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Abstract: The paper is aimed at improving the efficiency of signal processing for intermode fiber-
optic interferometers. To do so, we propose to use the MUSIC algorithm. It is shown that the use
of traditional methods for estimating the number of signal components leads to poor operation
of the MUSIC algorithm when applied to intermode interference signals. The possibility of using
machine learning to estimate the number of signal components was investigated. The advantage of
the proposed signal processing for demodulating the signals of an intermode interferometer over the
Fourier transform has been experimentally demonstrated on the examples of simultaneous strain and
curvature measurement, as well as pulse-wave sensing. The results can be also applied for processing
signals of other optical-fiber sensors and multi-component signals of a different nature, for example,
optical coherence tomography and radar signals.

Keywords: intermode interferometer; spectral interferometry; interferometry; pulse-wave sensing;
machine learning; optical fiber sensor

1. Introduction

Optical fiber sensors (OFS) are a well-established measuring tool, demonstrating such
advantages over traditional electromagnetic sensors as immunity to electromagnetic interfer-
ence, absence of electric currents and voltages in sensing element, as well as small footprint,
ability to multiplex many sensors in one optical fiber [1,2] and a great potential for performing
distributed sensing [3]. Due to these qualities, OFS is a huge success for such applications as
geophysics [4], sensing in explosive and harsh environments, biomedical diagnostics [5] and
many others. Interferometric OFS can be distinguished from the other types due to their high
resolution, accuracy and insensitivity to intensity changes.

Intermode optical fiber interferometers [6] are gaining considerable attention from both
academia and industry due to their ability of measuring various quantities, multi-parameter
sensing, small footprint and the ease of manufacture and tailoring of the sensor properties.
In intermode OFS, the interference occurs between different modes, propagating in a few-
mode or a multimode (MM) fiber, or between the fundamental mode and cladding modes
of a singlemode (SM) fiber. The most common fiber structure in which such interference
occurs is a singlemode-multimode-singlemode (SMS) structure [7], where the first SM fiber
excites several modes in MM fiber, which acts as a sensing element [8,9]. After propagation
in MM fiber, the excited modes accumulate phase differences due to differential mode
dispersion (DMD); as a result, when the modes are captured by the second SM fiber, their
interference depends on MM-fiber perturbations, affecting modes’ propagation constants.

Among many approaches for interferometric OFS interrogation, spectral interferom-
etry offers such advantages as measurement of absolute value of interferometer optical
path difference (OPD), ease of interrogation of multiplexed sensors and complex multi-
parameter sensing elements with several interfering waves [1,10–13]. The operating prin-
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ciple of spectral interferometry is to measure the intensity of light transmitted through
or reflected from an interferometer with respect to light wavelength (in other words, to
measure interferometer spectrum).

SMS sensors are often interrogated by means of spectral interferometry. However,
the complex shapes of interference spectra lead to complications in developing signal-
processing algorithms. In the simplest cases, the demodulation of SMS signals is performed
by tracking the position of a distinctive feature [14,15], such as a dip with the lowest value
or a peak with the highest value. However, as with most of the semi-empirical methods,
such an approach is not highly reliable and can lead to unpredictable results. In addition,
since only a narrow part of the spectrum is processed, the measurement resolution of such
approaches cannot reach fundamental limits. Some of the more advanced methods rely
on the correlation of a measured spectrum with a reference one [16]. This way, higher
measurement resolution is possible; however, unaccounted types of perturbations (for
example, the bending of a strain sensor) will lead to the distortion of the measured spectrum
and a consequent error in the demodulation.

Much more reliable results can be obtained in the case of the identification of inter-
ference components and the estimation of their OPDs. The first step towards this was
an application of the fast-Fourier-transform (FFT)-based demodulation approach [17,18],
which was initially proposed for multiplexed OFS with spectral interferometric interro-
gation [19–21]. However, the application of FFT for SMS signal demodulation has certain
disadvantages: due to spectrum leakage [22], a cross talk between different interference
components can occur, leading to demodulation errors. In addition, there is no direct way
to identify and estimate the number of interference components using FFT demodulation
rather than some empirical analysis of the FFT modulus.

Nevertheless, the problem of processing multi-component signals is not new and has
already been successfully tackled, resulting in the development of the multiple signal clas-
sification (MUSIC) method [23,24]. The MUSIC method utilizes the analysis of a signal
covariance matrix, leading to the accurate evaluation of a signal spectrum, allowing to achieve
super-resolution [25,26]. A modification known as root-MUSIC [27,28] also allows one to
estimate the number of signal components U. In fact, the estimation of the number of signal
components turns out to be the crucial part of root-MUSIC algorithm: in case of under-
estimation, some components of a target signal will be omitted from the processing, while
over-estimation increases the unwanted influence of noise on the processing result. In order
to improve the component-number estimation accuracy, various information criteria have
been proposed [29–31]. However, all these methods assume strictly harmonic components and
cannot be directly applied to SMS signals, in which refractive index dispersion ∆n(λ) causes
the parasitic frequency modulation of interference components.

In the current paper, we propose a solution to the above problem based on machine
learning (ML). This will be achieved by training a shallow neural network (NN) to predict
a number of signal components from a distribution of a signal’s covariance matrix eigen-
values. Such an ML model will, in turn, be used in the MUSIC algorithm and help correctly
identify the number of interference components and find their parameters. We will also
demonstrate the benefit of the proposed signal-processing approach compared with the
FFT-based demodulation.

2. Interferometric Signal Processing
2.1. Intermode Interferometer Signal Model

The principle of spectral interferometry is based on unambiguous correspondence
between the shape of the interferometer spectrum and interferometer OPD. Therefore, by
applying proper signal processing, the absolute value of an interferometer OPD can be
demodulated from the experimentally measured signal [10,32,33]. In the context of our
work, considering an interference of two modes, the interference signal can be written in
the form

S = I1 + I2 + 2
√

I1 I2 cos(2π∆nL/λ + ϕ), (1)
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where I1 and I2 are the fractions of modes’ intensities that are captured by a second SM
fiber; ∆n is the difference in the effective refractive indexes of interfering modes; L is the
length of the MM fiber section; λ is light wavelength; and ϕ is the phase shift, caused
by the mode coupling effects [34]. The interference signal S is measured as a function of
wavelength λ ∈ [λ0 − ∆λ/2; λ0 + ∆λ/2], where λ0 is the center and ∆λ is the width of the
spectral interval, on which the interference signal is measured.

In the first works on SMS sensors, graded-index (GI) MM fibers were used in sensing
sections [7,8,35]. Since the DMD in GI MM fiber is relatively small and overlap integrals
between the fundamental mode of SM fiber and most higher-order modes in GI MM fiber
are almost zero, the interference signals of these sensors were basically formed by the
interference of only two modes. However, later on, step-index MM fibers, specialty fiber
and composite-fiber structures [13,15,36,37], mostly replaced GI MM fibers due to their
higher achieved sensitivities, greater range of possibly measured quantities and possibility
to use shorter sensing sections. In these cases, some number of modes P (P > 2) is excited
in the MM-fiber section and is captured by the second SM fiber; hence, the spectrum of
a typical state-of-the-art SMS structure is a superposition of quasi-harmonic interference
components, formed by all excited modes. As a result, interference signal can be written in
a form

S =
P

∑
p=1

Ip +
P

∑
p=1

P

∑
q=1

∣∣∣∣∣
p 6=q

√
Ip Iq cos

(
2π∆np,qL/λ + ϕp,q

)
, (2)

where it must be taken into account that Ip, ∆np,q and ϕp,q can depend on light wave-
length λ.

As can be concluded from Equation (2), a large number of interfering modes leads to
a great number of interference components with different oscillation frequencies and initial
phases, comprising the interference signals of SMS structures. As a result, these signals
usually have very complex shapes, requiring complicated signal-processing algorithms in
order to demodulate the measured quantities.

However, the use of Equation (2) may be not the most convenient way to simulate
SMS interference signals. Instead, we will use the following simpler and more general
multi-component model

Sv
k =

Uv

∑
u=1

Au,v · cos(2π( fu,v + Cu,v/2 · k) · k + θu,v) + nv
k , (3)

where it was taken into account that interference signal is measured in a discrete form at
certain λk wavelengths, so that Sv

k is the k-th sample of v-th interference signal (individual
signal will be referred to as Sk); nv

k is the k-th sample of v-th realization of additive noise; v
is the number of simulated signals; v ∈ [1, V], V is the number of simulated signals; Au,v
is the amplitude of the u-th interference component of the v-th signal; Uv is the number
of interference components in the v-th signal; fu,v is the normalized frequency of the m-th
interference component of the v-th signal; and Cu,v is the chirp rate of the u-th interference
component of the v-th signal, accounting for the DMD of the sensing fiber. k = 1, . . . , K, is
the number of signal samples, related to the wavelength scale as

λk = λ0 − ∆λ/2 + k · ∆λ/K. (4)

Let us assume that the u-th interference component of the v-th signal is the result of
the interference of the p-th and q-th modes of optical fiber. In this case, it can be shown,
by expanding the argument of the cosine function in Equation (2) into Taylor series with
respect to λ, that ϕu,v fu,v and Cu,v are related to the interference components’ parameters as

θu,v = 2π

(
L

∆n0
p,q

λ0
+ L∆ngr

p,q
∆λ

2
+ L∆nGDD

p,q
∆λ2

4

)
+ ϕp,q, (5)
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fu,v = L∆ngr
p,q

∆λ

K
− L∆nGDD

p,q
∆λ2

K
, (6)

Cu,v = 2L∆nGDD
p,q

∆λ2

K2 , (7)

where

∆ngr
p,q =

d∆np,q

dλ

∣∣∣∣
λ=λ0

−
∆n0

p,q

λ2
0

, (8)

∆nGDD
p,q =

1
2λ0

d2∆np,q

dλ2

∣∣∣∣∣
λ=λ0

− 1
λ2

0

d∆np,q

dλ

∣∣∣∣
λ=λ0

+
∆n0

p,q

λ3
0

(9)

and ∆n0
p,q is the difference in refractive indexes for the p-th and q-th modes at central wave-

length λ = λ0. For simplicity, it will be further assumed that ∆nGDD
p,q (and, consequently,

Cu,v) values are the same for all interference components.

2.2. Multicomponent Signal Processing Using MUSIC Algorithm

The Root-MUSIC method allows to estimate the spectrum of complex multicomponent
signals, which, as follows from Equation (6), in the considered case, is equivalent to finding
the OPDs of interference components. However, in order to estimate the interference-
components’ properties, their number U must be found first. According to theoretical
analysis, the number of harmonic components U can be estimated by identifying the
number of a signal’s covariance-matrix’s eigenvalues that are different from a constant
level. By this means, the corresponding covariance-matrix’s eigenvectors are separated
into signal and noise subspaces. Eigenvectors corresponding to eigenvalues differ from
a constant value form the signal subspace and reflect the target harmonic components
of the signal, while eigenvectors corresponding to eigenvalues close to a constant level
form the noise subspace and reflect noisy components of the signal [25,29]. The above-
mentioned constant level, close to the majority of eigenvalues, is equal to additive noise
variance and, therefore, theoretically, U can be estimated by directly comparing eigenvalues
with the noise level (the latter can be estimated by various techniques, one of which is
described in [38]). However, since, in practice, eigenvalues are estimated with singular
value decomposition (SVD) [25] from only a single instance of the analyzed signal, practical
distributions of eigenvalues differ from the above-described theoretical one, leading to the
reduced accuracy of the theoretical criteria of signal components number.

In situations when there is no easily formalized analytical solution to the problem,
but the output of the system under study X can be described by a numeric model with
a set of parameters (including those to be estimated) or a large amount of experimental
data, obtained under well-known conditions, machine learning (ML) offers a reliable and
a powerful means to achieve the result. In such cases, an inverse problem can be solved by
training a computer model of some defined structure to predict the unknown parameter ϕ
from the given system output X and known parameters r. Currently, ML is widely used in
various tasks, including the interpretation and demodulation of OFS signals [39–42].

In each machine-learning task, the problem of generating the training dataset (con-
sisting of the system output and known parameters) and its mapping (association of each
data vector [X, r] with the corresponding unknown parameters’ values ϕ) is one of the
most crucial. The ability of an ML model to generalize the results of learning is directly
related to how full and representative of the practical data the training dataset is. Ideally,
the distributions of the parameters r and ϕ in the training dataset must be the same as they
are in practical situations.

In our case, the unknown parameter is the number of interference components and the
processed data is an SMS spectra (the level of additive noise can be estimated prior to signal
processing and be input into the ML model to improve its accuracy). Therefore, the training
dataset must contain the signals of structure in Equation (3), calculated for a wide range of
components numbers Uv, as well as components’ amplitudes, frequencies and phases. Such
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a dataset was prepared using the NumPy library [43] in Python. The input parameters of
the function were: the number of points in simulated spectra K (each k-th point corresponds
to a different wavelength λk according to Equation (4)); the maximal number of interference
components Umax (in each v-th simulated interference signal, the number of components Uv
was chosen randomly with a uniform distribution from the interval [1, Umax]); the range of
interference components’ amplitudes [Amin; Amax]; the range of the additive noise standard
deviation (STD) [σn min; σn max] (in each v-th simulated interference signal, the standard
deviation of additive noise σv was chosen randomly with a uniform distribution within
the given range). The normalized frequencies of interference components fu,v were chosen
randomly with a uniform distribution from interval [0, 1/2]. Initial phases θu,v were chosen
randomly with a uniform distribution from interval [0, 2π].

The generated dataset, used for NN training, contained 106 interference signal real-
izations, each with the number of points K = 512 (the same as in the spectrometer used
in the experimental part of the work), the maximal number of interference components in
one signal Umax = 20, the range of the interference components’ amplitudes [2 · 10−4, 0.2],
the range of additive noise STD [10−7, 5 · 10−3], and chirp rate C = 1.5 · 10−5. After the
signals were calculated, the eigenvalues of each signal’s covariance matrix were estimated
by applying SVD to a matrix R, containing the samples of interference signal Sk in such
a way that Rm,n = Sm+n−1, m, n = 1, . . . , K/2. As a result, an array ξm, m = 1, . . . , K/2 of
eigenvalues was calculated for each v-th simulated interference signal.

2.3. Optimization of Neural Network Structure

Architectures and sizes of state-of-the-art neural networks differ significantly, with
the simplest NNs containing several neurons and the largest deep NNs having hundreds
of different layers. The number of neurons in layers also varies depending on a task. In
our case of estimating the number of signal components, two problem statements can be
used: classification and regression. In a classification task, the NN must be trained to
distinguish between the cases of different numbers of signal components; hence, it must
have Umax neurons in the output layer, with nonzero output of the i-th neuron indicating
the likelihood of the analyzed signal having i components (more than one neuron can have
nonzero output; hence, the maximal value must be found). In the regression task, there is
only one neuron in the output layer. The output numeric value of this neuron is an estimate
of the number of signal components U (which is not necessarily an integer and must be
rounded). Obviously, the problem statement as a regression is more convenient and much
more easily scalable, as full re-training is not required for an NN to learn to process signals
with a greater number of components.

NN training was performed using the Scikit-Learn library [44] with MLPRegressor
class. The input data consisted of the eigenvalues and an estimate of the additive noise
variance, which was performed by calculating the median level of an interference signal’s
FFT [38]. The output data was the number of signal components. The dataset was randomly
separated into training and test parts in the proportion of 80% to 20%. Since the optimal
structure of the NN cannot be predicted and must be found empirically, we trained several
NNs and compared their performance on the test dataset. As a compromise between the
network complexity and flexibility to learn complex relations, we chose a two-layer NN.
The number of neurons N1,2 in each hidden layer was varied from 10 to 500. ReLu, tanh
and sigmoid activation functions were tested. The accuracy of the model, introduced as
a percentage of samples with the correctly estimated number of signal components and
error RMS, found as the square root of the sum of the squares of differences between the
true and estimated numbers of signal components ERMS =

√
∑(Uest −Utrue)2 were used

as performance criteria. The NNs with sigmoid activation function demonstrated the best
performance, which are shown in Tables 1 and 2. The best values are marked with bold
text; the five best values are marked in green text. The whole process of NN training is
illustrated in a flowchart in Figure 1.
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Ini�al parameters: K, Umax, noise level range [�n min; �n max], 

amplitude range [Amin; Amax], chirp rate C

Parameters of simulated signals 

(Uv, Au,v, fu,v, �v)

Interference signals modelling 

according to eq. (3)

Neural network proper�es: 

number of layers N1, N2, 

ac�va�on func�on

Eigenvalues 

calcula�on

Neural network 

training

Training dataset

Test dataset

Neural network tes�ng, accuracy 

and error rms calcula�on

Op�mal NN 

parameters

Figure 1. Flowchart of NN training for number of interference components estimation.

Table 1. NN accuracy on test dataset for different numbers of neurons in first and second layer in
case of sigmoid activation function (higher values correspond to better performance).

N1
N2 10 20 50 100 200

10 0.66056 0.66122 0.65592 0.64462 0.62242

20 0.72226 0.72302 0.71278 0.70728 0.67426

50 0.7622 0.77714 0.77396 0.7468 0.7586

100 0.77166 0.77106 0.76774 0.7597 0.77108

200 0.7811 0.77122 0.77998 0.76176 0.77002

500 0.78042 0.77658 0.7787 0.77078 0.76868

Table 2. Error RMS of NN on test dataset for different numbers of neurons in first and second layer
in case of sigmoid activation function (lower values correspond to better performance).

N1
N2 10 20 50 100 200

10 0.73861 0.74021 0.75137 0.76056 0.78277

20 0.66295 0.68782 0.67841 0.69287 0.74647

50 0.61353 0.61228 0.61256 0.64156 0.64039

100 0.61283 0.62669 0.62815 0.61956 0.62739

200 0.60054 0.61849 0.60925 0.61417 0.61626

500 0.59843 0.60879 0.59085 0.61704 0.61519

It can be concluded from the results presented in the tables above that the optimal NN
structure incorporates 200 to 500 neurons in the first hidden layer and from 10 to 50 neurons
in the second hidden layer. It can be argued which one of the calculated metrics is more
important; however, since for several NN configurations both of the metrics are very close
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to their best values, we chose the NN with N1 = 200, N2 = 10, which has the simplest
structure among the top five in terms of both accuracy and error RMS.

The error histogram of this final NN model on test data is shown in Figure 2a. Please
note the counter-clockwise rotation of the plot, which is carried out for better alignment with
Figure 2b and will be explained below. The logarithmic scale of the horizontal axis is used
to better visualize the probabilities of relatively large errors (the difference between the NN
output and the true number of components is |δU| > 1). Figure 2b illustrates the general
relation between the NN error δU and interference signal SNR—large errors are much more
likely to occur when SNR is lower than 40 dB, while for larger SNR values, most of the
estimated values are correct with a relatively small fraction (11%) of small errors |δU| = 1.

Figure 2. Relation of error of number of estimated components with signal-to-noise ratio. Error
histogram of estimated number of components (a); two dimensional coincidence histogram of error
and signal-to-noise ratio (b); signal-to-noise ratio histogram (c).

2.4. Signal Demodulation Using MUSIC Algorithm

After the number of signal components is successfully estimated by the developed
ML model, optical path differences and phase increments of interference components
can be found using the MUSIC algorithm. At first, interference-components’ frequencies
can be estimated from the noise eigenspace of the signals’ covariance matrix by solving
the equation [25,27].

aT(z−1)ĜĜ∗a(z) = 0 (10)

with respect to z, where a(z) = [1; z−1; . . . ; z−K/2], z = exp(iω) and Ĝ is a matrix, whose
columns contain eigenvectors corresponding to noise eigenvalues (noise eigenspace);
T means matrix transpose and ∗ is a complex conjugate. The U first zu values (whose
absolute values are closest to unity) are further used to find for signal demodulation.
Consequently, the spatial frequencies of the interference components ωu are found as
arguments of complex values zu. In turn, the initial phases of the interference components
ϕu are found equivalently to a synchronous detection by calculating correlation coefficients
between the interference signal Sk and complex exponents of form exp(iωuk), and further
calculating the arguments of these complex-valued correlation coefficients.
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When the signal of a form of Equation (1) is treated as a function of wavelength λ,
its oscillation frequency ω and initial phase ϕ are related to the OPD according to the
following equations

ω = −2π OPD
λ2

0
, (11)

ϕ =
2π OPD

λ0
− 2πp, (12)

where p is an integer.
Hence, in a similar manner to the work [32], interference-components’ OPDs can be

further found as

OPDu =
λ0

2
· [round(ωuλ0/π − ϕu/π) + ϕu/π], (13)

where round is the rounding operation towards the nearest representative number. The
whole process of interference-signal demodulation with the MUSIC algorithm is illustrated
in a flowchart in Figure 3.

Input interference signals

Addi�ve noise 

level es�ma�on

Eigenvalues �m 

calcula�on

Number of components 

Uv es�ma�on with a NN

Calcula�on of interference 

components’ frequencies �m

Calcula�on of interference 

components’ OPDs

Eigenvectors Ĝ 

calcula�on

Calcula�on of interference 

components’ phases �m

MUSIC 

algorithm

Figure 3. Flowchart of interference-signal demodulation.

Equation (13) allows one to find absolute values of interference-components’ OPDs. It
should be noted that the values obtained by Equation (13) correspond to the OPD value
exactly only if there is no chromatic dispersion. This fact can be observed from Equation (6)
and was extensively reported in literature [45,46].

3. Application of the ML-Aided MUSIC Demodulation Approach to Experimental
Signal Processing
3.1. Experimental Measurement of Strain and Curvature Using SMS-Based Sensor

The task of multi-parameter measurements using optical fiber sensors is quite im-
portant for practical applications and has been discussed in a number of papers [13–15].
SMS-based sensors are ones of the most actively explored for this task due to several poten-
tially independent measurands (OPDs or phase shifts of different interference components).
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In this section, we will describe the application of an SMS structure for the simultaneous
measurement of strain and curvature and will compare the results of FFT-based processing
and MUSIC+ML processing.

The investigated SMS structure was fabricated using a standard fiber splicer Fujicura
FCM 45M. The multimode section was a 32 cm long step-index Thorlabs FG050LGA fiber.
At both ends, it was spliced to SMF-28 patchcords. The interrogation of the SMS sensor was
performed by the NI PXIe 4844 optical sensor interrogator with a tunable laser operating
in the [1.51, 1.59] µm spectral range. This device is intended for the interrogation of FBG
and EFPI sensors, for which the reflective spectral characteristics are typically processed,
while, in our case, transmissive spectral characteristics are to be processed. Therefore, we
used a circulator to direct the light transmitted through the interferometer back to the
interrogator, as shown schematically in Figure 4a.

Interrogator

S
M

F

MMF

S
M

F

SMS

(a)

(b)

MMF
MMF

pull

Fiber 

strain

SMF

SMF

Figure 4. Schematic view of experimental setup (a) and a photograph of the experimental arrange-
ment, used to produce a controlled simultaneous strain and bend of the sensing fiber section (b).

In order to subject the sensing MM section of the interferometer to simultaneous
strain and curvature, we used a special experimental setup, shown in Figure 4b, in order
to apply calibrated strain and bending to two distinct parts of MMF. The left part of the
MMF section was subject to strain, while the right part was bent. The form of the resulting
interference depends on the integral intermode phase delays, which are independent of
the perturbation place. Therefore, such a setup produces conditions equivalent to both
perturbations applied simultaneously to a single sensing section. Such conditions are valid
while the perturbations are relatively small, yet the simplicity of the experimental setup is
a great advantage in such a provisional study.

The middle of a multimode fiber was fixed by a stationary clamp; SMF on the left
side was attached to a roller, to which different loads were applied, causing strain on the
left part of MMF; SMF on the right side was attached to a translation stage, which was
shifted to the left to increase the bend. In case of the small slack of the fiber, the bend can be
assumed to be close to circular [14]. This relatively simple setup allowed to simultaneously
and independently control the strain and the curvature of the two parts of the MMF section.

Thanks to the ability to separately control two types of fiber perturbation, we measured
a set of experimental interference signals, corresponding to strain S variation from 0 to
0.144 mε (with a whole of seven uniformly spaced values) and bending curvature C ranging
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from 0.04 m−1 to 0.37 m−1 (with a whole of nine uniformly spaced values). For each pair
of strain and curvature values, 100 interference signals were measured, making a total
of 6300 measured signals. Examples of interference signals corresponding to S = 0 mε,
C = 0.04 m−1 and S = 0.144 mε, C = 0.37 m−1 are shown in Figure 5.

1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59

, m

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

I,
 m

W

S=0m , C=0.04m
_
1

S=0.144m , C=0.37m
_
1

Figure 5. Spectral interference signals of intermode interferometer in cases of different perturbations
applied to the sensing MM section.

In order to calibrate the sensor sensitivity to the perturbations and demonstrate the
possibility of successful demodulation, the FFT of the measured signals were calculated;
in addition, the interference-components’ frequencies and phases (and, consequently,
OPDs) were found using the MUSIC method. Signal subspace dimension estimation
methods included the proposed ML-based approach, with the neural network having
N1 = 200 and N2 = 10 neurons (further referred to as wide NN), as well as NN with lower
accuracy, having N1 = 10 and N2 = 10 neurons (further referred to as narrow NN). Akaike
information criterion (AIC) and minimal description length (MDL) criterion were also used
for the better comparison of different methods. The Fourier transform modulus of the
interference signal as well as stem plots, corresponding to estimated OPDs of interference
components, are shown in Figure 6. In order to better distinguish the components found by
wide and narrow neural networks, the amplitudes of the components found by narrow NN
are all shown equal to 0.01. The advantage of the ML-based approach over AIC and MDL
can be clearly seen in Figure 6, as it allowed the identification of most of the prominent
interference components. As could be expected, the narrow NN, which demonstrated
lower accuracy on simulated data, also performed worse on experimental data.
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Figure 6. Fourier transform of the spectral interference signal shown in Figure 5 (with perturbations
S = 0 mε, C = 0.04 m−1) with interference components identified using the proposed ML approach
and both AIC and MDL criteria.
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As can be seen in Figure 6, the narrow NN turned out to be underestimating the
number of interference components, leading to some errors in estimated frequencies and
OPDs. Only for those components, which do not have closely situated neighbors (370 µm,
580 µm, 900 µm and 1100 µm), were frequency estimates under assumption of a different
number of interference components the same, which proves the importance of accurate
number of components estimation.

As can be seen from Equation (13), interference-component’s frequency provides only
a rough estimate of OPD, while finer precision can be gained from the phase. Therefore,
phases of the most prominent interference components, listed in Table 3, measured using
FFT and MUSIC methods (in case of both wide and narrow NNs), were considered for
the further analysis. Experimental dependencies ϕ(C, S) were approximated by plane
equations using the least-squares approach. The linearity of the demodulation results was
evaluated by the adjusted R2 values of the fits, summarized in Table 3. The highest R2

values are marked with bold font; it can be seen that the use of the MUSIC approach to
demodulate the signals of the intermode interferometer allows to achieve higher response
linearity. Another point, important for multiparameter sensing, is the ability to actually
calculate the perturbations, which are to be measured from the phases or other parameters
of the interference signal. From this point of view, it is important that different interference
components have different sensitivities to different perturbations. It can be seen that the
phases of interference components, demodulated by the MUSIC method, offer broader
ranges of sensitivities (sensitivities with the greatest spans, corresponding to components
with high linearity, are marked with bold font). In order to find the inverse relations (bend
and curvature as functions of phases), constant terms ϕ0 of the plane equations are also
required, which were ϕ0 MW 200µm = 1.043 and ϕ0 MW 1000µm = −0.826 for wide NN.

For narrow NN, the best pair of components for strain and curvature demodulation
is 200 µm and 1100 µm, for which the sensitivities can be found in Table 3 and constant
terms are ϕ0 MN 200µm = 0.284 and ϕ0 MN 1100µm = −1.066. In case of FFT demodulation,
the best pair of interference components are the ones with OPDs 100 µm and 1600 µm
(their sensitivities are marked with italics), constant terms are ϕ0 FFT 100µm = 0.815 and
ϕ0 FFT 1600µm = 1.411.

Table 3. Linearity of demodulated parameters of different interference components with respect to
strain and bending of SMS structure.

Component OPD, µm 100 200 370 900 1000 1100 1600 1800

R2
FFT 0.995 0.979 0.98 0.971 0.968 0.988 0.993 0.968

∂ϕFFT/∂C, rad/m−1 4.1 5.4 1.5 0.32 0.26 6.8 1.2 8.1

∂ϕFFT/∂S, rad/mε –2.3 3 1.7 4.3 7.4 6.9 5.1 8.2

R2
MW 0.974 0.986 0.927 0.924 0.974 0.997 0.994 0.995

∂ϕMW /∂C, rad/m−1 5.5 6 9.3 0.9 –6.7 6.4 0.29 6.5

∂ϕMW /∂S, rad/mε –4.7 2.7 13.1 3.8 9.4 8.1 8 10.5

R2
MN 0.969 0.982 0.927 0.924 – 0.997 – –

∂ϕMN/∂C, rad/m−1 5.4 5.7 9.3 0.9 – 6.4 – –

∂ϕMN/∂S, rad/mε –4.5 2.2 13.1 3.8 – 8.1 – –

As a result, strain and curvature can be found from the MUSIC-demodulated phases
of interference components with OPDs 200 µm and 1000 µm (when wide NN was used for
the number of signal components estimation) using the following matrix equation.[

C
S

]
=

[
0.1886 −0.0823
−0.0562 0.2453

]
×
[

ϕMW 200µm
ϕMW 1000µm

]
+

[
−0.346
0.492

]
. (14)
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In the case of the number of signal components estimation with narrow NN, strain and
curvature can be found according to the following matrix equation[

C
S

]
=

[
0.2532 −0.0692
−0.283 0.2387

]
×
[

ϕMN 200µm
ϕMN 1100µm

]
+

[
−0.3471

0.55

]
. (15)

In the same way, strain and curvature can be found from FFT-demodulated phases of
interference components with OPDs 100 µm and 1600 µm using the following matrix equation[

C
S

]
=

[
0.215 0.0941
−0.0521 0.173

]
×
[

ϕFFT 100µm
ϕFFT 1600µm

]
+

[
−0.306
−0.2003

]
. (16)

All fits demonstrated high linearity, with R2 values of 0.987 for FFT demodulation,
0.99 for MUSIC-based demodulation with narrow NN and 0.994 for MUSIC-based demod-
ulation with wide NN.

3.2. Signal Processing of a SMS-Based Pulse-Wave Sensor

Pulse-wave (PW) sensing is an important diagnostic tool, allowing to assess the state of
the cardiovascular system and diagnose such diseases as hypertension, systolic heart failure,
diabetes mellitus and its complications [47,48]. Optical fiber sensors offer a great solution
for measuring pulse-wave signal due to their high sensitivity, multiplexing capabilities,
lacking of electric currents at the sensing element and extremely small footprint, allowing
their integration into smart textiles [49] and providing minimal distortion of the measured
PW signal. Application of SMS sensors to PW monitoring is extremely attractive thanks to
their flexibility compared to Fabry–Perot sensors and higher signal-to-noise ratio (SNR)
than fiber Bragg grating sensors [50].

The investigated SMS structure was fabricated using a standard fiber splicer Fujicura
FCM 45M. The MM section consisted of a 5 cm long step-index Thorlabs FG050LGA fiber.
At both ends, it was spliced to SMF-28 patchcords using a Fujicura FCM 45M fiber splicer.
A short length of the sensing section was chosen so that parasitic mechanical perturbations
minimally affect the demodulated PW signal. However, this made the signal-processing
task more challenging due to the small width of the interference signal spectrum and
closely adjacent interference components. Comparing with the interferometer, studied in
Section 3.1, OPDs of all interference components became 6.5 times smaller (since the same
MMF and SMFs were used in the interferometer, it can be safely assumed that the structure
of the interference signal will be the same); for instance, the interference component with
OPD 1800 µm will have an OPD of about 280 µm.

Optical spectra were measured using an interrogation setup, consisting of a Ibsen I-
MON USB512 spectrometer (spectrum measurement interval was [1.51; 1.595] µm, variable
integration time from 10 µs to 100 µs, spectra acquisition rate up to 3 kHz) and Exalos
EXS210066-01 SLED (output power up to 5 mW, central wavelength 1.55 µm,−6 dB spectral
width 160 nm, flat-top spectrum shape, the most uniform part coincides with the spec-
trometer measurement range) installed on an Exalos EBD5000 driver board. A schematic
illustration of the sensing setup is shown in Figure 7.

An example of a measured interference signal is shown in Figure 8a. Its Fourier
transform and the interference components, estimated by the MUSIC method with different
criteria of signal subspace dimension (developed ML-based approach, AIC and MDL) are
shown in Figure 8b. It can be seen that despite the smaller separation of interference com-
ponents’ OPDs in a short SMS sensor, the proposed ML-based criterion leads to the highly
accurate estimation of most of the interference components, in contrast to MDL and AIC
criteria, which estimated only one signal interference component in the experimental signal.
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Figure 7. Schematic view of experimental setup.
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Figure 8. Example of a spectral-interference signal measured in the intermode interferometer with
5 cm sensing MMF section (a) and its Fourier transform with interference components identified
using the proposed ML approach and both AIC and MDL criteria (b).

The SMS sensor was applied to noninvasively measure the PW signal at the radial
artery. Two healthy volunteers (a man, 33 years old and a woman, 21 years old) participated
in the study. Both participants were comprehensively informed about the experimental
procedure and gave written consent before the experiment, which was conducted according
to the Declaration of Helsinki and approved by the institutional ethics committee. PW
signal was found as a phase of the interference component with the greatest amplitude.
It was calculated using a conventional FFT-based demodulation algorithm, used in [50],
and with a MUSIC-based algorithm as described in Section 2.4, for two cases of wide
and narrow NNs being used for the number of interference components estimation. The
resulting PW signals are compared in Figure 9.

It can be seen that the shape of the signal demodulated using the FFT-based algorithm
is significantly distorted, as discovered in [50]; however, the signal demodulated with the
MUSIC-based algorithm, when wide NN was used to estimate the number of interference
components, corresponds very well to the typical PW signal shape. The PW signal feature-
extraction algorithm, proposed in [51] and improved in [52], was applied to both signals
to extract systolic peaks and wave feet. For the FFT-based algorithm, the obtained results
were quite inaccurate, as could be anticipated, and are not shown in Figure 9. On the other
hand, as can be seen in Figure 9, signal features were successfully extracted from the signal
demodulated using the MUSIC-based algorithms. However, due to slight distortion of the
signal, for which the number of interference components was estimated with narrow NN,
wave feet were found inaccurately.

Absolute values of interference components’ OPDs can be also found using the MUSIC-
based algorithm and Equation (13). However, the signal shape is the same as that of the
phase signal shown in Figure 9 with an ochre curve, so it is not presented here.
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Figure 9. Fragments of PW signals demodulated using conventional FFT-based algorithm and the
proposed MUSIC-based algorithm. For the signals demodulated using MUSIC-based algorithm (with
wide and narrow NNs used for number of interference components estimation) systolic peaks and
wave feet are also shown.

4. Conclusions

In the paper, a novel approach to processing signals of optical fiber intermode inter-
ferometer was proposed. The approach is based on the MUSIC method, widely used in
radar signal processing. To adopt the MUSIC method to intermode interference signals,
we proposed a signal subspace dimension estimation method, based on an artificial neural
network. It was shown that the proposed approach is more efficient for multi-parameter
sensing than simpler FFT-based interrogation.

By applying the proposed MUSIC and ML-based signal-processing approach to the de-
modulation of a pulse-wave sensor composed by a short intermode interferometer, we were
able to obtain a linearized response from the sensor as compared with traditional FFT-based
demodulation. Further work may include a more detailed analysis of the shape change
in the pulse-wave sensor and its optimization. The proposed signal-processing approach
might also be useful for improving the demodulation accuracy for other multicomponent
signals, such as optical coherence tomography and multiplexed interferometers.
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