modulated to represent
OOK data. At each time, the instantaneous irradiance, the bit time and the Poisson
probability density function

Poisson(n) = mne−m/n! (3)

were used to determine the number of photon incidents on the SiPM in a bit time, n, where
m is the mean of the distribution. At a time, t, this mean was calculated using

m(t) = (LTX(t) + Lamb(t))ASiPM.dt/Ep (4)

where LTX(t) is the irradiance from the transmitter at time t and Lamb(t) is the irradiance
representing ambient light at the same time. In addition, dt is the time step used in the
simulation, Ep is the energy of a photon from the transmitter and ASiPM is the area of the
SiPM. The n photons calculated using (3) and (4) were then randomly distributed in the bit
time. This was done using a random number with a Poisson distribution so that the time
between photons had the required exponential distribution.

Once the photon stream had been generated, an event-driven Monte Carlo simulation
was started and the following quantities were calculated:

(i) The total charge on all microcells.

Qtotal(t) = ∑Ncells
n=1 CcellVov(n, t) (5)

where Ccell is the capacitance of a microcell and Vov(n,t) is the over-voltage on the nth
microcell at time t.

(ii) The average charge on the microcells that have detected a photon at this time. In
this case, (5) is evaluated, but only the microcells that have detected a photon at this time
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are included in the summation. This sum is then divided by the number of microcells that
have detected a photon at this time.

(iii) The instantaneous current needed to recharge each microcell was calculated by
multiplying the increase in the over-voltage for each microcell since the previous time
by the microcell capacitance and dividing the result by dt. The total current was then
calculated by adding all these contributions; hence

Ibias(t) = ∑Ncells
n=1

{
Ccell

dt (Vov(n, t)−Vov(n, t− dt)) i f Vov(n, t) > Vov(n, t− dt)
0 otherwise

(6)

(iv) The proportion of microcells that are fully charged was calculated by determining
the proportion of microcells whose over-voltage was more than 99% of the maximum
over-voltage.

(v) The average PDE of all the microcells was determined using (1) the instantaneous
PDE of each microcell and then calculating the average value.

The simulation started by initiating the microcells in the SiPM into a state that is
consistent with the initial irradiance. The simulation was then evolved by up-dating the
over-voltage and PDE of each microcell using Equations (1) and (2) until the time at which
the next photon or photons are incident on the SiPM. At each of these times, the first
step was to use a uniformly distributed random number to determine which microcell
might detect the photon. The instantaneous PDE of the selected microcell and a second
random number were then used to determine if the photon was detected. If the photon
was detected, the over-voltage and PDE of the microcell were both instantaneously set
to zero. In addition, the charge on this microcell was added to the sum of the charge on
microcells that had detected a photon at this time. This process was then repeated for all
photons incident on the SiPM at the same time. Once the process of detecting photons at
a particular time had been completed, all the quantities of interest were calculated. The
simulation was then evolved until the time when the next photon or photons were incident
on the SiPM. This process was then repeated until the end of the simulated time.

At the end of the simulation, the sum of the charge on microcells that detected photons
at each time was convolved with a Gaussian kernel, which represented the fast output
pulses. The result was a fast output pulse whose integral is proportional to the charge
discharged by all the photons detected at a particular simulated time. If the incident
irradiance was modulated to represent OOK data, the resulting simulated fast output was
processed in the same way as the fast output from a SiPM in an experiment.

When writing the simulation, a decision was made not to include three non-ideal
behaviors of SiPMs, specifically dark counts, after-pulsing and optical cross-talk. Dark
counts are spontaneous avalanche events that occur in the dark and in the 30020 they occur
at a rate of 1 MHz [26]. This is much smaller than the anticipated rate at which ambient
light photons are detected and so it was not included in the simulation. After-pulsing
occurs when a charge carrier initiates an avalanche event in the same microcell after being
temporarily trapped in the high field region of the microcell [17]. Similarly, cross-talk
occurs when a secondary photon produced by an avalanche event initiates an avalanche in
another microcell either immediately or after a delay [17]. In a 30020, the cross-talk occurs
after less than 7.5% of avalanche events and after-pulsing after less than 5% of avalanche
events. It is not clear from this data if these effects needed to be included to achieve the
required modelling accuracy. Furthermore, the data required to model the delays in these
effects is not provided by the manufacturer. The pragmatic decision was therefore taken
to create a numerical model that excluded these effects and then reconsider this decision
once its results had been compared to experimental data. The results in Sections 3.3 and 3.4
suggest that it is not necessary to include these effects in the Monte Caro simulation.
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3. Results
3.1. Photon Detection Efficiency Measurement

One piece of important information required for an accurate Monte Carlo simulation
of a SiPM is the relationship between PDE and over-voltage. Figure 4 shows PDE measure-
ment results, obtained when the 405 nm irradiance on a 30020 J-series SiPM was constant
at 2.4 mWm−2, and the bias voltage varied. This irradiance was selected to stimulate
avalanches at a rate which dominates the dark count rate while remaining in the SiPM’s
linear region. The bias current at this irradiance and for each over-voltage, Ibias(Vov, L),
was then measured and the PDE, η(Vov, λ), was then calculated using [16].

η(Vov, λ) =
Ep Ibias(Vov, L)
CcellVov ASiPML

(7)

In this figure, the experimental results are compared to Equation (1) with parameters
PDEmax(λ) = 0.46 and Vchar = 2.03 V. The excellent agreement between the experimental
results and those predicted using these parameters meant that these parameters were used
in Monte Carlo simulations.
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3.2. Measured Bias Current

Another key parameter in a simulation is the capacitance of the microcells. Since this
is the capacitance of a reverse bias APD, it may be voltage dependent. The bias current
needed to sustain the voltage applied to the SiPM saturates when the time between detected
photons is comparable to the microcell RC time constant. However, before saturation occurs,
this bias current is related to the rate at which photons are detected by

Ibias = Crate × Ccell ×Vov (8)

where Crate is the rate at which photons are being counted, Ccell is the capacitance of a
microcell and Vov is the over-voltage.

For monochromatic light an irradiance, L, can be converted to a photon flux per unit
area by dividing the irradiance by the energy of each photon, Ep. The number of photons
per second incident on a SiPM can then be determined by multiplying the result by the area
of the SiPM, ASiPM. If η(Vov, λ) is the PDE of the SiPM at the wavelength of the incident
light, then at low irradiances, the count rate of photons is

Crate = η(Vov, λ)ASiPM L /Ep (9)
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Then, if the capacitance of the microcell is independent of the over-voltage, the resulting
bias current is

Ibias = η(Vov, λ)ASiPM Ccell VovL/Ep (10)

This equation shows that if the microcell capacitance is independent of over-voltage,
then, at low irradiances, the current will be proportional to the product of the PDE and the
over-voltage. Figure 5 shows the current measured at different over-voltages divided by
the product of the over-voltage and the PDE at that over-voltage. The important conclusion
from the results in this figure is that the microcell capacitance is independent of the over-
voltage. Equation (10) and the measured bias current at low irradiances has therefore been
used to determine the capacitance of each microcell. As shown in Table 2, the resulting
value, 46 fF, was one of the parameters used in the Monte Carlo simulation.
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Table 2. Simulation Parameters for a J-Series 30020 SiPM.

Parameter 30020

SiPM Area (mm2) 9

Number of microcells 14,410

Vbreakdown (V) 24.5

Vchar (V) 2.03 V

Maximum Photon Detection Efficiency at 405 nm 0.46

Recharge RC time constant (ns) 30.8

Microcell Capacitance (fF) 46

Full width at half maximum offset output pulse
width (ns) 1.4

Simulation time step (s) Maximum of (bit time)/20 and
0.05 ns

3.3. Comparison of Measured and Simulated Bias Currents

The voltage dependence of the photon detection efficiency and microcell capacitance
obtained from experiment data have been incorporated into the Monte Carlo simulation of
the current needed to sustain over-voltages of 2.0 V, 3.0 V and 3.5 V. The results in Figure 6
show an excellent agreement between these simulated currents and the experimental results.
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over-voltages on a 30020 SiPM.

3.4. Data Transmission Experiments in Ambient Light

Figure 7 shows the results of experiments to determine the irradiance from the transmitter
required to achieve a BER of 3.8 × 10−3 when the ambient light irradiance increases. Eye safe
transmitters have been described providing a radius of horizontal coverage in a typical office
of 2 m and which provide a minimum transmitter irradiance at 405 nm of 2 mWm−2 [11].
Figure 7 shows that with this transmitter irradiance, it is possible to support data rates up
to 1.5 Gbps with a BER of 3.8× 10−3. However, as the data rate increases, the ambient light
irradiance which may be tolerated decreases. In particular, with a transmitter irradiance
of 2 mWm−2, ambient irradiances of up to the equivalent of 1 mWm−2, 3 mWm−2 and
5 mWm−2 of 405 nm light are tolerated at 1.5 Gbps, 1 Gbps and 500 Mbps.
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The dominant noise source in a SiPM receiver is expected to be Poisson noise. If this is
the case, the BER when an on-off keyed signal is transmitted can be calculated using [5]

BER =
1
2

[
∑nT

k=0
(NTx + Nb)

k

k!
.e−(NTx+Nb) + ∑∞

k=nT

(Nb)
k

k!
.e−Nb

]
(11)
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where Nb is the average number of photons detected per bit time when a zero is received, NTx
is the number of additional detected photons per bit time needed from the transmitter when
one is received and nT is the threshold used to differentiate a one from a zero. The value of nT
that minimizes the BER has to be determined for particular combinations of Nb and NTx.

Equation (11) shows that the important parameters are the numbers of detected
photons per bit when a zero and a one are received. These parameters have therefore been
used as the axes in Figure 8 to show the results of experiments during which the ambient
light level, and hence the number of photons detected when a zero is transmitted, was
varied. As expected from (11), using this x-axis, the results for 500 Mbps and 1000 Mbps
fall on the same curve. However, the results for 1500 Mbps suggest that there is a relatively
small, but noticeable, power penalty for this data rate. This may be caused by the width of
the SiPM fast pulses or the limited bandwidth of another part of the link.
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In addition to the experimental results, Figure 8 also shows the results of Monte
Carlo simulations of these experiments. Excellent agreement is obtained for data rates of
500 Mbps and 1000 Mbps. However, the agreement is not as good for 1500 Mbps. The
simulation included the width of the fast output pulses and the difference between the
simulated 1000 Mbps and 1500 Mbps results. These results show that the width of the
output pulses is starting to have an effect at data rates above 1000 Mbps. The difference
between the results from experiments and the simulations at 1500 Mbps must therefore be
due to something that has not been included in the simulations, for example the bandwidth
of the transmitter. More importantly, the results in Figure 8 confirm that, if the links
performance is determined by the SiPM, then its performance can be predicted using this
Monte Carlo simulation.

4. Discussion
4.1. The Origins of the SiPMs Non-Linearity

The count rate for a SiPM such as the 30020 can be related to the irradiance of
monochromatic light falling on the SiPM, L, by [10]

Crate = Ncellsα L/
(
1 + α τp L

)
(12)

where Ncells is the number of microcells and τp is a characteristic time. In addition, the
parameter α is

α =
η(Vov, λ)Aµ

Ep
(13)
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where η(Vov, λ) is the photon detection efficiency of the SiPM at a particular over-voltage
and wavelength and Vov, is the over-voltage, Ep is the energy of each photon and Aµ is the
active area of a microcell.

Equation (12) was suggested as a function which is consistent with the SiPM having
a linear response at low irradiances and a saturated response at high irradiances. Fur-
thermore, when (12) was suggested, it was assumed that each microcell cannot detect a
photon whilst it was being recharged [4]. The latter assumption meant that previously the
parameter τp was referred to as the dead-time for the microcell [4].

The assumption that a microcell cannot detect a photon until it is fully recharged
means that a charge Ccell Vov is discharged when a photon is detected. Consequently, the
bias current needed to sustain the over-voltage is

Ibias = Ccell Vov Ncellsα L/
(
1 + α τp L

)
(14)

Previously, this equation has been shown to agree with experimental results [10]. It therefore
appears that the assumption that a microcell cannot detect a photon whilst it is recharging
is correct and this assumption has been used to simulate SiPMs in receivers [19,22,27].

One advantage of developing a detailed Monte Carlo simulation is that it allows users
to understand the physical processes occurring in microcells in detail. Figure 9 shows the
behavior of a microcell when the average time between detected photons is longer than
the time that the microcell needs to fully recharge. As expected, in these circumstances,
the microcell is usually fully recharged before it detects a photon. However, the results
in Figure 9 show a photon being detected when the microcell is only partly recharged.
This event clearly shows that, despite the concept of dead time leading to an equation,
Equation (14), that fits the measured bias current data, microcells can detect photons when
only partially recharged. Some conclusions arising from any simulations which assume
that microcells are unable to detect photons whilst they are recharging will therefore not be
reliable. In addition, it should be possible to improve on any methods to compensate for
the impact of the non-linearity which arises from these simulations.
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4.2. A Simple Method of Estimating the Maximum Count Rate

Although the concept of dead time, which was part of the derivation of (14), is not
accurate, this equation has been shown to agree with the measured bias current data. An
important aspect of the derivation of Equation (14) [4] was that it assumed that there was a
minimum time between photons that a microcell could detect, τp. However, this parameter
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was not related to the recharge time of the microcell and it was therefore used to fit (14) to a
particular set of experimental data.

The reason why it has previously been possible to show agreement between (14) and
the experimental results can be understood by considering the current flowing when the
SiPM response is saturated. Saturation occurs when the denominator of (14) is dominated
by the second term and the resulting current when the SiPM saturates is

Isat = NcellsCcellVov/τp (15)

This means that

(Isat(Vov1)/Vov1)/(Isat(Vov2)/Vov2) = τp(Vov2)/τp(Vov1) (16)

Consequently, the ratio of characteristic times needed to fit (14) to bias currents measured
at different over-voltages can be determined from (16). This ratio of characteristic times
has been determined for a wide range of over-voltages. The results in Figure 10 show that,
once the over-voltage is more than 1.5 V, this characteristic time is almost constant. This
means that, for the range of over-voltages that are typically used, the maximum count rate
of a SiPM can be estimated using

Cmax = Ncells/τp (17)

where τp is approximately 2.2 times the RC time constant of the microcells [10].
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4.3. A Simple Method of Predicting the Impact of Ambient Light

The results in Figures 7 and 8 show that the results of the Monte Carlo simulations
can be used to predict the results of data transmission over a wide range of ambient light
conditions. However, each simulation can take an inconvenient time. An even simpler
prediction method would therefore be advantageous. The experimental results for the two
data rates, 500 Mbps and 1000 Mbps, for which the VLC systems performance is determined
by the SiPM alone are shown in Figure 11. This figure also includes the performance of
these systems predicted using the SiPM parameters and (11). The results in this figure show
that the performance of the SiPM receiver at 500 Mbps and 1000 Mbps can be predicted
using Poisson statistics until approximately 100 detected ambient light photons per bit.
However, by 1000 detected ambient light photons per bit, there is an error of a factor
of approximately two in the prediction. If the photon detection efficiency is 0.35, then
1000 detected photons per bit corresponds to an irradiance of 78 mWm−2.
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Figure 9 shows that photons can be detected before a microcell is fully charged and,
hence, whilst the microcells’ PDE is less than its maximum value. Furthermore, as the
irradiance increases, more microcells will detect photons whilst their PDE is less than
the maximum. The average PDE of the array at times when photons are detected has
been calculated for different simulated irradiances. The results in Figure 12 show that, as
expected, when the irradiance is high enough, this array average PDE when any photon
is detected decreases. This change in the array average PDE alone might explain the non-
linear response of the SiPM. However, the irradiance at which the array average PDE falls
to half its maximum value is 193 mWm−2. In contrast, the current falls to half the value
expected from its linear response when the irradiance is 73.6 mWm−2. The change in the
array average PDE when photons are detected cannot therefore be the only mechanism
contributing to the SiPMs non-linear response.
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An important assumption in the Monte Carlo simulation is that the height of the
fast output pulse generated when a photon is detected is proportional to the charge on
the microcell when that photon is detected. This means that the smaller charge stored
on a microcell when it detects a photon before it is fully recharged may contribute to the
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non-linear response of both the bias current and the fast output used when the SiPM is a
receiver. This may explain why the irradiance at which the transmitters sensitivity is half
the expected value, 78 mWm−2, is similar to the irradiance at which the measured bias
current is half the expected value.

It appears that the charge stored when a photon is detected contributes to the SiPMs’
non-linearity. The average charge stored on a microcell when it detects a photon has
therefore been calculated at different irradiances. The results in Figure 12 show that this
effect is as significant as the change in the array average PDE when a photon is detected.
Consequently, when the two processes are taken into account, the average signal per
incident photon falls to half its maximum value at an irradiance of 65 mWm−2, which is
much closer to the irradiance at which the bias current is half the value expected from its
linear response.

The origin of the fast output pulses and the results in Figure 12 suggest that the non-
linearity in the bias current should also have an impact on the performance of the SiPM as
a receiver. In this case, the impact of the non-linear SiPM response on the performance of a
VLC system can be predicted by multiplying the predictions from Poisson statistics by a
correction factor

1 + α τp L (18)

The results in Figure 11 show that with this correction, the experimental results for 500 Mbps
and 1000 Mbps can be predicted accurately under a wide range of ambient light conditions.

4.4. Selecting Optical Filters for Operation in Ambient Light

Results such as those in Figure 7 show that even in the presence of a significant
amount of ambient light, data rates up to at least 1500 Mbps can be received. However, the
noise added by the ambient light increases the irradiance from the transmitter required
to achieve a particular combination of BER and data rate. In addition, at high ambient
light irradiances, the non-linear response of the SiPM can cause an additional increase in
the required transmitter irradiance. This means that the SiPM should be protected from
ambient light using optical filters.

In the past, optical filters with narrow pass-bands have been used to protect SiPMs
from ambient light [5,6,10]. However, they restrict the receiver’s field-of-view. Conse-
quently, optical filters which absorb light and which support wider fields of view are
preferred [11]. The first priority when selecting filters should be to limit the impact of the
SiPMs non-linearity. Equation (18) is valid for monochromatic light and the equivalent
equation for ambient light would need to take into account the spectrum of the ambient
light and the wavelength dependence of the SiPMs PDE. However, this non-linearity affects
the bias current. Consequently, the effectiveness of filters can be determined by measuring
the bias current for a particular SiPM and ambient light source when different filters, or
combinations of filters, are placed in front of the SiPM. If the ambient light is strong enough
to force the SiPM into its non-linear region, the first priority is to use filters that reduce its
impact so that the impact of the SiPM’s non-linearity is reduced. The non-linearity will
double the required transmitter irradiance when

α τp Leff = 1 (19)

where Leff is the 405 nm irradiance that gives the same bias current as the ambient light. At
this irradiance, the bias current is half the maximum bias current. The first aim should be
to ensure that the non-linearity increases the required transmitter irradiance by a factor of
two or less. This means reducing the measured bias current to less than half its maximum
value. However, if the bias current can be reduced to less than one tenth of its maximum
value, then the non-linearity is only increasing the required irradiance by approximately
10%, and may therefore be considered negligible.

A potential problem with aiming to reduce the bias current using filters is that it
may require filters that also attenuate the wavelength used to transmit data. Even when
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filters are used in high levels of ambient light, the number of detected photons per bit
will probably be high enough for the Poisson distribution to be approximated by a normal
distribution. If this is the case, the noise caused by the ambient light will be proportional to
the square-root of the rate at which ambient light photons are detected. This means that if
using a filter reduces the bias current by a factor of 1/n, then the signal to noise ratio, and
hence bit error rate, will be maintained if the filter also reduces the bias current from the
transmitter alone by a factor of 1/

√
n. This means that it is not always necessary to use

optical filters which transmit all of the photons from the transmitter.

4.5. Future Work

In the future understanding of the origins of the SiPMs, non-linear responses obtained
from Monte-Carlo simulations could be used to develop methods to accommodate this
non-linear response when it is caused by the transmitted data rather than by ambient
light. This situation will most often arise when orthogonal frequency division multiplexing
(OFDM) is used as a modulation scheme. In OFDM, data is transmitted by modulating
several orthogonal carriers. This increases the amount of data that can be transmitted in
the system’s bandwidth. However, adding subcarriers means that OFDM has a high peak
transmitted power. Furthermore, the process of separating the subcarriers relies upon
the assumption that the system has a linear response. At the moment, the state-of-the-art
method of dealing with the SiPM non-linearity when OFDM is employed is to use a Volterra
series non-linear equalizer [13,14]. However, this standard adaptive method relies upon a
large number of parameters. In the future, the understanding of the origins of the SiPMs
non-linearity arising from the Monte Carlo simulations might lead to the development of
a specific method to deal with the SiPM non-linearity when OFDM is being used. This
would hopefully be simpler to implement and/or improve the systems performance when
compared to the existing state-of-the-art system.

If SiPMs become the photodetectors of choice in receivers, then manufacturers will
need to determine the relative importance of SiPM parameters such as PDE, number of
microcells, recovery time and output pulse width. The impact of these parameters could
be investigated experimentally using those SiPMs that are already commercially available.
However, experiments are difficult to perform reliably, and the available SiPMs represent a
small range of possible parameter values and other parts of the system, in particular the
transmitter, which can have an impact on the experimental results. These considerations
mean that the best way to compare the performance of SiPMs with different parameter
combinations is using a detailed numerical simulation, which has been shown to generate
results which agree with experimental results.
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