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Abstract: In this paper, we investigate the effect of the Dicke quantum phase transition on the Berry
phase of the two impurity qubits. The two impurity qubits only have dispersive interactions with
the optical field of the Dicke quantum system. Therefore, the two impurity qubits do not affect the
ground state energy of the Dicke Hamiltonian. We find that the Berry phase of the two impurity
qubits has a sudden change at the Dicke quantum phase transition point. Therefore, the Berry phase
of the two impurity qubits can be used as a phase transition signal for the Dicke quantum phase
transition. In addition, the two impurity qubits change differently near the phase transition point at
different times. We explain the reason for the different variations by studying the variation of the
Berry phase of the two impurity qubits with the phase transition parameters and time. Finally, we
investigated the variation of the Berry phases of the two impurity qubits with their initial conditions,
and we found that their Berry phases also have abrupt changes with the initial conditions. Since the
Dicke quantum phase transition is already experimentally executable, the research in this paper helps
to provide a means for manipulating the Berry phase of the two impurity qubits.

Keywords: Berry phase; Dicke quantum phase transition; two impurity qubits; dispersive interaction;
X-type state

1. Introduction

In quantum mechanics, the wave function of a system is determined by the probability
amplitude and phase. In 1984, Berry discovered that a quantum system with a time-
dependent Hamiltonian has a dynamical phase and an additional phase after adiabatic,
unitary, and cyclic evolution [1]. This extra phase is only related to the closed path of
the system on the parameter space and is called the Berry phase. Simon then gives a
geometric interpretation of the Berry phase [2]. Simon points out that the Berry phase can
be regarded as the holonomy of a line bundle L over the space of parameters M of the
system if L is endowed with a natural connection [2]. Thus, the Berry phase is also known
as the geometric phase. Aharonov and Anandan then showed that for non-adiabatic cyclic
evolution, there is also a canonically invariant phase related only to the evolution path [3].
This phase is called the A-A phase. In fact, Pancharatnam discovered this phenomenon in
classical optics [4], so the Berry phase is sometimes called the Pancharatnam–Berry phase [5].
Inspired by Pancharatnam’s work, Samuel and Bhandari found that the geometric phase
can also be defined for acyclic evolution [6]. These phases are experimentally confirmed
in systems such as optical and quantum qubits [7–11]. For systems where the initial
state is the density matrix, Sjöqvist et al. introduced the geometric phase of the density
matrix under the unitary evolution through a hypothetical Mach–Zehnder interferometer
experiment [12]. This phase was subsequently confirmed experimentally [13]. Tong et al.
further generalized the geometric phase to systems under non-unitary evolution [14].
Since the geometric phase is only path-dependent in parameter space, it can render robust
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protocols for quantum computation [15–18], in which quantum computing has a strong
advantage over classical computing [19–22].

Furthermore, many experimental and theoretical studies have used Berry phases to
detect quantum phase transitions [23–43]. The idea of using the properties of the Berry
phase to explore the quantum phase transition was first proposed and applied in the XY
spin-1/2 chain model [27,31,33,34]. Carollo and Pachos proposed a method that is theo-
retically and experimentally capable of detecting critical regions by the geometric phase
without requiring the system to undergo a phase transition [27]. They then presented a
general form of the relationship between the geometric phase generated by a cyclically
evolving interacting spin system and its critical behavior [31]. Zhu established the con-
nection between the ground state geometric phase and the quantum phase transition in
general many-body systems [33]. In the Dicke model, Plastina et al. showed that, in the
thermodynamic limit, a nonzero Berry phase can be obtained only along a path around
a critical point in parameter space [32]. Chen et al. showed that the quantum phase
transition characterized by the nonanalytic nature of the geometric phase is a first-order
phase transition [36]. In addition, other models that use Berry phases to explore quantum
phase transitions include the Lipkin–Meshkov–Glick model [37,38,40], the extended Dicke
model [39], and the interacting Fermi model [41,42].

There is a ground state quantum phase transition in the standard Dicke model [44–52].
In addition, the dynamical behavior of impurity atoms in multiple identical atoms has been
extensively studied [51,53–65]. Inspired by the abrupt changes in the dynamical behavior
of some systems at the quantum phase transition point [66–76], in this paper, we focus on
the effect of the Dicke quantum phase transition on the Berry phase of the two impurity
qubits (TIQs). We find that the Berry phase of the TIQs has a sudden change at the phase
transition point, so the Berry phase of the TIQs can be used as a signal to detect the Dicke
quantum phase transition.

This paper is organized as follows. In Section 2, we study the dynamics of the TIQs
in a cavity-Bose–Einstein condensate (cavity-BEC) system. Then, we obtain the quantum
state and Berry phase of the TIQs at time t. In Section 3, we study the effect of the Dicke
quantum phase transition on the TIQs in the cavity-BEC system and find a sudden change
in the Berry phase of the TIQs at the phase transition point. We also consider the effect of
the initial state of the two qubits on their Berry phase. Finally, we discuss that our scheme
is experimentally executable. In Section 4, we conclude the whole paper and point out our
future works.

2. Dicke Model with Two Impurity Qubits and Berry Phase of Two Impurity Qubits

In this section, we discuss the effect of the Dicke quantum phase transition on the Berry
phase of two two-level atoms. As shown in Figure 1, we consider a cavity-Bose–Einstein
condensate system (cavity-BEC) containing two impurity qubits (TIQs), where the BEC
consists of N identical two-level atoms. In this case, the TIQs only have dipole interactions
with the optical field and do not interact with the atoms. The interaction of two two-level
atoms with a single-mode optical field is described by a Tavis–Cummings (TC) model
Hamiltonian as follows (h̄ = 1):

ĤTC = ωa â† â + ∑
i=A,B

ωi
2

σ̂i
z + Ω ∑

i=A,B
(â†σ̂i

− + σ̂i
+ â), (1)

where â (â†) is the annihilation (creation) operator of the single-mode cavity field with
resonance frequency ωa and ωA(B) is the transition frequency between the two levels of
the ith atom. σ̂i

x,y,z are the usual Pauli operators of the ith atom, and σ̂i
± = 1

2 (σ̂
i
x ± iσ̂i

y).
Ω is the dipole interaction strength between the cavity field and the single atom. We
define a frequency detuning δA(B) = ωA(B) − ωa. When the frequency detuning δA(B)

between the two-level atom and cavity field is sufficiently large, i.e., |δA(B)|/Ω�
√

n + 1
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for any “relevant” photon number n [77]. Under this condition, we can obtain the effective
dispersive Hamiltonian of the two-atom TC model as follows [77–81]:

Ĥe f f
TC = ωa â† â + ∑

i=A,B

ωi + χi
2

σ̂i
z + ∑

i=A,B
χi â† âσ̂i

z, (2)

where χA(B) = Ω2/δA(B). The above equation can also be obtained by the Fröhlich–
Nakajima transformation [82,83]. The standard Dicke Hamiltonian describing the interac-
tion of N identical two-level atoms with a single-mode optical field reads

ĤD = ωa â† â + ω Ĵz +
λ√
N
(â† + â)( Ĵ+ + Ĵ−), (3)

where ω is the transition frequency of these N identical two-level atoms. Ĵα (α = x, y, z) is
the collective angular momentum operator for the spin ensemble consisting of N identical
two-level atoms; these operators Ĵx, Ĵy, Ĵz satisfy the commutation relation of SU(2) algebra
and Ĵ± = Ĵx ± i Ĵy. When the coupling strength λ exceeds

√
ωaω/2, the standard Dicke

model exhibits a ground state quantum phase transition from the normal phase to the
superradiant phase in the thermodynamic limit N → ∞ [44–52].

Under the above large detuning condition, the Hamiltonian of the total system as
shown in Figure 1 is

Ĥ = ĤD + ∑
i=A,B

ωi + χi
2

σ̂i
z + ∑

i=A,B
χi â† âσ̂i

z. (4)

Figure 1. Schematic diagram of the model we used. The N identical two-level atoms marked in
purple with a single-mode optical field form the standard Dicke model. A and B denote two impurity
qubits, and the two qubits interact only with the optical field. Experimentally, N identical two-level
atoms can be realized by Bose–Einstein condensates.

From the above equation, we can see that, since [σ̂A
z + σ̂B

z , Ĥ] = [σ̂A
z + σ̂B

z , ĤD] = 0,
there is no energy exchange between the TIQs and the optical field, and the cavity-BEC
system only has an effect on the phase of the two qubits. Therefore, the cavity-BEC system
is equivalent to a controlled dephasing environment for the TIQs. In the following, we start
to investigate the effect of the Dicke quantum phase transition of the cavity-BEC system on
the Berry phase of the TIQs.

We assume that the initial state of the TIQs is a general X-type state with three parame-
ters ρ̂AB(0) = ( ÎAB + ∑3

i=1 ciσ̂
A
i ⊗ σ̂B

i ), where ÎAB is the four-dimensional identity operator;
i = 1, 2, 3 denotes x, y, and z, respectively. ci (0 ≤ |ci| ≤ 1) are real numbers, and they make
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the trace of the density matrix ρ̂AB(0) equal to 1 and satisfy the positivity conditions [60].
In the basis |ee〉, |eg〉, |ge〉, |gg〉, the X-type state is given by

ρ̂AB(0) =
1
4


1 + c3 0 0 c1 − c2

0 1− c3 c1 + c2 0
0 c1 + c2 1− c3 0

c1 − c2 0 0 1 + c3

. (5)

The initial state of the cavity-BEC atomic system is the ground state |G〉 of the standard
Dicke Hamiltonian. Then, the density matrix of the total system at time t is

ρ̂(t) = Û(ρ̂AB(0)⊗ |G〉〈G|)Û†, (6)

where Û = exp(−iĤt).
The density matrix of the TIQs at time t is [60]

ρ̂AB(t) = Trcavity−BEC[ρ̂(t)]

=
1
4


1 + c3 0 0 u(t)D1(t)

0 1− c3 v(t)D2(t) 0
0 v∗(t)D∗2 (t) 1− c3 0

u∗(t)D∗1 (t) 0 0 1 + c3

, (7)

where

u(t) = (c1 − c2) exp[−i(ω′A + ω′B)t], (8)

v(t) = (c1 + c2) exp[−i(ω′A −ω′B)t], (9)

D1(t) = exp(2iδ1t〈G|â† â|G〉) exp(−2rδ2
1t2), (10)

D2(t) = exp(2iδ2t〈G|â† â|G〉) exp(−2rδ2
2t2), (11)

and ω′A(B) = ωA(B)+χA(B), δ1 = χA +χB, δ2 = χA−χB. 〈G|â† â|G〉 and r denote the mean

and variance of the light field number operator â† â over the ground state of the standard
Dicke Hamiltonian, respectively. In the above equation, we use both the δ1t � 1 and
δ2t� 1 conditions. In the later discussion, we will take these two values as δ1 = 0.0001ω
and δ2 = 0.

After obtaining the density matrix of the TIQs at time t, we study the effect of the
Dicke quantum phase transition on the Berry phase of the TIQs in the following. In 2004,
Tong et al. gave a definition of the Berry phase of the target system described by the density
matrix in open systems [14]. Since this definition is canonically invariant and can be
measured by interferometric experiments, it is widely used in the calculation of the Berry
phase of mixed state systems. We rewrite the density matrix ρ̂AB(t) in its eigenspace in the
following diagonal form

ρ̂AB(t) =
N=4

∑
k=1

εk(t)|φk(t)〉〈φk(t)|, (12)

where N denotes the Hilbert space dimension of the target system and εk(t) and |φk(t)〉 are
the eigenvalues and eigenstates of the density matrix ρ̂AB(t), respectively.

Then, the expression for the Berry phase of the mixed state under this non-unitary
evolution is defined as follows [14]:

γg(t) = arg

[
N=4

∑
k=1

Gk(t)

]
∈ (−π, π], (13)

where Gk(t) =
√

εk(0)εk(t)〈φk(0)|φk(t)〉 exp
[
−
∫ t

0 〈φk(τ)| d
dτ φk(τ)〉dτ

]
.
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To calculate the Berry phase of the above equation, we need to obtain the eigenvalues
and eigenstates of the density matrix ρ̂AB(t). We can obtain all the eigenvalues and the
corresponding eigenstates of ρ̂AB(t) from Equation (7) as

ε1(t) =
1
4

(
1− c3 − |c1 + c2| exp(−2rδ2

2t2)
)

, (14)

|φ1(t)〉 =
[

0,
−(c1+c2) exp[i[2δ2〈G|a†a|G〉−(ω′A−ω′B)]t]

|c1+c2|
, 1, 0

]T
, (15)

ε2(t) =
1
4

(
1− c3 + |c1 + c2| exp(−2rδ2

2t2)
)

, (16)

|φ2(t)〉 =
[

0,
(c1+c2) exp[i[2δ2〈G|a†a|G〉−(ω′A−ω′B)]t]

|c1+c2|
, 1, 0

]T
, (17)

ε3(t) =
1
4

(
1 + c3 − |c1 − c2| exp(−2rδ2

1t2)
)

, (18)

|φ3(t)〉 =
[
−(c1−c2) exp[i[2δ1〈G|a†a|G〉−(ω′A+ω′B)]t]

|c1−c2|
, 0, 0, 1

]T
, (19)

ε4(t) =
1
4

(
1 + c3 + |c1 − c2| exp(−2rδ2

1t2)
)

, (20)

|φ4(t)〉 =
[

(c1−c2) exp[i[2δ1〈G|a†a|G〉−(ω′A+ω′B)]t]
|c1−c2|

, 0, 0, 1
]T

. (21)

where the “T” in the upper right corner of the matrix indicates a transpose operation on
the matrix.

Substituting Equations (14)–(21) into Equation (13), we can obtain the following
four expressions:

G1(t) =
√

ε1(0)ε1(t)〈φ1(0)|φ1(t)〉 exp
[
−
∫ t

0
〈φ1(τ)|

d
dτ

φ1(τ)

〉
dτ

]
=

1
4

√
(1− c3 − |c1 + c2|)

(
1− c3 − |c1 + c2| exp

(
−2rδ2

2t2
))

×
[
1 + exp

[
−i
(

2δ2〈G|a†a|G〉 − (ω′A −ω′B)
)

t
]]

, (22)

G2(t) =
√

ε2(0)ε2(t)〈φ2(0)|φ2(t)〉 exp
[
−
∫ t

0
〈φ2(τ)|

d
dτ

φ2(τ)

〉
dτ

]
=

1
4

√
(1− c3 + |c1 + c2|)

(
1− c3 + |c1 + c2| exp

(
−2rδ2

2t2
))

×
[
1 + exp

[
−i
(

2δ2〈G|a†a|G〉 − (ω′A −ω′B)
)

t
]]

, (23)

G3(t) =
√

ε3(0)ε3(t)〈φ3(0)|φ3(t)〉 exp
[
−
∫ t

0
〈φ3(τ)|

d
dτ

φ3(τ)

〉
dτ

]
=

1
4

√
(1 + c3 − |c1 − c2|)

(
1 + c3 − |c1 − c2| exp

(
−2rδ2

1t2
))

×
[
1 + exp

[
−i
(

2δ1〈G|a†a|G〉 − (ω′A + ω′B)
)

t
]]

, (24)

G4(t) =
√

ε4(0)ε4(t)〈φ4(0)|φ4(t)〉 exp
[
−
∫ t

0
〈φ4(τ)|

d
dτ

φ4(τ)

〉
dτ

]
=

1
4

√
(1 + c3 + |c1 − c2|)

(
1 + c3 + |c1 − c2| exp

(
−2rδ2

1t2
))

×
[
1 + exp

[
−i
(

2δ1〈G|a†a|G〉 − (ω′A + ω′B)
)

t
]]

. (25)

Finally, we obtain the Berry phase of the TIQs at time t:

γg(t) = arg[p + q + p cos(mt) + q cos(nt)− i(p sin(mt) + q sin(nt))]
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= arctan
(

p sin(mt) + q sin(nt)
p + q + p cos(mt) + q cos(nt)

)
∈ (−π, π], (26)

where

p =
1
4

[√
(1− c3 − |c1 + c2|)

(
1− c3 − |c1 + c2| exp

(
−2rδ2

2t2
))

+
√
(1− c3 + |c1 + c2|)

(
1− c3 + |c1 + c2| exp

(
−2rδ2

2t2
))]

, (27)

q =
1
4

[√
(1 + c3 − |c1 − c2|)

(
1 + c3 − |c1 − c2| exp

(
−2rδ2

1t2
))

+
√
(1 + c3 + |c1 − c2|)

(
1 + c3 + |c1 − c2| exp

(
−2rδ2

1t2
))]

, (28)

m = 2δ2〈G|a†a|G〉 − (ω′A −ω′B), (29)

n = 2δ1〈G|a†a|G〉 − (ω′A + ω′B). (30)

It is worth emphasizing here that the Berry phases of the TIQs are related to the
mean and variance of the optical field number operator over the ground state |G〉 of the
Hamiltonian ĤD. Meanwhile, we can change the ground state of ĤD by adjusting the
coupling strength λ between the cavity field and the BEC atoms, so we can finally control
the Berry phase of the TIQs by adjusting this coupling strength. In the following, we discuss
the mean and variance of the optical field number operator â† â over the ground state |G〉
of Hamiltonian ĤD in each parameter region of λ, respectively.

3. Effect of Dicke Quantum Phase Transition on the Berry Phase of Two Impurity Qubits

In the thermodynamic limit N → ∞, a quantum phase transition exists in the standard
Dicke model. When λ < λc (λc =

√
ωaω/2), the number of excitations on the ground state

of ĤD for both the atoms and the light field is small compared to the total atomic number N,
and the system is in the normal phase. When λ > λc, both the atoms and the light field have
macroscopic excitations on the ground state of ĤD, and the system is in the superradiant
phase. In the standard Dicke model, since the first derivative of the ground state energy
of the system is continuous with respect to λ, but its second derivative is discontinuous,
this quantum phase transition is a ground state second-order phase transition. In order to
obtain the mean and variance of the optical field number operator â† â in different parameter
regions of λ, in the following, we briefly introduce the ground state in the normal phase
region and the superradiant region of the Dicke Hamiltonian, respectively.

Using the Holstein–Primakoff transformation, we can represent the angular momen-
tum operator by the single-mode boson operator as follows [84–86]:

Ĵz = b̂† b̂− N
2

, Ĵ+ = b̂†
√

N − b̂† b̂, Ĵ− =

√
N − b̂† b̂b̂, (31)

where b̂† and b̂ are the boson creation and annihilation operators, respectively. After
substituting Equation (31) into Equation (3) and dropping the constant term, we obtain

Ĥ = ωa â† â + ωb̂† b̂ + λ(â† + â)

b̂†

√
1− b̂† b̂

N
+

√
1− b̂† b̂

N
b̂

. (32)

In the normal phase, since 〈G|b̂† b̂|G〉 � N, we can obtain the effective Hamiltonian
after dropping the constant term:

Ĥnp = ωa â† â + ωb̂† b̂ + λ(â† + â)(b̂† + b̂). (33)
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Using the following Bogoliubov transform:

â† = f1 ĉ†
1 + f2 ĉ1 + f3 ĉ†

2 + f4 ĉ2, (34)

b̂† = h1 ĉ†
1 + h2 ĉ1 + h3 ĉ†

2 + h4 ĉ2, (35)

we can obtain the final diagonal form of Ĥnp after dropping the constant term:

Ĥd
np = ε− ĉ†

1 ĉ1 + ε+ ĉ†
2 ĉ2, (36)

where

ε2
± =

1
2

[
ω2

a + ω2 ±
√
(w2 −ω2

a)
2 + 16λ2ωaω

]
, (37)

f1,2 =
cos θ

2
√

ε−ωa
(ωa ± ε−), f3,4 =

sin θ

2
√

ε+ωa
(ωa ± ε+), (38)

h1,2 = − sin θ

2
√

ε−ω
(ω± ε−), h3,4 =

cos θ

2
√

ε+ω
(ω± ε+), (39)

and θ is determined by tan(2θ) =
4λ
√

ωaω

ω2−ω2
a

.

From Equation (36), we easily obtain that the ground state of the Hamiltonian Ĥd
np is

|G〉 = |0〉ĉ1 ⊗ |0〉ĉ2 = |0, 0〉ĉ1,ĉ2 . Here, |0〉ĉ1 and |0〉ĉ2 are the ground states of the number
operators ĉ†

1 ĉ1 and ĉ†
2 ĉ2, respectively.

With Equation (34) and Equation (35), we can easily obtain the mean value and
variance of the light field number operator on the ground state of the normal phase:

〈G|â† â|G〉 = f 2
2 + f 2

4 , (40)

r = 〈G|(â† â)2|G〉 −
(
〈G|â† â|G〉

)2

= 2 f 2
1 f 2

2 + 2 f 2
3 f 2

4 + ( f1 f4 + f2 f3)
2. (41)

When λ > λc, the cavity-BEC system is in the superradiant phase. At this point,
there is macroscopic excitation of both the atoms and the optical field. We use the displace

transformation â† → â′
†
+
√

α and b̂† → b̂′
† −

√
β such that 〈G|b̂′† b̂′|G〉 � N. Two dis-

placements can be obtained through the equilibrium condition as
√

α = 2λ
ωa

√
N(1− ξ2)/4

and
√

β =
√

N(1− ξ)/2, where ξ = ωaω
4λ2 . Substituting the operators after the displace

transformation into Equation (32), dropping the constant term, and in the thermodynamic
limit, we can obtain the effective Hamiltonian for the superradiant phase region

Ĥsp = ωa â′
†
â′ + ω′ b̂′

†
b̂′ + λ′(â′

†
+ â′)(b̂′

†
+ b̂′) + η(b̂′

†
+ b̂′)2, (42)

where

ω′ =
ω

2ξ
(1 + ξ), λ′ = λξ

√
2

1 + ξ
, η =

ω(1− ξ)(3 + ξ)

8ξ(1 + ξ)
. (43)

As with the normal phase, using the following Bogoliubov transformation:

â′
†

= f ′1 ĉ′
†
1 + f ′2 ĉ′1 + f ′3 ĉ′

†
2 + f ′4 ĉ′2, (44)

b̂′
†

= h′1 ĉ′
†
1 + h′2 ĉ′1 + h′3 ĉ′

†
2 + h′4 ĉ′2. (45)

Equation (42) can be written in the following diagonal form after dropping the con-
stant term

Ĥd
sp = ε′− ĉ′

†
1 ĉ′1 + ε′+ ĉ′

†
2 ĉ′2, (46)
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where

ε′2± =
1
2

[
ω2

a +
ω2

ξ2 ±

√
(

ω2

ξ2 −ω2
a)

2 + 4ω2
aω2

]
, (47)

f ′1,2 =
cos θ′

2
√

ε′−ωa

(ωa ± ε′−), f ′3,4 =
sin θ′

2
√

ε′+ωa

(ωa ± ε′+), (48)

h′1,2 = − sin θ′

2
√

ε′−ω′
(ω′ ± ε′−), h′3,4 =

cos θ′

2
√

ε′+ω′
(ω′ ± ε′+), (49)

and θ′ is determined by tan(2θ′) = 2ωaωξ2

ω2−ξ2ω2
a
.

Similarly, from Equation (46), we easily obtain that the ground state of Hamiltonian
Ĥd

sp is |G〉 = |0〉ĉ′1 ⊗ |0〉ĉ′2 = |0, 0〉ĉ′1,ĉ′2
, where |0〉ĉ′1 and |0〉ĉ′2 are the ground states of the

number operators ĉ′
†
1 ĉ′1 and ĉ′

†
2 ĉ′2, respectively. Thus, we immediately obtain the average

and variance of the light field number operators â† â in the superradiant phase:

〈G|â† â|G〉 = f ′22 + f ′24 + α, (50)

r = 〈G|(â† â)2|G〉 −
(
〈G|â† â|G〉

)2

= 2 f ′21 f ′22 + 2 f ′23 f ′24 +
(

f ′1 f ′4 + f ′2 f ′3
)2

+ α
[(

f ′1 + f ′2
)2

+
(

f ′3 + f ′4
)2
]
. (51)

In summary, when the coupling intensity λ takes different values, the mean and
variance of the number operator â† â of the optical field are

〈G|â† â|G〉 =
{

f 2
2 + f 3

4 , λ < λc,
f ′22 + f ′24 + α, λ > λc,

(52)

r =

{
2 f 2

1 f 2
2 + 2 f 4

3 f 3
4 + ( f1 f4 + f2 f3)

2, λ < λc,

2 f ′21 f ′22 + 2 f ′23 f ′24 +
(

f ′1 f ′4 + f ′2 f ′3
)2

+ α
[(

f ′1 + f ′2
)2

+
(

f ′3 + f ′4
)2
]
, λ > λc.

(53)

The variation of the Berry phase of the TIQs with the phase transition parameter λ is
obtained by substituting Equations (52) and (53) into Equation (26). In the following, we
discuss the effect of the Dicke quantum phase transition on the Berry phase of the TIQs.

In Figure 2a,c,e, we plot the variation of the Berry phase with the phase transition
parameter λ for the TIQs, respectively. We find that at these three different times, the
Berry phase of the TIQs shows a sudden change at the critical point of the phase transition
parameter λ when the TIQs take different initial values. In Figure 2b,d,f, we plot the
variation of the Berry phase of the TIQs with the phase transition parameter λ and the
initial condition c1, respectively. At the three different times, we find that the Berry phase
of the TIQs undergoes a sudden change at the critical phase transition point λc, and the
Berry phase of the TIQs changes differently near the critical phase transition point λc
at different times. For example, when t = 1/ω, the Berry phase of the TIQs gradually
decreases when the phase transition parameter λ leaves the phase transition critical value λc.
When t = 1.3/ω, the Berry phase of the TIQs first gradually decreases and then gradually
increases when the phase transition parameter λ leaves the phase transition point. When
t = 2/ω, the Berry phase of the TIQs keeps increasing when the phase transition parameter
λ leaves the critical value λc. To explain the different behaviors of the Berry phases of the
TIQs above near the critical coupling strength λc, we plot the changes of the Berry phases
of the TIQs with the phase transition parameter λ and time t in Figure 3. We find that,
at any time, the Berry phase of the two qubits undergoes a sudden change in the phase
transition point. Therefore, we can take the abrupt change of the Berry phase of the TIQs as
a phase transition signal of the Dicke quantum phase transition. In addition, at the phase
transition point, we find that the Berry phase of the TIQs decreases with increasing time t.
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However, when λ 6= λc, the Berry phase of the TIQs decreases first and then increases with
time t. These two phenomena then lead to different changes in the Berry phase of the TIQs
near the phase transition point at different times in Figure 2b,d,f.

9.0 9.5 10.0 10.5 11.00.6

0.5

0.4

0.3

0.2

 

(a) c1 = 0.1
c1 = 0.5
c1 = 0.9

9.8 9.9 10.0 10.1 10.20.5

0.4
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0.1

 

(c) c1 = 0.1
c1 = 0.5
c1 = 0.9

9.0 9.5 10.0 10.5 11.00.8

0.4

0.0

0.4

0.8

 

(e) c1 = 0.1
c1 = 0.5
c1 = 0.9

Figure 2. (a,c,e) Variation of the Berry phase γ of the TIQs with the phase transition parameter λ

when t = 1/ω, t = 1.3/ω, t = 2/ω, respectively. (b,d,f) Variation of the Berry phase γ of the TIQs
with their initial state parameter c1 and phase transition parameter λ when t = 1/ω, t = 1.3/ω,
t = 2/ω, respectively. The other parameters are c2 = 0, c3 = 0.5c1, ωa = 400ω, δ1 = 0.0001ω, δ2 = 0,
ωA = ωB = ω, λc =

√
ωωa/2 = 10ω, and N = 105.

Meanwhile, we found another interesting phenomenon in Figure 2b,d,f. In Figure 2b,d,
by observing the variation of the Berry phase with the initial condition c1, we find that
the Berry phase always takes the minimum value when c1 is equal to a certain value.
Furthermore, in Figure 2f, we find that the Berry phase always takes the maximum value
when c1 equals this value. To investigate this interesting phenomenon, in Figure 4, we plot
the variation of the Berry phase of the two qubits with the initial state parameter c1 for
different values of the phase transition parameter when the time takes different values. We
find that the Berry phase of the two qubits always changes abruptly at the point c1 = 2/3
for different phase transition parameters and times. Therefore, in the cavity-BEC system
with TIQs, both the phase transition parameter λ and the initial state value c1 of the two
qubits cause abrupt changes in the Berry phase of the TIQs.
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Figure 3. Berry phase of the TIQs varies with the phase transition parameter λ and time t when
c1 = 0.5. The other parameters are the same as in Figure 2, and all parameters are in units of ω.
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Figure 4. Berry phase of the TIQs varies with the initial state parameter c1 for different phase
transition parameters λ and times t. The other parameters are the same as in Figure 2.

Experimentally, the Dicke quantum phase transition has been realized in a system
consisting of a BEC coupled to an optical cavity [49]. Meanwhile, manipulating atoms by op-
tical fields based on a cavity-quantum-electrodynamics system is already a well-established
technique [87–91]. Moreover, the Berry phase of the qubit can be measured experimen-
tally [10,92,93]. Therefore, the characterization of Dicke quantum phase transitions by the
Berry phase of the TIQs is experimentally feasible.

4. Conclusions

We mainly studied the effect of the Dicke quantum phase transition on the Berry
phase of the two impurity qubits. When the two impurity qubits only have a dispersive
interaction with the optical field of the Dicke model, the two impurity qubits do not affect
the ground state quantum phase transition of the Dicke model. We find that the Berry
phase of the two impurity qubits is closely related to the mean and variance of the optical
field number operator in the Dicke model over the ground state. By studying the mean and
variance of the optical field number operator in the normal and superradiant phases, we
find that the two impurity qubits Berry phase has a sudden change at the phase transition
point at any time. Therefore, the Berry phase of the two impurity qubits can be used as
a phase transition signal for the Dicke quantum phase transition. In addition, we found
that the two impurity qubits behave differently near the phase transition point at different
times. We explained the reason for the appearance of this different behavior by studying
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the variation of the Berry phase with the phase transition parameters and time. Finally,
we found that the Berry phase of the two impurity qubits also has a sudden change at
some initial value. In this article, we focused on the effect of the Dicke quantum phase
transition on the Berry phase of the two qubits. The initial entanglement of the two qubits,
the entanglement of the optical field and the BEC, and the frequency detuning between the
optical field and the condensed atoms also affect the Berry phase of the two qubits, and we
will study these in our next work.
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