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Abstract: This paper addresses the channel impairment to enhance the system performance of visible
light communication (VLC). Inspired by the model-solving procedure in the conventional equalizer,
the channel impairment compensation is formulated as a spatial memory pattern prediction problem,
then we propose efficient deep-learning (DL)-based nonlinear post-equalization, combining the
Volterra-aided convolutional neural network (CNN) and long-short term memory (LSTM) neural
network, to mitigate the system nonlinearity and then recover the original transmitted signal from
the distorted one at the receiver end. The Volterra structure is employed to construct a spatial pattern
that can be easily interpreted by the proposed scheme. Then, we take advantage of the CNN to
extract the implicit feature of channel impairments and utilize the LSTM to predict the memory
sequence. Results demonstrate that the proposed scheme can provide a fairly fast convergence
during the training stage and can effectively mitigate the overall nonlinearity of the system at testing.
Furthermore, it can recover the original signal accurately and exhibits an excellent bit error rate
performance as compared with the conventional equalizer, demonstrating the prospect and validity
of this methodology for channel impairment compensation.

Keywords: deep learning; nonlinearity impairment; visible light communication; Volterra feature

1. Introduction

In order to tackle the explosive escalation of wireless data traffic and the emerging
application services, the Sixth-Generation (6G) communication research is widely assumed
to shift towards the higher-frequency spectrum since the current radio frequency (RF)
band is becoming more and more crowded [1,2]. The millimeter-wave and terahertz
spectrum can be widely developed to fulfill this demand; however, the corresponding
equipment has an extremely high cost. Visible light communication (VLC) is expected to
provide a potential supplement for 6G since it relies on the unlicensed spectrum spanning
from 400 to 800 THz and has the benefits of electromagnetic interference resistance, green
technology, safety, and low cost. In addition, VLC can be equipped with common lighting
systems to allow simultaneous illumination and communication. During the last decade,
various research works have been conducted to establish the theoretical foundation and
application paradigm for high-speed VLC systems [3,4].

The spectral efficiency of VLC can be improved with the help of high-order modulation
schemes [5,6]. Nevertheless, the special undesirable nonlinearities introduced by the electro-
optical and photoelectric conversions will contaminate the useful signal [7], and the optical
diffuse channel will also bring in an inevitable inter-symbol interference (ISI). The overall
channel impairments should be relieved since they indeed significantly impair the signal
performance and hinder the high-speed VLC transmission. Traditional schemes and
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algorithms can generally estimate the transfer function of the communication channel and
remove the channel impairments by constructing nonlinear post-equalization (NPE) [7,8].
However, these methodologies still have a performance difference from the ideal case and
would confront certain restrictions and requirements for different application scenarios.

The deep learning (DL) has shown great success in pattern identification, image recog-
nition, and data mining. It has been already applied to physical layer communication
due to its strong ability in learn the unknown or complex communication block [9,10],
especially for modeling nonlinear phenomena. With the development of advanced net-
work structures and optimized training algorithms, DL-based NPE shows unparalleled
superiority compared to traditional approaches in channel impairment compensation. A
comprehensive introduction and overview of DL-based methods can be found in [11–25].
In [12–14], the deep neural network (DNN) was employed to learn the channel character-
istics and demodulate the output signals directly. In [15,16], the Gaussian-kernel-aided
DNN networks were proposed as the pre-equalization and post-equalization, respectively,
to mitigate the nonlinear degradation in high-order modulated VLC systems. In [17],
a low-complexity memory-polynomial-aided neural network was created to replace the
traditional post-equalization filters of carrierless amplitude and phase (CAP) modulation.
These schemes utilizing the DNN can achieve the mitigation of the linear and nonlinear
distortion of the VLC channel and exhibit better bit error rate (BER) performance than
some existing methods. However, the learning ability of these DL models is limited in
high-speed VLC since the system is mainly restricted by the inherent memory nonlinearity
of the light-emitting diode (LED), resulting in a slow convergence speed and relatively
poor generalization of the DNN.

For a nonlinear VLC channel with memory, the recurrent neural network (RNN) with
long short-term memory (LSTM) cells seems to be a better choice for memory sequence
prediction, because the long-term memory parameters can store the channel characteristics.
In [18], a memory-controlled LSTM equalizer was proposed to compensate both the linear
and nonlinear distortions. In [19], an LSTM network was proposed to handle with the
nonlinear distortions for a pulse amplitude modulation (PAM) system with the intensity
modulation and direct detection (IM/DD) link over 100 km standard single-mode fiber.
These proposed LSTM models outperform the conventional model-solving-based equal-
izers; nevertheless, the output equalization accuracy does not possess a good robustness
to the noise variation, leading to the degradation of learning efficiency. In order to learn
more suitable channel features, the convolutional neural network (CNN) can be used for
memory sequence prediction from raw channel outputs [20], since a function could be
learned that maps a sequence of past observations as the input to an output observation.
In [21], an equalization scheme using the CNN was proposed in an orthogonal-frequency-
division-multiplexing (OFDM)-based VLC system for direct equalization. In [22], a novel
blind algorithm based on the CNN was introduced to jointly perform equalization and soft
demapping for M-ary quadrature amplitude modulation (M-QAM). The results showed
that the proposed CNN schemes outperform the existing equalization algorithms and can
maintain an excellent BER performance in the linear and nonlinear channel. However,
for dynamic and deep memory scenarios, it obtains the optimal equalization performance
at the cost of computational complexity, because the dimension of the input spatial infor-
mation increases sharply and the convolution layer has to undertake tremendous compu-
tational pressure, resulting in the increase of network complexity [23]. In order to shrink
the network complexity, a specific architecture combination was proposed to distribute
the learning task [24,25]. However, the original input data hardly experienced effective
transformation, resulting in a large amount of time cost in the training process to extract
the implicit features contained in the samples. Hence, the trade-off among computational
complexity, training times, robustness, and generalization is one of the critical challenges
and should be further developed in practical VLC applications. Besides, it is also necessary
to consider how to consolidate the virgin data into alternate forms by changing the value,
structure, or format so that the data may be easily parsed by the machine.
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In this paper, inspired by the approaches in [15–25], the channel impairment com-
pensation is formulated as a spatial memory pattern prediction problem, and an efficient
impairment compensation scheme in terms of a model-driven-based CNN-LSTM is pro-
posed to undo the memory nonlinearity of VLC. The underlying idea is that the Volterra
structure is applied to pre-emphasize the original sequence and the appropriate pattern is
formed as the spatial input accordingly. Then, a hybrid CNN and LSTM neural network is
elaborately designed to learn the implicit feature of nonlinearity and predict the memory se-
quence directly, which can speed up the convergence process and improve the equalization
accuracy. The main contribution of this work can be summarized as follows:

• The structure information of the Volterra model is involved in the proposed DL
equalizer to pre-emphasize the virgin data, which is favorable for the memory feature
learning. Therefore, it can relax the learning pressure and reduce the structural
complexity and training time.

• Based on the traditional model-solving procedure, the channel impairment compensa-
tion is formulated as a spatial memory pattern prediction problem, and the proposed
DL model is ingeniously used to achieve the accurate prediction.

• Both the memory nonlinearity of the LED and the dispersive effect of the optical
channel in a VLC system are simultaneously considered during the training stage.

• The proposed scheme can still provide an excellent BER performance under the
mismatched conditions of training and testing, showing a good robustness.

Numerical simulations in terms of the learning and generalization show that the
proposed scheme is able to predict the original transmitted signal and compensate the
impairments with high accuracy and resolution. In addition, it can converge relatively fast
to achieve a better normalized-mean-squared error (NMSE), which confirms its superiority
to some existing methods.

The remainder of this paper is organized as follows. In Section 2, the overall chan-
nel nonlinearity is analyzed and the impairment compensation is formulated as a spatial
memory pattern prediction problem. The corresponding network architecture and training
specification are illustrated in Section 3. Simulation results and discussions are demon-
strated in Section 4, and conclusions are given in Section 5.

Notations: Matrices and column vectors are denoted by upper and lower boldface
letters, respectively. x(n) denotes the n-th element of x. The set of real numbers is denoted
by R. In addition, ∗, ⊗, (·)T , and | · | are employed to represent the convolution, the Kro-
necker product, the transpose, and the absolute operators, respectively. Let ‖ · ‖p denote
the `p-norm and ã be an estimation of the parameter of interest a. N

(
µ, σ2) is the Gaussian

distribution with mean µ and variance σ2.

2. System Nonlinearity

A typical VLC system employing an IM/DD structure is illustrated in Figure 1.
The end-to-end VLC channel includes an electrical modulator, digital-to-analog converter
(DAC), bias tee, LED, optical transmission channel, analog-to-digital converter (ADC),
and electrical demodulator. Numerous modules will generate nonlinearities. However,
the overall nonlinearity of the VLC channel is mainly introduced by both the LED and
multipath propagation of the optical link. In addition, the memory nonlinearity is more
significant as the signal bandwidth is increased. The LED behaviors are usually described
by the Wiener model, which is a cascade of linear and nonlinear blocks. Let f0 denote the
3 dB cut-off frequency, then the memory nonlinearity of the LED can be expressed as

h1(n) = exp(−2πn f0). (1)

The memoryless nonlinearity block can be modeled by

f1(x(n)) =
Q

∑
q=0

aqxq(n), (2)
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where x(n) is input real-valued transmitting signal, aq is the coefficient, and Q is the
polynomial order. The channel impulse response (CIR) of the multipath propagation effect
in VLC can be expressed by the following:

h2(n) =
Nr

∑
i=1

Piδ(n− τi), (3)

where Pi is the optical power, τi is the propagation time of the i-th light ray, and Nr is the
number of received rays at the photodetector (PD), respectively. In fact, the PD also exhibits
nonlinear behavior as the optical intensity of the injected signal is very large, leading to
the saturation of the PD. However, the optical intensity can be lowered with the help of
an optical attenuator. Therefore, the PD can be regarded as a linear component, which is
always modeled by the Dirac function. Note that the quantification effect in the ADC is
not considered here. After optical-to-electrical conversion in the PD, the received electrical
signal can be expressed as

y(n)=RPD f1[(x(n) + IDC) ∗ h1(n)] ∗ h2(n) + ε(n), (4)

where RPD denotes the responsivity of the PD, IDC is the DC bias, and ε(n) is the Gaussian
noise following N

(
0, σ2

ε

)
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Figure 1. Block diagram of VLC system with an IM/DD structure.

At the receiver, y(n) is fed into the Volterra-based NPE. Then, the corresponding
outputs can be expressed as

x̃(n) = h0 +
L−1

∑
k1=0

h1(k1)y(n− k1) +
L−1

∑
k1=0

L−1

∑
k2=0

h2(k1, k2)
2

∏
i=1

y(n− ki)

+ · · ·+
L−1

∑
k1=0
· · ·

L−1

∑
kP=0

hP(k1, · · · , kP)
P

∏
i=1

y(n− ki) + v(n)

=
P

∑
p=0

L−1

∑
k1=0
· · ·

L−1

∑
kp=0

hp
(
k1, · · · , kp

) p

∏
i=1

y(n− ki) + v(n),

(5)

where L denotes the memory length, P is the nonlinear order, hp
(
k1, · · · , kp

)
is the p-th

order of the Volterra kernels, and v(n) is the modeling error. Let

y1(n)=[y(n), · · · , y(n− L + 1)]T , (6)

represent the truncated samples with length L, which contains both the current and the
past channel outputs.

As seen from (5), the calculation of x̃(n) is mainly related to y1(n) and hp
(
k1, · · · , kp

)
.

As we known, the main goal of the NPE is to produce the desired x̃(n) from y1(n) to
minimize the error with respect to x(n), which indicates that the useful information of x̃(n)
is involved in y1(n). In other words, we can infer that x̃(n) can be predicted from y1(n)
once all the hp

(
k1, · · · , kp

)
are well obtained. Therefore, from the perspective of learning

and classification, both the hp
(
k1, · · · , kp

)
and x̃(n) can be learned from the training sample
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set {x(n), y1(n)}, and the implement of the NPE can be formulated as a prediction problem,
where the DL approach is very appropriate.

3. The Proposed Scheme

As we know, LSTM is more powerful in dealing with the memory sequences’ pre-
diction problem since it could handle the long-term dependencies and store the memory
parameters, which are related to the channel characteristics. As regards the VLC sys-
tem, y(n) experiences the complex optical-to-electrical and electrical-to-optical conversion,
and the complicated overall channel nonlinearity involved in y(n) is very implicit and not
very intuitive, which will greatly increase the computational complexity and learning diffi-
culty. Furthermore, it leads to a slow convergence speed and the decrease of equalization
performance. In order to improve the learning ability and accelerate the convergence speed,
we therefore propose a novel impairment compensation scheme, which utilizes the Volterra
structure to construct the spatial features and feed them into the CNN-LSTM network to
extract the characteristic of memory nonlinearity. In the following analysis, we assume that
the system synchronization has been already achieved at the receiver.

3.1. Input Preprocessing Based on Volterra Feature

The composition and structure of the virgin input data can directly affect the perfor-
mance of deep learning. Due to the complexity of the VLC channel, it is very necessary to
transform or encode y(n) so that it may be easily parsed by the machine. The main agenda
for the proposed model to be accurate and precise in its predictions is that the algorithm
should be able to easily interpret the data’s features. As demonstrated in (5), for p ≥ 2, x̃(n)
can be considered as the sum of the response for each hp

(
k1, · · · , kp

)
and yp(n), shown as

x̃(n) =
P

∑
p=0

yT
p (n)hp + v(n), (7)

where yp(n) = yp−1(n)⊗ y1(n), and hp denotes the corresponding kernel coefficients for

hp
(
k1, · · · , kp

)
. Let y(n) =

[
1, yT

1 (n), · · · , yT
P(n)

]T . (7) can be further formed as

x̃(n) = yT(n)h + v(n), (8)

where h =
[
hT

0 , hT
1 , · · · , hT

P
]T is the Volterra kernel vector and hp contains the corre-

sponding kernel coefficients hp
(
k1, · · · , kp

)
, which are arranged sequentially for the index{

k1, · · · , kp
}

.
Therefore, y(n) should be firstly stacked for the last L points shown in (6) and then

transformed into the sequence y(n) by using the above approach based on the Volterra
structure feature. In order to shrink the computational complexity and speed up the learn-
ing progress, the sequence y(n) is truncated with a 2m length. Then, the first appropriate
pattern can be formed by the following way, shown as

Y1=


y(1) y(2) · · · y(m)
y(2) y(3) · · · y(m + 1)

...
... · · ·

...
y(m) y(m + 1) · · · y(2m− 1)

. (9)

With the time sliding window moving forward one step, the second pattern can be
generated by

Y2=


y(2) y(3) · · · y(m + 1)
y(3) y(4) · · · y(m + 2)

...
... · · ·

...
y(m + 1) y(m + 2) · · · y(2m)

. (10)
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Until the last N-th points, multiple patterns Y can be obtained subsequently, which
will enter the neural network as the features for the input layer. Note that the step of the
sliding window was set as 1 in this paper, and m also denotes the time step used in the
following DL model.

3.2. Network Structure

The architecture of the proposed model is depicted in Figure 2, which is composed by
subnet S1 with L1 convolution layers, subnet S2 with L2 LSTM layers, and subnet S3 with
L3 dense layers.
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Figure 2. Schematic of the proposed DL scheme with the Volterra spatial feature.

The samples Y ∈ R(N−2m+2)×m×m are then fed into S1 for feature extraction. The struc-
ture of S1 is composed of a convolution layer, pooling layer, flatten layer, and dense layer.
The convolution layer employs a series of two-dimensional convolution filters (2D-Conv)
to Y , so as to extract different feature maps of received signals. Let Kl and Cl denote the
size of the convolutional kernel and the number of filters of the l-th convolutional layer,
respectively. For simplicity, the stride was fixed to 1, and the Relu function and the same
padding were employed in 2D-Conv. After the convolution calculation, the max-pooling
layer is used to extract the invariant features with the non-linear downsampling, which
will eliminate the non-maximal values. The same signal processing is implemented in the
next 2D-Conv and max-pooling layer. After that, the flatten layer is employed to reshape
the data size, and then, the dense layer is linked behind accordingly.

The CNN outputs should be firstly transformed as a three-dimensional vector
Y1 ∈ R(N−2m+2)×m×DS2

1 and fed into S2, where DS2
1 denotes the cell number of the first

layer of S2. The structure of S2 is made up by cascaded sub-layer blocks composed by
multiple LSTM cells. In addition, different amounts of LSTM cells can be deployed in
different sub-layers. The internal structure of a single LSTM cell, as shown in Figure 2,
contains three Sigmoid gates in terms of the forget gate, input gate, and output gate. These
gates can selectively influence the model state at each time step. The forget gate is also the
core of a single LSTM cell, since it determines the information that should be retained or
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discarded according to the current input yt and the previous output Ht−1. The output of
forget gate can be expressed as

ft = σ
(

W f · [yt, Ht−1] + b f

)
, (11)

where σ is the Sigmoid function and W f and b f represent the parameter matrix and bias
matrix of the forget gate, respectively. After forgetting part of the previous state, the input
gate picks up some new information and then adds it into the former state Ct−1. Therefore,
the new cell state is formed as

Ct = ftCt−1 + itzt, (12)

where zt denotes the temporary cell state and it is the output of the input gate. Furthermore,
the expression of zt is given as

zt = tanh(Wz · [yt, Ht−1] + bz), (13)

and the output it can be expressed as

it = σ(Wi · [yt, Ht−1] + bi), (14)

where Wz, Wi, bz, and bi denote the parameter matrix and bias matrix, respectively.
Therefore, the value ft and it between 0 and 1 also indicates the proportion of the important
information in Ct−1 and zt, thereby determining which information is to be updated. Then,
the output of the LSTM cell can be calculated by

Ht = tanh(Ct)σ(Wo · [yt, Ht−1] + bo). (15)

As a result, the outputs of this layer are fed into the corresponding LSTM cell of the
next layer. However, as for the last layer, only the Hm at the last time step is selected

and then composed as the final output HL ∈ R(N−2m+2)×DS2
L2 , where DS2

L2
denotes the cell

number of the last layer in S2. In this case, HL should be transformed as a column vector
to be fed into the dense net S3 to refine the output results. Note that the linear activation
function is deployed in S3 without normalization. Finally, the equalized x̃ ∈ R(2N−2m+2)

can be directly obtained at the output of S3, and the overall VLC nonlinearity will be
efficiently compensated by using the proposed scheme.

3.3. Complexity

For the computational complexity, it is worth noting that the calculation of S1 and S2
is dominant in each time step. LetMl be the spatial size of the output feature map in the
l-th convolutional layer, which can be calculate by

Ml=Il −Kl + 2Pl + 1, (16)

where Il is the input matrix size and Pl is the padding length. Furthermore, we define the
cell number of each layer in S2 as equal to DS2

l . Accordingly, the overall complexity of the
proposed model per time step can be approximately expressed as

Ξ ∝ O
(
L1

∑
l=1

(
K2

l ClCl−1 +M2
l Cl

)
+
L2

∑
l=1

(
4mDS2

l + 4
(

DS2
l

)2
))

. (17)

3.4. Training Strategy

The proposed scheme was trained by viewing the VLC channel as a black box. Fortu-
nately, researchers have developed several reference channel models for indoor environ-
ments for VLC [26]. Therefore, the training data can be easily obtained by simulations [12].
As for collecting the training set, the receiving plane is divided into several grid units
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with equidistant spacing used as potential locations for the PD. After VLC transmission
and optical-to-electrical conversion, the received signals are collected under different PD
locations. With the skillful preprocessing of the received signal, every spatial pattern and
one sample of the transmitted signals are combined as the training data. Practically, we
should collect a diverse and abundant training set, including the potential PD locations,
to enhance the parameters learning ability of the proposed scheme.

The direct-current-biased optical (DCO)-OFDM, containing in total 512 sub-carriers
with 16-QAM constellation mapping, is adopted as the training symbol, and only five
symbols are randomly generated in each training epoch. Moreover, the NMSE between the
raw x and the equalized x̃ is employed as the training loss function, demonstrated by

loss =
∑ ‖x− x̃‖2

2

∑ ‖x‖2
2

. (18)

Note that the DC gain is removed from the training set so that the training loss of
the proposed scheme can be fairly evaluated. Furthermore, the training procedure was
implemented using TensorFlow on a work station running with a graphics processing unit
(GPU) of NVIDIA GeForce 2080Ti; the adaptive moment estimation (Adam) was adopted
as the optimizer, and the learning rate was fixed to 0.0001. As in the testing stage, only
several special links were adopted to evaluate the system performance for the simplicity of
the demonstration.

4. Simulation Results

Simulations were conducted to evaluate the performance of the proposed scheme for
channel nonlinearity compensation. The parameter of the IM/DD channel follows the case
shown in [7]. As for the network architecture, the convolution block in S1 employs only
one convolution layer and one pooling layer, in which both the pooling size and stride
step were set as 2. The S2 involves two LSTM layer with the cell size of (128, 256). The S3
employs one dense layer with the neuron size of 50. It is noteworthy that the amount of
filters, in terms of Cl in S1, should be set equal to the time step m in S2 based on empirical
trials. In addition, the testing set should be chosen different from that for training.

4.1. Convergence Performance

As the time step m was fixed to 40 and the kernel size K was three, the training cost of
the proposed scheme is demonstrated in Figure 3, where the training signal-to-noise ratio
(SNR) λ varies from 30 to 60 dB. As the results show, the loss curves with different λ tend to
be stable gradually as the training epoch increases. The average final loss of the proposed
scheme for λ = 40, 50 and 60 dB is around −26.5 dB. In addition, it can be seen from the
figure that the proposed scheme trained under the samples with a large λ converges faster
than the one for a small λ, e.g., the case with λ = 40 dB costs about 2500 epochs to achieve
convergence, whereas it would use 1800 epochs for the one of λ = 50 dB. In general,
the quality of training samples indeed affects the learning ability of a customized DL model
to a certain extent; however, it is not dominant in the training process.

As the time step m was fixed to 30 and the kernel size K varied from 2 to 5, the corre-
sponding NMSE loss is presented in Figure 4. All of the curves tend to be stable gradually
with the training epoch increased and eventually achieve an acceptable training perfor-
mance, e.g., the final loss for K = 5 remains around −27.5 dB, and that for K = 4 is
−28.2 dB, which indicates successful network training since they are favorable for a QAM
symbol recovery. We can also observe that the kernel size indeed had a significant effect
on the convergence performance. In fact, as K increased, the larger the receptive field
obtained during the training, resulting in the extracted features being more global and
discriminative. However, this will bring about a sharp increase in the amount of parameter
calculation. Nevertheless, the small value of K will lead to insufficient feature learning,
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which is unfavorable for network convergence. However, the model trained under K = 4
converged faster and only cost about 1700 epochs to achieve an NMSE of less than 27 dB.
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Figure 3. The cost performance comparison under different training SNRs.
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Figure 4. The cost performance comparison under different kernel sizes.

Figure 5 shows the training performance for different time steps. The average final
loss of the last 1000 epochs was −24.18, −26.18, −28.58, and −30.58 dB for m = 10, 20, 30,
and 40, respectively. The figure indicates that the larger the m used, the smaller the training
NMSE achieved is. However, as m is set too large, the size of the input spatial pattern
will increase, which will not only increase the complexity in the convolution operation,
but also increase the difficulty in LSTM prediction. Moreover, the network structure will
become intricate. Under the consideration of convergence speed and training quality,
m = 30,K = 4 was employed in the following model, although the kernel size was an
even value.
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Figure 5. The cost performance comparison under different time steps.

4.2. Nonlinearity Compensation

The time domain amplitude outputs of the proposed scheme and the original received
y(n) are illustrated in Figure 6. For a fair comparison, the amplitude outputs of the ideal
equalization case are also depicted here, where the channel information is perfectly known
to the receiver. From the figure, it can be observed that the amplitudes of the original
received y(n) are severely distorted as compared with the ideal case. However, with the
help of an effective feature learning, the proposed scheme can exactly predict a similar
amplitude output as the ideal case.

0 200 400 600 800 1000

Sampling point

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d

e

The ideal equalized

The original Rx

The proposed

780 800 820
0.06
0.08

0.1
0.12
0.14
0.16
0.18

Figure 6. Amplitude comparison of the proposed scheme with the ideal case.

The corresponding power spectral density (PSD) performance comparison is demon-
strated in Figure 7. As shown in the figure, the overall nonlinearity of the IM/DD channel is
manifested in the manner of in-band distortion and out-band spectral regrowth. However,
the PSD of the proposed scheme shows a similar curve as compared with that of the ideal
case. Although the sideband level at a high frequency is slightly inconsistent with that
of the ideal case, it does not affect the signal demodulation because the power of useful
information is mainly located at the in-band PSD. Therefore, the detrimental distortions
can be well compensated by the proposed DL model.
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Figure 7. PSD performance comparison of the proposed scheme with the ideal case.

The corresponding BER performance is illustrated in Figure 8 as the testing SNR ζ
varied from 0 to 36 dB. In addition, the other three schemes in terms of the DNN [13],
the LSTM [19], and the CNN compensator [21] are also presented here. In general, the pro-
posed scheme has the closest BER performance to the one for the ideal case, and the BER
accuracy of the DNN scheme tends to be saturated when ζ is over 27 dB. As for the same
BER of 1× 10−3, the proposed scheme can reduce the required SNR at least by 2.5 dB as
compared with the LSTM approach and nearly by 14.2 dB as compared with the DNN
method, which shows the superiority of the proposed scheme for nonlinearity mitigation.
The channel characteristics can be perfectly revealed and then learned by the proposed
scheme, and it can still work effectively even though the testing conditions are not exactly
the same as the channel noise used in the training stage, which shows the good generaliza-
tion ability of the proposed model. Besides, the CNN scheme can also provide an excellent
BER performance as compared with the DNN and LSTM methods, because the CNN offers
dilated convolutions, in which the convolution layer could handle the spatial information
and store the memory. However, there will be more computation time in the training phase
to achieve the convergence, which is analyzed next.
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Figure 8. BER performance comparison of the proposed scheme and the other approaches.

4.3. Complexity

The corresponding application complexity in terms of the amount of floating-point
operations (FLOPs), convergence cost, and average training time consumption in each
epoch is shown in Table 1. Notice that the FLOPs were measured based on the frozen
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graph and different platforms may cost different training times. In addition, the corre-
sponding complexity of the DNN scheme is not demonstrated because it converges at an
unacceptable training accuracy. As the results show, although the LSTM costs less FLOPs,
the learning ability is limited since it achieves the worst accuracy as compared with the
other two schemes. The CNN converges with relatively more epochs and costs much
training time, because all input features must be analyzed by the convolution procedure
and the corresponding input features are directly obtained from the original received signal
without any transformation. Under memory nonlinearity scenarios, the CNN has higher
structural complexity and introduces more convolution and pooling layers to achieve the
equivalent target accuracy as that of the proposed scheme. By comparison, since the special
customized input patterns based on the Volterra model were employed, the proposed
scheme exhibits better learning efficiency and only requires 1750 epochs to achieve con-
vergence. Moreover, it only needs 755.6 million FLOPs to achieve the equivalent BER
performance, nearly one-third of the CNN. Note that the amount of FLOPs is also related
to the number of input signals. Therefore, the proposed Volterra-aided DL scheme can
effectively balance the performance and application complexity as compared with the
original CNN scheme.

Table 1. Comparison of application complexity.

FLOPs 1 Convergence
Epochs Time 2 Accuracy

Basic-LSTM 89.9 M 2735 0.015 s −25.3 dB
Basic-CNN 2277.9 M 3550 0.523 s −26.8 dB

The proposed 755.6 M 1750 0.268 s −28.2 dB
1 It is also related to the number of input signals. 2 The average time consumed for each training epoch.

4.4. Robustness Analysis

The well-trained model was valuated at different receiver locations. For convenience,
the four PD locations with the root mean square (RMS) delay spread of 7.92, 8.2, 8.3,
and 8.9 ns, marked as U1, U2, U3, and U4, were employed in the testing, respectively.
The corresponding results are shown in Figure 9. As clearly seen from the figure, the BER
performances of these four cases are very similar under the low-SNR region and only have
a slight difference for a high SNR. Therefore, the proposed model can still work effectively
and can provide robust BER performance even though the testing conditions are not exactly
the same as those used in the training stage, showing a good robustness and generalization
ability of the proposed scheme.
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Figure 9. BER performance of the proposed scheme at different positions.
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5. Conclusions

In this paper, we proposed a Volterra-aided DL equalizer for the channel impairment
compensation in a VLC system. Benefiting from the customized spatial pattern and the
elaborate cascaded network structure, the proposed scheme exhibits unique advantages in
channel characteristics’ learning. In addition, it can speed up the convergence process and
improve the equalization accuracy. The results show that the proposed scheme is favorable
to mitigate the overall nonlinearity of the VLC channel and can achieve an excellent BER
performance improvement, which significantly outperforms the conventional DL-based
equalizers compared at the same BER level. Moreover, it shows robustness to the mismatch
conditions of the practical deployment and training stages.
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