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Abstract: Mobile communication services are crucial during emergency disasters and temporary
events, and future mobile communication systems should be able to provide such services. Airborne
base stations using drones are highly effective as stand-in base stations in areas where the ground
base stations are inoperable or at temporary event sites. However, it is difficult for conventional
drones to provide mobile communication services without interruption due to flight time limitations
caused by their limited battery capacity. Thus, a drone drive with a non-interrupted power supply
is urgently needed. In this study, we developed an airborne base station that enables drones to be
driven and maneuvered by optical fibers. We simultaneously transmitted radio frequency (RF) data
signals for the airborne base station and control signals for the drone and evaluated the transmission
performances of the RF signals and the controllability of the drone. Furthermore, we conducted a
flight experiment on a medium-sized drone powered by optical fibers.
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1. Introduction

Recently, mobile communication has become an indispensable facet of everyday life.
Ground base stations have been installed worldwide to facilitate mobile communications
services everywhere. However, there are increasing demands for airborne base stations
that provide temporary mobile communication services [1–3]. For example, an alternative
base station would be urgently needed after the collapse of a ground base station due
to natural disasters, such as a big earthquake or typhoon. In such situations, portable
airborne base stations can be deployed in disaster areas to provide temporary mobile
services. Moreover, airborne base stations can be used to provide mobile communication
services to numerous mobile users during planned temporary events, such as outdoor
concerts or sports competitions, where numerous mobile users are concentrated.

Currently, drones are the most promising airborne base stations [4,5]. Drones are
compact and lightweight, making them easy to carry, and they require little space for takeoff
or landing. However, when used as an airborne base station, their battery capacity limits
the flight time, hindering continuous mobile services over long durations. Additionally,
the onboard battery accounts for most of the total weight of the drone, which increases
power consumption and is a major limiting factor for its payload.

Therefore, it is necessary to develop a drone charging technology that does not require
large-capacity batteries without time limitations. The most popular method is a wired
power supply using metal power lines. Despite some commercialization [6,7], there are
risks of electric shocks, lightning damage, and radio frequency (RF) interference when
used as an airborne base station. Drones that are powered wirelessly via microwaves [8] or
lasers [9,10] do not require power lines. However, a beam-tracking function is required, and
high-power energy is radiated into space, posing a safety hazard. Thus, we developed an
optically powered drone using a power-over-fiber (PWoF) and successfully demonstrated
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a flight experiment using an entry-size drone [11]. PWoF is an established and practical
technology that enables power transmission over lightweight, non-conductive glass fiber
lines [12,13]. Recently, simultaneous electric power exceeding 40 W, along with optical
data signals, has been reported [14]. Furthermore, because airborne base stations need to
communicate wirelessly with multiple mobile terminals, it is preferable to use radio-over-
fiber (RoF) to maneuver drones instead of wireless communication to prevent RF signal
interference. Thus far, we have simultaneously transmitted RF data signals for airborne
base stations in mobile communications and control signals for maneuvering drones over
optical fibers [15]. However, actual drone control has not yet been achieved.

Herein, we presented an optically powered and controlled drone with optical fibers for
airborne base stations. In order to demonstrate the feasibility of the drone, we transmitted
RF data signals to the airborne base station and controlled signals to maneuver the drone
simultaneously. Moreover, we evaluated the transmission performance and confirmed
the controllability of the drone using RoF transmission when the wireless control signal is
disconnected. Additionally, we conducted a flight experiment on a medium-sized drone
driven only by the PWoF. This drone was much larger than that used in our previous
experiments.

The remainder of this paper is organized as follows. In Section 2, we introduced
the concept and features of optically powered and controlled drones using optical fibers.
Section 3 evaluates the transmission performance of the RF data signal and control signal
over an optical fiber link connecting the ground station facility and the drone. In Section 4,
we confirmed the controllability of an optically controlled drone using the RoF transmission.
Section 5 describes the flight experiment of a medium-sized drone. After discussing the
future challenges and prospects of optically powered and controlled drones for airborne
base stations in Section 5, we concluded the paper in Section 6.

2. Optically Powered and Controlled Drone Using Optical Fibers

Figure 1a shows a schematic view of an optically powered and controlled drone
for an airborne base station. The drone and ground station facility is connected by two
optical fibers, assuming a standard single-mode fiber (SSMF) for RF data and control signal
transmission and a multi-mode fiber (MMF) with a large core diameter for PWoF. The
maximum transmission distance of the optical fiber is assumed to be approximately 100 m.
If an RF data signal with a carrier frequency in the several GHz band can output the signal
power of approximately 10 W, mobile communications can be performed in an area with a
maximum cell radius of 5–10 km if the line-of-sight is adequate.
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Figure 1. (a) Schematic view and (b) configuration of optically powered drone using optical fibers for
airborne base stations. FC: flight controller, PPC: photovoltaic power converter, RC: remote controller,
HPLD: high-power laser diode.
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The configuration of optically powered and controlled drones is shown in Figure 1b.
In the ground station facility, the RF data signals for the airborne base station and the
control signals generated by a remote controller for maneuvering the drone were converted
into optical signals and transmitted into the SSMF as RoF signals. At the airborne base
station, the RF data signals are radiated from the antenna, and the control signals are input
to the flight controller (FC), which is used to maneuver the drone. The system was designed
to support bidirectional transmission. The power required to drive the drone was provided
by a high-power laser diode (HPLD) deployed at the ground station facility. The feed light
generated by the HPDL is transmitted to an MMF and converted into electric power using
a photovoltaic power converter (PPC). The converted electric power is used to drive the
transmitter, receiver, and FC. It should be noted that multiple HPLDs, optical fibers, and
PPCs are required as the supplied power increases. The ground station facility and the
airborne base station are connected only by optical fibers, which are non-conductive lines;
thus, in the event of a lightning strike near the airborne base station, no dangerous current
back to the ground station facility is possible. Additionally, the RF data and control signals
transmitted over the optical fiber are electrically isolated; thus, the RF signals radiated by
the antenna are unaffected by electromagnetic induction.

3. Simultaneous RF Data and Control Signal Transmission

In order to evaluate the transmission performances of the RF data and control signals,
simultaneous transmission experiments were conducted using a 100 m SSMF; Figure 2
shows the experimental setup. An IEEE802.11g wireless LAN standard, orthogonally fre-
quency division multiplexing (OFDM), and 64-quadrature amplitude modulation
(64-QAM) signal were used as an RF data signal. The carrier frequency and bit rate
were 5.2 GHz and 54-Mbit/s, respectively. The signal was generated using a signal gen-
erator (SG). The drone used in this experiment was a commercially available, small-size,
entry-type drone (Hubsan Co. Ltd., Shenzhen, China, H111 Nano Q4). An electrical signal
with a carrier frequency of 2.425 GHz was used as the control signal. This signal was
generated by the RC attached to the drone used, and the output signal was combined with
the RF data signal from an electrical coupler (EC) via an electrical circulator (ECIR). The
combined RF data and control signals were converted into an optical analog signal using a
laser diode (LD) at a wavelength of 1554 nm for RoF transmission. After amplification by
an erbium-doped fiber amplifier (EDFA), the optical analog signal was passed through a
bandpass filter (BPF) to eliminate amplified spontaneous emission noise and a circulator
(CIR) and was transmitted over a 100 m SSMF. After passing through the CIR, the optical
analog signal was converted into an electrical signal by a photodiode (PD), with only the
signal modulation component extracted by a bias tee (BT). The RF data signal divided by an
EC was evaluated using a signal analyzer (SA) for signal quality evaluation, and the control
signal was input to the FC of the drone for drone control. In this experimental setup, the RF
data signal was only transmitted downstream, whereas the control signal was transmitted
both downstream and upstream. This is because the drone is inoperable without sending
a data reception confirmation signal from the FC of the drone to the RC to control it. The
data reception confirmation signal was passed through the ECIR and converted into an
optical analog signal by an LD at a wavelength of 1549 nm. After two CIR and 100 m SSMF
transmissions, the optical signal was converted into an electrical signal and input to the
RC. Upon receiving the data confirmation signal from the FC, the RC recognized that the
connection state had been secured and could then transmit the control signals necessary to
maneuver the drone. In this experiment, the RF data signal is assumed to be transmitted
only through downlink transmission. For uplink transmission, the control signal from the
FC and an uplink RF data signal must be combined and converted to an optical signal with
the 1549 nm LD. Then, the optical data signal must be transmitted over the SSMF.
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Figure 3 shows the electrical spectra of the RF data and control signals transmitted 
over the 100 m SSMF measured by the SA. In the RF data signal, a high SNR spectrum 
with a center frequency of 5.2 GHz was observed. A rectangular spectrum, which is char-
acteristic of OFDM signals, is also observed in the spectral waveform. However, a spectral 
waveform narrower than that of the RF data signal was observed for the control signal 
with a center frequency of 2.425 GHz. This center frequency was seen to change to a dif-
ferent frequency each time the RC was turned on and off. This was due to the specification 
for preventing interference with other control signals during wireless operation during 
conventional outdoor use. 

 

Figure 2. Experimental setup for simultaneous RoF data and control signals transmission for airborne
base station. SG: signal generator, RC: remote controller, EC: electrical coupler, ECIR: electrical
circulator, LD: laser diode, EDFA: erbium-doped fiber amplifier, BPF: bandpass filter, PD: photodiode,
BT: bias tee, CIR: circulator, SA: signal analyzer, FC: flight controller.

Figure 3 shows the electrical spectra of the RF data and control signals transmitted over
the 100 m SSMF measured by the SA. In the RF data signal, a high SNR spectrum with a
center frequency of 5.2 GHz was observed. A rectangular spectrum, which is characteristic
of OFDM signals, is also observed in the spectral waveform. However, a spectral waveform
narrower than that of the RF data signal was observed for the control signal with a center
frequency of 2.425 GHz. This center frequency was seen to change to a different frequency
each time the RC was turned on and off. This was due to the specification for preventing
interference with other control signals during wireless operation during conventional
outdoor use.
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For a detailed evaluation of the transmission performance of the RF data signal, the
error-vector magnitude (EVM) of the transmitted signal was measured; the results are
shown in Figure 4. The dashed line shows an EVM of 5.6%, which is necessary to ensure
adequate received signal quality for the modulation format used. The inset shows the
constellation of the transmitted RF data signal when the SG output power was 2 dBm. As
the SG output power increases above 0 dBm, the EVM value also increases. This was due to
the nonlinear distortion caused by the excessive electrical power input to the LD. However,
as the SG output power decreased below 0 dBm, the EVM slowly increased. This indicates
signal quality degradation due to the weakening of the signal component. In contrast, the
EVM was below 5.6% over a very wide power range, indicating that the received RF data
signal had high signal quality. The results indicate that the signal transmitted to the drone
has a sufficient signal quality to be radiated from the airborne base station.
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4. Controllability of the Optically Controlled Drone

In order to verify whether the control signals are accurately transmitted by the RoF
transmission, we conducted drone control tests based on the experimental setup shown in
Figure 2. First, because the RC and FC of the drone system could transmit and receive even
very weak wireless control signals, the drone itself was covered with an RF-absorbing sheet
to completely block the wireless control signal. Figure 5a,b show the electrical spectra of
the EC output (measured by the SA) in the airborne base station without and with the RF-
absorbing sheet, respectively. Here, the LD at the ground station facility was turned off, and
no optical signals were transmitted. In Figure 5a, when the RC is turned on, wireless signals
are detected in the control signal and other frequency bands. However, in Figure 5b, even
if the RC is turned on, the control signals and other RF signal components are undetected.
Additionally, the pairing could not be performed via wireless communication when the
drone and RC were actually turned on with the RF-absorbing sheet, confirming that the
control signals were blocked.

Photonics 2022, 9, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 5. Electrical spectra of EC output (a) without and (b) with RF absorbing sheet. Insets of (b) 
show electrical spectrum at around center frequency of control signal and photo of RC covered with 
RF absorbing sheet. 

By using the RF-absorbing sheet, we controlled the drone by RoF transmission using 
a 100 m SSMF, as shown in Figure 2. Photographs illustrating drone control are shown in 
Figure 6. We confirmed the operability of the drone via the RC controller by performing 
eight different control operations, wherein the drone initiated pairing operations through 
RoF transmission. This shows that the drone can be operated using an optical fiber, even 
without wireless communication. 

 
Figure 6. Photographs illustrating control of optically controlled drone. Red arrows indicate direc-
tion in which the drone is moving. 

5. Flight Demonstration of the Optically Powered Drone 
We previously demonstrated the flight experiment of an entry-sized drone using 

PWoF [11]. However, larger drones must be driven to carry a base station and achieve 
flight at higher altitudes. In this Section, we demonstrated a flight experiment of a much 
larger drone than the drone used in the previous study by improving the power transmis-
sion performance of the PWoF [16]. 

5.1. Devise Characteristics 
There are two key devices for driving a drone with PWoF. One is a PPC, which con-

verts optical power into the electric power required to drive the drone. The other is a DC-
DC converter (DDC) that converts the output voltage of the PPC to the voltage required 
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By using the RF-absorbing sheet, we controlled the drone by RoF transmission using a
100 m SSMF, as shown in Figure 2. Photographs illustrating drone control are shown in
Figure 6. We confirmed the operability of the drone via the RC controller by performing
eight different control operations, wherein the drone initiated pairing operations through
RoF transmission. This shows that the drone can be operated using an optical fiber, even
without wireless communication.
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5. Flight Demonstration of the Optically Powered Drone

We previously demonstrated the flight experiment of an entry-sized drone using
PWoF [11]. However, larger drones must be driven to carry a base station and achieve flight
at higher altitudes. In this Section, we demonstrated a flight experiment of a much larger
drone than the drone used in the previous study by improving the power transmission
performance of the PWoF [16].

5.1. Devise Characteristics

There are two key devices for driving a drone with PWoF. One is a PPC, which converts
optical power into the electric power required to drive the drone. The other is a DC-DC
converter (DDC) that converts the output voltage of the PPC to the voltage required to
drive the drone. In this Section, the characteristics of the PPC and the DDC we selected are
evaluated prior to the drone flight experiment.

The optical-to-electrical (O/E) power conversion efficiency of the PPC was measured
to evaluate whether the PPC we used could supply the power necessary to drive the
drones. Figure 7 shows the experimental setup used for the measurements. We used a
commercially available HPLD with a wavelength of 808 nm as a feed light source. The
maximum output power and the core diameter of the pigtailed MMF were 40 W and
105 µm, respectively. The MMF used had a core diameter of 105 µm and a length of 100 m,
similar to the SSMF used in the RoF transmission. Both ends of the MMF were common
fiber connectors (FC/PC connectors), and these connectors connected to the pigtail fiber
of the HPLD and the PPC itself. After transmission, the MMF was connected to the PPC,
which was a specially customized GaAs-based PPC based on a vertical epitaxial monolithic
heterostructure architecture design [14,17,18]. The PPC provides a higher capability both
of O/E conversion efficiency and available input optical power than conventional PPCs.
An electronic load device was connected to the output of the PPC, and the characteristics of
the PPC were measured when the resistance of the load was varied.
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Figure 8a,b shows the current–voltage (I-V) and power–voltage (P-V) curve charac-
teristics of the PPC while changing the input optical power, respectively. As the input
optical power increases up to 25 W, the current and converted electric power are increased.
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However, for all input optical powers, the current and electrical power decreased rapidly
when a certain voltage value was reached. This voltage is called the maximum power point
(MMP), which is approximately 6.2 V for the PPC. In the 25 W optical power injection, the
electric power of 14 W could be obtained at the MMP.
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In order to drive a drone by PWoF, it is important not only to input a higher optical
power to the PPC but also to adjust the voltage between the PPC output and the drone
input after converting it to electric power. The power consumption of the drone used in
this experiment was 10.4 to 12.6 W. In the original drone, the power was supplied by a
1-cell LiPo battery, which had an allowable voltage range of 3.0 to 4.1 V. On the other hand,
the voltage at which MMP is achieved in the PPC was 6.2 V. Since it would exceed the
allowable voltage if it is directly connected, it is necessary and beneficial to use a DDC to
match the voltage required for the drone.

Figure 9 shows the conversion efficiency of three commercially available DDCs (DDC-
A: Murata Co. Ltd., OKL-T/6-W12N-C, DDC-B: XLSEMI, XL4015, DDC-C: Sanken Electric
Co. Ltd., SI-8008HFE) for various currents. In this measurement, the output voltage was
set to 3.7 V, which is optimal for driving the drone. The current increases rapidly up to
around 0.5 A and then tends to remain almost constant or decrease slowly. Of the three
converters, DDC-A had the highest conversion efficiency at all the currents. Therefore, the
device was used in the following drone flight demonstration.
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5.2. Flight Demonstration

We conducted a flight experiment using a commercially available drone. Figure 10a
shows the experimental setup. As shown in Figure 7, the output of the HPLD at 808 nm
was connected to the 100 m MMF and converted to electrical power at the PPC. The output
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voltage from the PPC was converted to 3.7 V using DDC-A to obtain the optimum voltage
for the drone. The transmission loss of the 100 m MMF was 1.2 dB. The input optical
power to the PC and the O/E conversion efficiency was 25 W and 56%, respectively. The
drone used in this experiment was a commercially available, medium-sized drone (FUGU
INNOVATIONS Co. Ltd., Yokohama, Japan, SMAO S5). The battery of the drone was
removed during the PWoF operation, as it was not required. This reduced the weight
of the drone from 100 g to 76.7 g. It should be noted that only the drone was flown, as
the PPC and DDC-A could not be mounted. Furthermore, in this experiment, the drone
was not optically controlled by RoF transmission but by wireless control signals using the
attached RC.
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Figure 10. (a) Experimental setup for drone flight demonstration. (b) Photograph of drone flight
demonstration and basic specification of drones used in a previous study and this study.

Figure 10b shows a photograph of the flight demonstration of the drone and the
basic specifications of the drones used in the previous study and this study. By increasing
the supplied power using the PPC and DDC-A, we successfully flew a drone that was
approximately 10 times heavier and 36 times larger than previously [11]. Moreover, the
operable control range was extended to 100 m, which is assumed to be the operating range
for airborne base stations.

6. Discussion

In this study, we demonstrated optically powered and controlled drones using optical
fiber and a flight experiment of a medium-sized drone using a PWoF. However, there
are significant challenges in actually driving a drone that functions as an airborne base
station using only the PWoF. Figure 11 shows the relationship between the takeoff weight
and the power consumption of commercially available drones, as indicated by the circles.
In order to transmit and receive RF data signals for an airborne base station along with
control signals to maneuver the drone, the drone must be mounted with the necessary
components in the airborne base station, as shown in Figure 2, and the airborne base
station itself. Although airborne base stations have rapidly become lighter in recent years,
these components as a whole are expected to weigh from several hundred grams to 1 kg.
In addition to these components, a DDC and PPC must be mounted to drive the drone
with PWoF, as shown in Figure 10a. Therefore, we assume that the total takeoff weight
of a drone that functions as an airborne base station is at least approximately 1 kg. As
shown in Figure 11, the relationship between the takeoff weight and power consumption
of commercially available drones can be approximately fitted by a linear approximation, as
indicated by the red line. It can be seen that the highest takeoff weight on a commercially
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available drone requires more than 100 W of power. Therefore, although power saving by
drones can be expected, flying a drone that functions as an airborne base station requires
approximately 10 times more power than the current power supply capability. In order
to achieve this, it is necessary to increase the power supply by installing multiple HPLDs,
optical fibers, and PPCs for the PWoF.
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The effect of weather on the use of drones as airborne base stations is also discussed.
In rainy or snowy weather, waterproofing must be deployed on the drone because there
is a high chance of a short circuit occurring in its electrical components. In addition,
temperature also has a significant impact on drones. In particular, many drones currently
use lithium polymer batteries, which have an optimal operating temperature of 40 ◦C.
Therefore, the battery performance will be greatly reduced at high altitudes and in cold
climates [19,20]. In contrast, optically powered and controlled drones are not equipped
with batteries, and their fiber-optic components and PPCs are resistant to low-temperature
environments. Therefore, the more stable operation will be expected at high altitudes and
in cold climates compared to conventional drones with batteries.

7. Conclusions

We presented an optically powered and controlled drone using optical fibers for air-
borne base stations. In order to demonstrate the feasibility of the drone, we experimentally
transmitted RF data signals for the airborne base station and control signals to maneuver
the drone simultaneously. We obtained high transmission performance of the RF data
signals and good controllability of the control signals when the wireless control signal was
disconnected. We also demonstrated a flight experiment on a medium-sized drone driven
only by PWoF, which was approximately 10 times heavier and 36 times larger than that
of our previous study. Although additional power is required to drive a drone carrying
an actual airborne base station using only PWoF, the results obtained in this study will be
useful for realizing optically powered and controlled drones that can function as airborne
base stations.
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