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Abstract: A hypothesis of the existence of perfect nonradiating modes in dielectric nanoparticles
of an arbitrary shape is put forward. It is strictly mathematically proved that such modes exist in
axisymmetric dielectric nanoparticles and have unlimited radiation Q factors. With the smart tuning
of the excitation beams, perfect modes appear as deep minima in the scattered radiation spectra (up
to complete disappearance), but at the same time, they have a substantial amplification of the fields
inside the particle. Such modes have no analogs and can be useful for the realization of nanosensors,
low threshold nanolasers, and other strong nonlinear effects in nanoparticles.
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1. Introduction

At present, the properties of dielectric nanoparticles with a high refractive index and
low radiative losses are being actively investigated. The physics of optical phenomena in
such nanoparticles is very complicated and leads to many interesting applications, such
as nanoantennas [1,2], nanolasers [3,4], invisible Mie scatterers [5], sensors [6–9], and
nonlinear nanophotonics [10]. As in any other field of physics, all these phenomena are
associated with the existence of certain eigenmodes in nanoparticles.

For these applications, modes with strong field localization and low radiation losses
are of particular interest. This kind of mode has attracted the most attention of the leading
scientific groups.

Firstly, the works devoted to bound states in a continuum (BIC) [11,12] should be
mentioned. Due to destructive interference, BIC have no radiation losses at frequencies
allowing light propagation in the surrounding space. Theoretical and experimental confir-
mation of the existence of BIC [11,12] exists only for optical structures that are unlimited
in at least one direction, for example, in photonic crystals. A characteristic feature of such
modes is the exponential decrease of the fields as the observation point moves away from
the surface of the photonic crystal.

The intention to detect undamped modes similar to 2D BIC in 3D particles, that is, in
particles limited in all three dimensions, led to a series of studies on the so-called quasi-
BIC states [13,14]. The quasi-BIC states have been first discovered in dielectric circular
nanocylinders, where they manifest themselves as a significant increase in the radiation
Q factor at an optimal ratio between the diameter and the height of the cylinder. The
physics of quasi-BIC states do not differ from the physics of usual high-Q quasinormal
modes, and their Q factors do not exceed the Q factors of spheres of the same volume. In
several works, weakly emitting quasi-BIC states are also called supercavity modes [4,15,16].

Among the works on systems with low radiation losses, there have been investiga-
tions of anapole current distributions. The concept of the anapole was introduced by
Zel’dovich [17] to designate a current with electromagnetic fields equal to zero where
this current is absent. An anapole is the simplest representative of the family of cartesian
toroidal (anapole) multipoles, necessary (along with cartesian electric and magnetic mul-
tipoles) for a complete description of the field of arbitrary current sources. The cartesian
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multipole expansion provides physical insight into the behavior of compact current sources.
The relationship between cartesian multipoles and spherical wave function expansions
is not one-to-one and is rather complicated [18,19]. An illustrative model of a toroidal
anapole can be a torus-shaped solenoid, with the current flowing through its winding.
Sometimes such current distributions are called anapole states or even anapole modes.
Such definitions, of course, are not correct, since modes, by definition, are solutions of the
sourceless Maxwell equations. Nevertheless, there has been research interpreting weakly
radiating systems from the point of view of the theory of anapoles [10,13,20–26]. In [27], an
exact analytical solution to the problem of the scattering of a Bessel beam by a spherical
particle was found, and using this solution it was shown that the scattering intensity can be
reduced to arbitrarily small values.

Despite the active search for non-trivial nonradiating modes in 3D dielectric particles,
the exact solutions of sourceless Maxwell equations justifying the existence of such modes
have not been known. In this work, we fill this gap, and strictly mathematically show that
there are unparalleled perfect nonradiating modes in dielectric nanoparticles, as well as
propose a regular method for finding such modes in arbitrary dielectric particles.

2. Materials and Methods

Usually, the quasinormal modes are found by solving sourceless Maxwell equations

∇× E1 = ik0H1;∇×H1 = −ik0εE1, inside nanoparticle
∇× E2 = ik0H2;∇×H2 = −ik0E2, outside nanoparticle
n× (E1 − E2) = 0; n× (H1 −H2) = 0, at the boundary

(1)

with the Sommerfeld radiation conditions at infinity [28]:

E2(r, k0)→
exp(ik0r)

r
F(k) (2)

where ε is the nanoparticle permittivity, r is the position vector, r = |r|, F(k) is the scattering
amplitude, k0 =ω/c is the wavenumber in a vacuum,ω is the frequency, c is the speed of
light, and k is the unit vector in the direction of observation.

Within this approach, any field component E(r, θ, ϕ, k0) outside the resonator should
be expanded over spherical harmonics Ym

n (θ, ϕ) and spherical Hankel functions h(1)n (k0r):

E(r, θ, ϕ, k0) = ∑
n,m

anmh(1)n (k0r)Ym
n (θ, ϕ) (3)

where anm are expansion coefficients which can be obtained from the boundary conditions.
Spherical Hankel functions h(1)n (k0r) are singular at r = 0 (inside the resonator) and

fundamentally related to radiation and radiative losses. Moreover, such modes grow
unlimitedly at infinity, requiring the development of very complex artificial approaches for
their use.

However, finding all the modes is a non-trivial task, not only from a computational
point of view, and the quasinormal modes in optics and the eigenstates in quantum mechan-
ics do not exhaust the entire set of modes that exist in a system. For example, in quantum
mechanics, a strange stationary solution of the Schrödinger equation with an eigenvalue
above the barrier (E > 0) was demonstrated in the seminal paper [29] (see also [30]). In the
limit r→ ∞, this “strange mode” does not decrease exponentially and can be presented as
a superposition of nonsingular spherical Bessel functions jn:

ψ(r) = ∑
n

an jn(r) = − 1
105

(3j4(r) + 10j2(r) + 7j0(r)) + . . . (4)

The problem of finding the eigenfrequencies in optics is like solving the Schrödinger
equation with the potential V = k2

0(1− ε(r)), ε(r) > 1 and the eigenvalue E = k2
0 > 0
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above the barrier. This analogy allows us to generalize the approach of Neumann–Wigner [29]
to the case of electromagnetic fields and present a new class of electromagnetic eigenmodes—
perfect nonradiating modes. To find them, we propose to use the solutions of Maxwell’s
equations, not containing waves that carry energy away in principle! More specifically, we
suggest looking for the electromagnetic fields outside the particle in the form of a super-
position of solutions of Maxwell’s equations that are nonsingular in unlimited free space,
including the interior of the nanoparticle. This approach is fundamentally different from
the usual one, assuming that the functions describing the fields outside the body can have
singularities upon analytic continuation into its interior (see (3)). We propose, however, to
use only the field components nonsingular at the origin to describe the fields outside the
nanoparticle to find the perfect nonradiating modes. For example, one can look for fields
outside the resonator in the form of spherical harmonics expansion

E(r, θ, ϕ, k0) = ∑ anm jn(k0r)Ym
n (θ, ϕ) (5)

where jn(k0r) are nonsingular spherical Bessel functions or in the form of plane waves
expansion

E(r, k0) =
∫

d3k a(k)δ
(

k2 − k2
0

)
eirk (6)

Obviously, if a solution of Maxwell’s equations with outside fields in the form (5) or (6)
exists, then, in principle, it does not have a flux of energy and radiation. Since (5) or (6)
have no singularities in the entire space (including the nanoparticle interior), the finding
of modes in infinite space can be reduced to the internal problem of finding fields in
the volume of a nanoparticle only. As a result, the system of equations that determine
unambiguously the perfect nonradiating modes in a nonmagnetic nanoparticle with the
permittivity ε can be written as a system of two equations for two independent auxiliary
fields E1 and E2:

∇× E1 = ik0H1;∇×H1 = −ik0εE1, inside nanoparticle
∇× E2 = ik0H2;∇×H2 = −ik0E2, inside nanoparticle
n× (E1 − E2) = 0; n× (H1 −H2) = 0, at the boundary

(7)

It is important to note that system (7) is a closed interior problem of mathematical
physics, and there is no need to impose any boundary condition at infinity to solve it!

At some real values of frequency k0, the system of Equation (7) becomes compatible,
that is, the perfect nonradiating modes appear. It is very important that, due to a specific
structure of (7), there is nothing common between the frequencies of perfect modes and the
frequencies of usual quasinormal modes. The modes found from (7) are orthogonal in the
sense that ∫

V

dV(εE1,n · E1,m − E2,n · E2,m) = δnm (8)

where the integration is over the nanoparticle volume V. The condition (8) is also drastically
different from orthogonality conditions for usual normal modes.

The physical (observable) fields inside the nanoparticle are determined by E1, H1,
while the physical fields outside the particle are determined by the analytic continuation of
the E2, H2 from the interior domain.

The system of Equation (7) is not elliptic at any k0, and in a general case, a rigorous
mathematical theory does not yet exist for it. Nevertheless, we managed to find conditions
for the existence of perfect nonradiating modes for arbitrary spheres, spheroids, and
superspheroids, describing well practically all forms of nanoparticles that are interesting
for applications.

The perfect nonradiating modes are not abstract solutions of sourceless Maxwell
equations. They are of great practical importance for finding the conditions for extremely
small or even zero scattered power at finite stored energy, leading to the unlimited Q factor.
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Indeed, if the fields E1 and E2 are solutions of (7), then it can be shown that when the
incident field is exactly equal to field E2, the scattered field will be zero, but the field E1
inside the particle will be different from zero, that is, the perfect nonradiating mode with
the unlimited Q factor will be excited. Therefore, perfect nonradiating modes can also
be referred to as “perfect non-scattering modes”. Of course, it is difficult to realize the
nonsingular field E2 in an experiment exactly, and therefore the best possible approximation
should be used. With a good approximation, the quality factor will be very large.

We emphasize once again that in the present work, solutions of the Maxwell equations
are considered, where the fields (5) and (6) outside the nanoresonator are nonsingular with
analytical continuations inside. However, along with perfect modes (5), (6), and (7) there
is a nonradiating mode continuum, the external fields of which can be represented as an
expansion in terms of spherical Bessel and Neumann functions yn:

E(r, θ, ϕ, ω) = ∑ [anm jn(k0r) + bnmyn(k0r)]Ym
n (θ, ϕ) (9)

where anm, bnm are some expansion coefficients which can be obtained from the boundary
conditions.

The external fields (9) have a singularity when they are analytically continued inside
the nanoparticle, and therefore the modes corresponding to them do not possess the main
property of the perfect nonradiating modes found by us—the absence of scattering or
invisibility, since scattering is large at their eigenfrequencies. Therefore, such solutions are
not considered in this article.

Our results are very general and are applicable within arbitrary frequency ranges,
where the permittivity can vary over a wide range. For example, Si has a permittivity of
ε = 12–16 in the visible and infrared ranges [31], PbTe has a permittivity of ε = 36 in the
infrared range [32], and Bi2Te3 has exceptionally high permittivity ranging between 50 and
60 throughout the 2–10 µm region [33]. With this in mind, we built graphs for a variety
of permittivities.

3. Result
3.1. TM Perfect Nonradiating Modes in Spherical Particles
3.1.1. Analytical Solutions

First of all, perfect nonradiating modes exist for a spherical particle of the radius
R, having the following solution of the system (7) for TM polarization (for details see
Appendix A):

Hϕ = jn(z0)jn
(
k0
√

εr
)

P1
n(cos θ), r < R

Hϕ = jn(z1)jn(k0r)P1
n(cos θ), r > R

z0 = k0R; z1 = k0
√

εR

(10)

The condition for the existence of perfect nonradiating modes (10) has the form

εjn(z1)[z0 jn(z0)]
′ = jn(z0)[z1 jn(z1)]

′ (11)

and coincides with the vanishing of the numerator of the Mie scattering coefficient.
The dispersion Equation (11), along with complex roots, also has real roots, correspond-

ing to perfect nonradiating modes. Figure 1 shows the dependences of Re
(

Hϕ(r, θ = π/2)
)

on the radius for a perfect nonradiating mode and a usual quasinormal mode with radia-
tion losses.

Figure 1 shows that the quasinormal mode grows exponentially at infinity, while the
perfect nonradiating mode goes to zero and has no radiation losses! Inside the resonator,
the spatial structures of these modes are similar. It can be seen also from this figure that the
spatial structure of the perfect mode does not change practically even in the case of large
internal losses (Joule and other). Table 1 shows Q factors of the PTM101 and TM101 modes
for a silicon sphere at various wavelengths.
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Figure 1. The dependence of Re
(

Hϕ(r, θ = π/2)
)

on the radius for the usual TM101 mode (blue,
k0R = 1.22332–0.12557 i, ε = 12), for the perfect nonradiating PTM101 mode ((10), red, k0R = 1.36687,
ε = 12) and for the perfect nonradiating PTM101 mode in a sphere with large losses ((10), black dots,
k0R = 1.36568–0.0323 i, ε = 12 + 0.5 i).

Table 1. Q factors of the PTM101 and TM101 modes in the Si sphere.

Wavelength, nm Si Permittivity QPTM101 QTM101

500 18.3932 + 0.416393 i 42 32
600 15.4524 + 0.145612 i 101 36
800 13.4615 + 0.0386382 i 327 32

1000 12.7806 + 0.00350493 i 3402 30
1200 12.4045 + 9.79398 × 10−7 i 1.2 × 107 27

It follows from Table 1 that the Q factors of the perfect modes, even in the case of
substantial Joule losses, significantly exceed the Q factors of usual quasinormal modes.

Figure 2 shows the spatial distribution of the excitation field

Hϕ = jn(z1)jn(k0r)P1
n(cos θ), 0 < r < ∞ (12)

without any nanoresonator and the full field in the presence of nanoresonator at the
frequency of the perfect nonradiating PTM11 mode (see (11)).

Figure 2 shows clearly that the mounting of a nanoparticle into the excitation field (12)
does not affect the field outside it; that is, at this frequency, the nanoparticles are invisible.
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3.1.2. Manifestation of Perfect Nonradiating Modes in Scattering Experiments

The realization of a spherical standing wave (12) in an experiment is a difficult task,
and, therefore, to observe TM perfect nonradiating modes in the sphere, we have performed
the Comsol simulations with an incident Bessel beam:

Hϕ = J1(k0ρ sin α)eik0z cos α, running wave

Hϕ = J1(k0ρ sin α) cos(k0z cos α), standing wave
(13)

In (13), ρ and z are cylindrical coordinates andα is a conical angle of the Bessel beam. In
the vicinity of the origin of coordinates, such a beam approximates the perfect nonradiating
mode (12) well. To solve the Maxwell equations within the Comsol Multiphysics software,
we used the Radio Frequency interface→ Electromagnetic Waves, Frequency Domain→ the
scattered field formulation. Field (13) was used as a background field. The geometry of the
scattering problem and corresponding mesh are shown in Figures 3 and 4.

The results of the simulations are shown in Figure 5.
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Figure 5 shows clearly the appearance of an extremely high-quality perfect PTM101
mode in the spectra of a Bessel beam (13) scattered by a sphere. Note that the Q factor of
the PTM101 mode is three orders (five orders for standing wave) of magnitude greater than
the Q factor of a usual TM101 mode! This figure also shows a significant influence of the
spatial structure of the excitation beam on the Q factors of the perfect nonradiating modes.

3.2. TM Perfect Nonradiating Modes in Spheroidall Particles
3.2.1. Analytical Solutions

Nonradiating modes are not a feature of spherical geometry and exist for axisymmetric
open dielectric resonators of an arbitrary shape. We have shown rigorously that such modes
exist for arbitrary spheroids with semiaxes a and b, having a volume equal to the volume of
a sphere of the radius R with a surface described by the equation

(ρ/b)2 + (z/a)2 = 1; ab2 = R3 = const (14)

The eigenfunctions and eigenvalues of perfect nonradiating modes of such spheroids
can be found by expanding the solutions of the Equation (7) over spheroidal functions [34,35].
In the case of TM polarization for a prolate spheroid, a/b > 1, the general axisymmetric solu-
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tion of Maxwell’s equations [34,35] in the prolate coordinate system (1 < ξ < ∞, −1 < η < 1,
0 < ϕ < 2π) has the form:

H1,ϕ =
∞
∑

n = 1
anPSn1(c1, η)Sn1(c1, ξ), 1 < ξ < ξ0(inside NP)

H2,ϕ =
∞
∑

n = 1
bnPSn1(c0, η)Sn1(c0, ξ), 1 < ξ < ∞(everywhere)

(15)

where PSn1(c, η) are the angular spheroidal functions and Sn1(c, ξ) are the radial spheroidal
functions of the first kind, ξ0 = a/

√
a2 − b2 and c0,1 = z0,1(b/a)1/3/ξ0. For details see

Appendix B.
Equating the tangential components of the electric and magnetic fields on the surface

of the spheroid (14) and using the orthogonality of angular spheroidal functions, one can
find the dispersion equation describing the perfect nonradiating modes:

detM = 0, Mnp = Πnp(c1, c0)×(
εSDp(c0, ξ0)Sn1(c1, ξ0)− Sp1(c0, ξ0)SDn(c1, ξ0)

) (16)

Πn,p(c1, c0) =
1∫
−1

dηPSn1(c1, η)× PSp1(c0, η)

SDn(c, ξ0) = ∂ξ0

(√
ξ2

0 − 1× Sp1(c, ξ0)
) (17)

The dispersion Equation (16) is also valid for an oblate spheroid with the correspond-
ing analytic continuation of spheroidal functions.

The exact solution of the dispersion Equation (16) for perfect TM modes (PTM) is
shown in Figure 6. This figure also shows the dispersion laws of usual TM modes and
so-called confined modes [36] with a magnetic field different from zero only inside the
nanoparticle and complying with the equations:

∇×∇×Hn = εk2
0nHn, inside nanoparticle

Hn = 0, at the boundary
(18)

and the electric field of the confined modes is zero everywhere.
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Figure 6. Perfect nonradiating TM modes (PTM) of spheroids with ε = 50 (Bi2Te3) as a function of 
the size parameter k0R and the spheroid aspect ratio, a/b. Red and green curves stand for odd and 
even perfect nonradiating modes, blue dashed lines correspond to usual quasinormal modes. 
Black curves show the frequencies of confined modes (18), ωn,confined = k0nc. 

Figure 6. Perfect nonradiating TM modes (PTM) of spheroids with ε = 50 (Bi2Te3) as a function of the
size parameter k0R and the spheroid aspect ratio, a/b. Red and green curves stand for odd and even
perfect nonradiating modes, blue dashed lines correspond to usual quasinormal modes. Black curves
show the frequencies of confined modes (18), ωn,confined = k0nc.
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It can be seen from Figure 6, that for each usual quasinormal mode (blue dashed
curves), there are its counterparts in the form of a perfect nonradiating mode (red and green
curves), indicating that there are infinitely many perfect nonradiating modes. It should be
emphasized here once again that the eigenfrequencies of the perfect nonradiating modes,
the solution of (16), are real numbers!

Another interesting fact is that the eigenfrequencies of perfect nonradiating modes are
substantially higher than the real parts of frequencies of usual modes ωn,usual . Moreover,
it can be argued that the frequencies of confined modes (18), ωn,con f ined = k0nc (black
curves), appearing in the limit ε → ∞, are always situated between the frequencies of
usual and perfect nonradiating modes, ωn,usual < ωn,con f ined < ωn,per f ect. This relationship
between frequencies is a manifestation of a very deep connection between confined modes
(with fields localized strictly inside the resonator) and perfect nonradiating modes (with
fields not localized inside the resonator).

Figure 7 shows the dependence of the frequencies k0R
√

ε of usual and perfect nonradi-
ating modes on the inverse permittivity.
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Figure 7. Dependence of k0R
√

ε for usual (blue dashed curves, TM) and perfect nonradiating modes
(red curves, PTM) on 1/ε for a prolate spheroid with a/b = 1.3. The red asterisks and black dashed
lines indicate confined modes (18).

From Figure 7, it is seen that in the limit ε→ ∞, the usual and perfect nonradiating
modes merge into confined ones. However, at finite permittivities, this degeneracy is lifted,
and confined modes are split into perfect nonradiating modes with infinite Q factors and
the usual quasinormal modes with finite Q factors. From Figures 6 and 7 one can clearly
see that there is nothing common between the frequencies of perfect nonradiating modes
and the frequencies of quasinormal modes.

Such an unambiguous connection between the frequencies of confined modes and
perfect nonradiating modes allows us to assert that perfect nonradiating modes with TM
polarization definitely exist for any axisymmetric dielectric bodies!

After the eigenvalues are found, the eigenfunctions of the perfect nonradiating modes
can be found.

For example, the solution of (15) and (16) for PTM101 mode in a prolate spheroid with
ε = 10 and a/b = 1.3 is as follows: k0R = 1.57757, a1 =−7.22705, a3 = 0.0924, a5 = 0.004323,
a7 = 0.00019, b1 = 1, b3 = −0.59122, b5 = 1.08884, and b7 = −2.81192 and is shown in Figure 8.

A comparison of Figures 1, 2b and 8 shows that the structure of a perfect nonradiating
mode in a spheroid looks generally similar to the structure of a perfect nonradiating mode
in a sphere.
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Figure 8. (a) Spatial distribution of Hϕ (x,z) and (b) the dependence of Hϕ (x,z = 0) on x (right) in the
PTM101 mode in a prolate spheroid with ε = 10, k0R = 1.57757, k0d = 2.4, a/b = 1.3.

3.2.2. Manifestation of TM Perfect Nonradiating Modes in Scattering Experiments

To demonstrate the great practical importance of the perfect nonradiating modes in
spheroids, we have simulated within Comsol Multiphysics software the scattering of an
axially symmetric Bessel beam by nanospheroids of different shapes. To observe the even
perfect nonradiating modes, we have used an even incident Bessel beam:

Hϕ ∼ J1(k0 sin αρ) cos(k0z cos α) (19)

In (19), ρ and z are cylindrical coordinates and α is a conical angle of the Bessel
beam. In the vicinity of the origin of coordinates, such a beam approximates the perfect
nonradiating mode (15) well.

Let us stress that the Comsol simulations are fully independent of our analytical results
(16) and (17) and fully confirm them.

In Figure 9 one can see the simulated dependence of scattered power Pscat, stored
energy Wstored, and the generalized radiation quality factor Q = ωWstored/Pscat, on the size
parameter of nanospheroids for aspect ratio a/b = 0.7.

Figure 9 clearly shows the presence of perfect nonradiating modes, having Q factors
significantly higher than the Q factors of usual quasinormal modes. It can be seen from
this figure that, upon excitation (19), all the maxima of the generalized Q factor are due
to the perfect nonradiating modes shown in Figures 6 and 7. In this case, the Q factors of
usual modes (shown by asterisks) are several orders of magnitude lower than the Q factors
of perfect nonradiating modes! Moreover, smart optimization of the excitation beam [27]
makes it possible to increase the Q factor of perfect nonradiating modes almost unlimitedly.
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Figure 9. The dependence of logarithms of scattered power Pscat (blue), stored energy Wstored (red),
and radiation quality factor Q = ωWstored/Pscat (black) on the size parameter of an oblate spheroid
with a/b = 0.7 obtained within the Comsol simulation. TM symmetric excitation (19), α = π/4, ε = 50
(Bi2Te3). The insets show the distribution of |Hϕ| in perfect nonradiating modes. All maxima
correspond to perfect nonradiating modes! The red asterisks on the black curve show the Q factor of
the usual quasinormal modes.

3.3. TE Perfect Nonradiating Modes in Spheroidall Particles
3.3.1. Analytical Solutions

In this case, the only nonzero component of the electric field can be written in the form:

E1,ϕ =
∞
∑

n = 1
anPSn1(c1, η)Sn1(c1, ξ), c1 = k0R

√
ε
√

t2 − 1/t1/3 inside nanoparticle, 1 < ξ < ξ0

E2,ϕ =
∞
∑

n = 1
bnPSn1(c0, η)Sn1(c0, ξ), c0 = k0R

√
t2 − 1/t1/3 everywhere, ξ > 1

(20)

Equating the tangential components of the electric and magnetic fields on the surface
of the spheroid (14) and using the orthogonality of angular spheroidal functions, one can
find the dispersion equation describing the TE perfect nonradiating modes:

detMTE = 0, MTE
np = Πnp(c1, c0)×(

SDp(c0, ξ0)Sn1(c1, ξ0)− Sp1(c0, ξ0)SDn(c1, ξ0)
) (21)

which differs from the dispersion Equation (16) only by the absence of ε in the parenthesis.
The exact solution of the dispersion Equation (21) for perfect TE modes (PTE) is shown

in Figure 10.
From Figure 10 and the structure of the dispersion Equation (21), it follows that the

number of perfect nonradiating modes with TE polarization is infinite, as in the case of TM
polarization.

It is clearly seen from Figure 10, that the frequencies of the perfect nonradiating modes
with TE polarization are located very far from the frequencies of the usual TE modes of
similar symmetry, indicating that there is no connection between usual and perfect modes.

3.3.2. Manifestation of TE Perfect Nonradiating Modes in Scattering Experiments

Demonstration of the existence of TE perfect nonradiating modes in scattering spectra
is more complicated in comparison with the TM case since perfect modes with TE polariza-
tion are not confined modes [36] in the limit ε→ ∞. In addition, the frequencies of perfect
PTEn,0,1 modes turn out to be close to the frequencies of usual TEn+2,0,1 modes. Therefore,
to demonstrate perfect nonradiating TE modes, an incident beam should not excite the
usual nearby modes. In particular, to demonstrate the existence of the PTE101 mode (see
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Figure 11), it is necessary to suppress the excitation of the usual TE301 mode by using an
exciting field of the form:

Eϕ(r, θ) ∼
(

j1(k0r)P1
1 (cos θ) + ξ j3(k0r)P1

3 (cos θ)
)

(22)

In (22), r and θ are spherical coordinates and jn(x) and P1
n(z) are the spherical Bessel

functions and the Legendre polynomial, correspondingly.
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Comsol simulation of the scattering of a Bessel beam 
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Figure 10. Perfect nonradiating TE modes of spheroids with ε = 50 as a function of the size parameter
k0R and the aspect ratio, a/b. Red curves stand for TE perfect nonradiating modes (PTE) and blue
dashed lines correspond to usual quasinormal TE modes.
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Figure 11. The dependence of logarithms of scattered power (blue), stored energy (red), and gen-
eralized quality factor Q = ωWstored/Pscat (black) on the size parameter of nanoparticles simulated
within Comsol Multiphysics. TE excitation (22), ξ = −9.915, ε = 50, a/b = 0.8 (oblate spheroid). The
insets show the distribution of |Eϕ| corresponding to the maxima of stored energy or Q-factor. The
asterisks on the black curve show the Q factor values of the usual modes.

Figure 11 clearly shows the presence of the perfect nonradiating modes, having Q fac-
tors significantly higher than the Q factors of usual modes. Moreover, smart optimization
of the excitation beam [27] makes it possible to increase the Q factor of the perfect nonra-
diating modes unlimitedly (with the neglect of Joule losses in the nanoparticle material,
of course).
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3.4. TM Perfect Nonradiating Modes in Cylindrical Particles

We have not yet succeeded in finding an analytical solution for perfect nonradiating
modes in a dielectric cylinder of a finite height. However, proceeding from the very
plausible hypothesis that the existence of perfect modes is associated with the existence
of confined modes, we have found the frequencies of perfect nonradiating modes by the
Comsol simulation of the scattering of a Bessel beam

Hϕ ∼ J1(k0 sin αρ) cos(k0z cos α) (23)

by a superspheroid with the surface described by the equation:

(ρ/a(t))t + (z/c(t))t = 1 (24)

For t = 2, this is a sphere. For t = ∞, this is a cylinder with the diameter Dcyl = 2a (∞)
and the height Hcyl = 2c (∞).

The results of the Comsol simulation are shown in Figure 12.
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Figure 12. Perfect nonradiating PTM modes of superspheroids with ε = 50 as a function of the size
parameter, k0R, and the shape parameter, t. The red curve stands for PTM101 perfect nonradiating
mode (PTM) and the blue line corresponds to the usual TM101 mode. The black curve corresponds to
the confined (ε→ ∞) TM101 mode (18).

It is clearly seen from Figure 12 that the frequencies of the perfect nonradiating modes
with TM polarization in superspheroids are located very far from the frequencies of the
usual modes of similar symmetry, indicating that there is no connection between the usual
and perfect modes.

In Figure 13, one can see the dependence of scattered power, stored energy, and
generalized Q factor on the size parameter k0R of a superspheroid with shape parameter
t = 8, when excited by a Bessel beam (23).

Figure 13 shows that all the maxima of the generalized Q factor with the excitation
(23) are due to perfect nonradiating modes, with Q factors of several orders of magnitude
higher than the Q factors of usual modes.

Note that in Figures 12 and 13, the scattering minimum is shifted to the high-frequency
region relative to the stored energy maximum. A similar shift was found in the experimental
work [26], where silicon disks were illuminated on-chip at telecom wavelengths.
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quality factor Q = ωWstored/Pscat (black) on the size parameter of a superspheroid with D/H = 0.96,
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The insets show the field distribution of the perfect nonradiating modes and the cross-section of the
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black curve show the Q factor values of the usual modes.

4. Discussion

Above, as an example, perfect nonradiating PTM and PTE modes in dielectric spheroidal
nanoparticles are considered. However, this approach can be directly generalized to waveg-
uides [37]. Moreover, this approach can be directly generalized to nanoparticles made from
double negative (DNG) or chiral metamaterials.

The system of equations for finding perfect nonradiating modes without boundary
conditions at infinity (a generalization of the system (7)) in this case has the form:

∇× E1 = ik0µ(H1 + η∇×H1);∇×H1 = −iεk0(E1 + η∇× E1), inside nanoparticle
∇× E2 = ik0H2;∇×H2 = −ik0E2, everywhere
n× (E1 − E2) = 0; n× (H1 −H2) = 0, at the boundary

(25)

where E and H are the inductions and the strengths of electric and magnetic fields, corre-
spondingly, ε and µ are the permittivity and the permeability of the chiral medium, and η
is the dimensional parameter of chirality. The solution of the system (25) in the case of a
chiral spherical resonator can be found using the method described in [38].

However, the existence of perfect nonradiating modes for non-symmetric nanoparti-
cles is still questionable.

Thus, we have put forward the hypothesis of the existence of perfect nonradiating
eigenmodes of light in dielectric nanoparticles. These modes are the exact solutions of
sourceless Maxwell equations. We have shown rigorously that in the case of axisymmetric
particles, such modes always exist and arise at frequencies somewhat higher than the
resonance frequencies of usual quasinormal modes.

In a spherical case, the problem of finding perfect nonradiating modes can be reduced
to the scattering problem, where it is required to find the parameters of the incident
(converging) and scattered (diverging) spherical waves, at which the total energy flux is
zero. However, this approach is difficult to generalize in the case of 3D nanoparticles of a
more complex shape, since, in this case, the field of the perfect nonradiating mode cannot
be represented as a superposition of a priori known converging and diverging waves.

Another approach for finding perfect nonradiating modes can be the analysis of the spa-
tial structure of two arbitrary solutions of sourceless Maxwell equations, E1, H1, and E2, H2
in free unbounded spaces with permittivities ε1, ε2 in order to find a surface S where the tan-
gential components of the fields are equal, (E1,tan − E2,tan)|S = 0, (H1,tan − H2,tan)|S = 0.
If such a surface can be found, then it can be considered as the surface of a dielectric particle.
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As a result, if the interior of such a surface is replaced by a substance with a permittivity of
ε1, then the field E2 outside this surface will not change, that is, the particle will be invisible
(see Figure 2).

As can be seen from the above, perfect nonradiating modes possess fully different
physics than quasinormal modes and have no analogs. In particular, they differ from the so-
called anapole states [17,20–25] in that their field outside the particle is different from zero
and has a well-defined expansion over spherical (5) or spheroidal (15) harmonics. These
modes also differ from high-Q supercavity modes or quasi-BIC states because perfect modes
do not radiate at all. The perfect modes are closest to strange Neumann–Wigner modes [29],
but unlike the latter, the optical potential of a nanoparticle, V = k2

0(1− ε(r)), differs from
the vacuum value only in a bounded region of space, fundamentally distinguishing perfect
nonradiating modes from Neumann–Wigner modes [29]. In addition, perfect nonradiating
modes are vector ones in contrast to the scalar wave functions in quantum mechanics.

Due to the extremely small scattered power and unlimited radiation Q factors, our
finding paves the way for the development of new nano-optical devices, with a high con-
centration of field inside nanoparticles and extremely small radiative losses, including low
threshold nanolasers, biosensors, parametric amplifiers, and nanophotonics quantum circuits.
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Appendix A

Theory of Perfect Nonradiating Modes in Dielectric Sphere

In the axisymmetric nonmagnetic case m = 0, there is no dependence on ϕ, and only
the azimuthal component of the magnetic field Hϕ is nonzero, so inside the sphere one can
write [39]

Hin
ϕ = A k1

iω
∂Pn(cos θ)

∂θ jn(k1r)

Ein
r = −An(n + 1)Pn(cos θ)

jn(k1r)
k1r

Ein
θ = −A ∂Pn(cos θ)

∂θ
[k1rjn(k1r)]′

k1r

(A1)

Here, for the spherical harmonics with m = 0, we have used their expression in terms
of the Legendre polynomials, Yn0(θ,ϕ) = Pn(cosθ), k1 =

√
εk0, where k0 is the wave number

in the vacuum, jn are the spherical Bessel functions, and A is the amplitude of the perfect
nonradiating mode inside the sphere. Time dependence, ~e−iωt, is assumed everywhere.

Outside the sphere (in a vacuum, ε = 1), we are looking for a solution in exactly the
same nonsingular form (and this is a novelty!) with the replacement k1 →k0:

Hout
ϕ = B k0

iω
∂Pn(cos θ)

∂θ jn(k0r)

Eout
r = −Bn(n + 1)Pn(cos θ)

jn(k0r)
k0r

Eout
θ = −B ∂Pn(cos θ)

∂θ
[k0rjn(k0r)]′

k0r

(A2)

In (A2), B is the amplitude of a perfect nonradiative mode outside the sphere.
On the boundary of the sphere r = R, the tangential components of the fields must be

continuous, that is, for any 0 < θ < π, the following conditions must be met:

A k1
iω

∂Pn(cos θ)
∂θ jn(k1R) = B k0

iω
∂Pn(cos θ)

∂θ jn(k0R)

A ∂Pn(cos θ)
∂θ

1
k1R [k1Rjn(k1R)]′ = B ∂Pn(cos θ)

∂θ
1

k0R [k0Rjn(k0R)]′
(A3)
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Using the orthogonality of the Legendre polynomials, the system of equations that
determine the eigenfrequencies of perfect nonradiating modes can be written as:

Ak1 jn(k1R) = Bk0 jn(k0R); A
1

k1R
[k1Rjn(k1R)]′ = B

1
k0R

[k0Rjn(k0R)]′ (A4)

The nontrivial solutions of (A4), i.e., the perfect nonradiating modes, exist if the
determinant of (A4) is equal to zero:

εjn
(√

εX
)
[X jn(X)]′ − jn(X)[Z jn(Z)]′

∣∣∣
Z =

√
εX

= 0 (A5)

where X = k0R is a size parameter.
For each ε > 1 and n > 1, Equation (A5) has an infinite number of real roots, indicating

the existence of perfect nonradiating modes, and where the field distributions take the form:

Hin
ϕ = P1

n(cos θ)jn(k1r), inside sphere, r < R

Hout
ϕ = P1

n(cos θ)
jn(k1R)
jn(k0R) jn(k0r), outside sphere, r > R

(A6)

As an example, Figure A1 shows the dependencies of the left side of (A5) on the size
parameter X for a sphere with permittivity ε = 10.
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permittivity ε = 10 for n = 1 (red), n = 2 (green), and n = 3 (blue).

Figure A1 shows an infinite set of real roots that correspond to the perfect nonradiating
modes.

The dependence of the radial part of usual and perfect non-radiating modes on the
radius is shown in Figure 1 of the article. Figure A2 shows the spatial distribution of ReHϕ
in the perfect nonradiating mode and the usual mode in a sphere with ε = 10.

It is clearly seen from Figure A2 that the perfect mode exists, has a sensible spa-
tial distribution, and decreases at infinity, while the usual quasinormal mode increases
exponentially at infinity.

Thus, the existence of the perfect nonradiating modes in the dielectric sphere has been
rigorously proved.
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and (b) the usual TM101 mode (k0R = 1.35715−0.160978 i) in a sphere of the radius R with ε = 10.

Appendix B

Appendix B.1. Theory of Perfect Nonradiating Modes in Dielectric Spheroids

Apparently, perfect nonradiating modes exist for axisymmetric bodies of an arbitrary
shape. It is precisely shown below that such modes exist for arbitrary spheroids with
semiaxes a and b, having a volume equal to the volume of a sphere of the radius R and a
surface described by the equation:

(ρ/b)2 + (z/a)2 = 1; a = Rt2/3; b = Rt−1/3 (A7)

where t = a/b. For t < 1, we have an oblate spheroid, and for t > 1, it is an elongated one.
The eigenvalues and eigenfunctions of the perfect nonradiating modes of such spheroids

can be found by solving sourceless Maxwell equations in the prolate spheroidal coordinates
ξ, η, ϕ [34,35]. In these coordinates, the surface of the spheroid (A7) is determined by
the condition:

ξ = ξ0 = a/
√

a2 − b2 (A8)

In spheroidal coordinates, the variables can be separated, and solutions of Maxwell’s
equations can be represented as an expansion over spheroidal wave functions.

Appendix B.2. TM Polarization, Non-Magnetic Case

In the case of TM polarization, for a single nonzero component of the magnetic field,
one can write

H1,ϕ =
∞
∑

n = 1
anPSn1(c1, η)Sn1(c1, ξ), c1 = k0R

√
ε
√

t2 − 1/t1/3 inside nanoparticle, 1 <ξ < ξ0

H2,ϕ =
∞
∑

n = 1
bnPSn1(c0, η)Sn1(c0, ξ), c0 = k0R

√
t2 − 1/t1/3 everywhere,ξ > 1

(A9)

where PSn1(c, η) are the angular spheroidal functions and Sn1(c, ξ) are the radial spheroidal
functions of the first kind [34].

The tangential component of the electric field looks like:

E1,η =
1
ε

2i

k0d(ξ2 − η2)
1/2

∞

∑
n = 1

anPSn1(c1, η)
∂
(
ξ2 − 1

)1/2Sn1(c1, ξ)

∂ξ
(A10)
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inside nanoparticles, ξ < ξ0, and

E2,η =
2i

k0d(ξ2 − η2)
1/2

∞

∑
n = 1

bnPSn1(c0, η)
∂
(
ξ2 − 1

)1/2Sn1(c0, ξ)

∂ξ
(A11)

everywhere, ξ > 1. In (A10) and (A11) and elsewhere, d = 2
√

a2 − b2.
After multiplication by angular harmonics, integration over η, and application of the

orthogonality condition for angular spheroidal functions,

1∫
−1

dηPSn1(c1, η)PSm1(c1, η) = δnmNNn = δnm
2n(n + 1)

2n + 1
(A12)

the conditions for the continuity of the magnetic and electric fields at the spheroid boundary
ξ = ξ0 take the form:

anNNnSn1(c1, ξ0) =
∞

∑
p = 1

Πnp(c1, c0)Sp1(c0, ξ0)bp (A13)

1
ε anNNnSDn(c1, ξ0) =

∞
∑

p = 1
Πnp(c1, c0)SDp(c0, ξ0)bp;

Πn,p(c1, c0) =
1∫
−1

dηPSn1(c1, η)PSp1(c0, η)

SDn(c, ξ0) = ∂ξ0

((
ξ2

0 − 1
)1/2Sp1(c, ξ0)

) (A14)

Figure A3 shows the dependence of the overlap integral ∏n,p(c1,c0) of angular spheroidal
functions on the indices n, p.

Figure A3 shows that:

1. Only modes with the same parity interact with each other;
2. For each mode, interaction is essential only with the nearest modes of the same parity,

2k⇔2(k ± 1); 2k + 1⇔2(k ± 1) + 1.

This circumstance simplifies calculations since matrices of finite dimension 3 × 3 can
be used to calculate eigenfrequencies with high accuracy.

Eliminating an from (A13) and (A14), we obtain a homogeneous system of equations
for the coefficients bp, determining the magnetic field outside the particle:

∞

∑
p = 1

Πnp(c1, c0)
(
εSDp1(c0, ξ0)Sn1(c1, ξ0)− Sp1(c0, ξ0)SDn1(c1, ξ0)

)
bp = 0 (A15)

The compatibility condition of (A15) allows one to find the modes and eigenfrequen-
cies of the perfect nonradiating modes shown in Figures 6 and 7 of the article.
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Repeating the reasoning for TM polarization (see Section B2) for the coefficients bp, deter-
mining the electric field outside the particle, we obtain a homogeneous system of equations: 

( ) ( ) ( )( )1 0 1 0 0 1 1 1 0 0 1 1 0
1

, ( , ) , , ( , ) 0np p n p n p
p

c c SD c S c S c SD c bξ ξ ξ ξ
∞

=

Π − =   (A17)

that differs from the dispersion Equation (A15) only by the absence of ε in the parenthesis. 
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Appendix B.3. TE Polarization, Non-Magnetic Case

In this case, the only nonzero component of the electric field can be written in the form:

E1,ϕ =
∞
∑

n = 1
anPSn1(c1, η)Sn1(c1, ξ), c1 = k0R

√
ε
√

t2 − 1/t1/3 inside nanoparticle, 1 <ξ < ξ0

E2,ϕ =
∞
∑

n = 1
bnPSn1(c0, η)Sn1(c0, ξ), c0 = k0R

√
t2 − 1/t1/3 everywhere, ξ > 1

(A16)

Repeating the reasoning for TM polarization (see Appendix B.2) for the coefficients
bp, determining the electric field outside the particle, we obtain a homogeneous system
of equations:

∞

∑
p = 1

Πnp(c1, c0)
(
SDp1(c0, ξ0)Sn1(c1, ξ)− Sp1(c0, ξ0)SDn1(c1, ξ0)

)
bp = 0 (A17)

that differs from the dispersion Equation (A15) only by the absence of ε in the parenthesis.
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