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Abstract: In this work, we propose a mode-conversion-based chirped Bragg grating on thin-film
lithium niobate (TFLN). The device is mainly composed of a 4.7-mm long chirped asymmetric Bragg
grating and an adiabatic directional coupler (ADC). The mode conversion introduced by the ADC
allows the chirped Bragg grating operates in reflection without using an off-chip circulator. The pro-
posed device has experimentally achieved a total time delay of 73.4 ps over an operating bandwidth
of 15 nm. This mode-conversion-based chirped Bragg grating shows excellent compatibility with
other devices on TFLN, making it suitable in monolithically integrated microwave photonics, sensing,
and optical communication systems.
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1. Introduction

Chirped Bragg gratings have been extensively investigated for decades. In optical
fibers, chirped Bragg gratings play an essential role in many applications, including dis-
persion control [1–4], a variety of sensing [5–7], mode-locked fiber lasers [8,9], microwave
photonics [10,11], etc. In recent years, integrated photonic techniques, which use inte-
grated optical components to generate, interconnect, and process signals, have become
an inevitable trend. Integrated Bragg gratings can be used as on-chip optical filter de-
vices, and numerous types of research have emerged [12–15]. Chirped Bragg gratings on
integrated photonics platforms have been utilized in many applications, such as on-chip dis-
persion compensation [16,17], phased array antennas [18], time-frequency mapping [19,20],
etc. Until now, most of the researches on integrated chirped Bragg gratings have used an
optical circulator [18,20,21] or a 3-dB Y-branch [19,22–24] to out-couple the reflected signal.
However, using an optical circulator, whose integration is not trivial, is challenging to meet
the requirements of monolithic integration. A 3-dB Y-branch involves a minimum 6 dB
insertion loss and excess reflections back to the input port. Therefore, realizing the drop
function for integrated chirped Bragg gratings is essential for monolithic integration.

To overcome this problem, a 2 × 2 multimode interference (MMI) coupler-based drop
filter for chirped Bragg gratings on SOI was proposed [25]. Nevertheless, it has poor
tolerance for fabrication errors. A minor random phase difference between the grating pairs
would invalidate the drop filter [26]. Several other solutions have been applied to Bragg
gratings without chirp to realize a drop function, such as grating-assisted contradirectional
coupler [27], Mach-Zehnder interferometer structure [28], asymmetric Y-branch [29] and
adiabatic directional coupler (ADC) [15,30]. But until now, few of them have been used in
integrated chirped Bragg gratings.

Over the past few years, the thin-film lithium niobate (TFLN) platform has drawn
much attention because of its excellent electro-optic and optical characteristics [31,32].
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A chirped Bragg grating could be a basic building block for integrated high-performance
microwave photonics systems on TFLN [31]. Recently, an electro-optic time lens was
proposed, and femtosecond pulses were generated on TFLN [20]. A chirped Bragg grating
with a 1.62 ps/nm dispersion was used for compressing optical pulses. However, the time
lens system was not monolithically integrated, still requiring an off-chip circulator to drop
the reflected beam from chirped Bragg grating.

In this work, we investigate a mode-conversion-based chirped Bragg grating on
TFLN. The proposed structure is mainly composed of a 4.7 mm long chirped asymmetric
Bragg grating and an ADC. The forward fundamental transverse electric (TE0) mode is
reflected and converted to backward TE1 mode in the grating. The asymmetric Bragg
gratings can couple the two orthogonal modes while symmetric Bragg gratings cannot
according to the coupled mode theory [29].The backward TE1 mode is guided into a
branch waveguide by mode conversion using the ADC, which is connected to the drop
port. This allows the chirped Bragg grating operates in reflection without using an off-
chip circulator or introducing excess reflections back to the input port. The proposed
structure has experimentally demonstrated a total time delay of 73.4 ps over an operating
bandwidth of 15 nm. By this method, the chirped Bragg grating can be interconnected with
other devices on TFLN, making it suitable for monolithic microwave photonics, sensing,
and optical communication systems.

2. Methods

The schematic view of the proposed mode-conversion based chirped Bragg grating
(CBG) is shown in Figure 1a. Three grating couplers designed for the transverse electric
(TE) polarization are used for in/off-chip coupling. When the input optical signal is fed
into the asymmetric CBG, the TE0 mode is reflected and converted into the backward TE1
mode. Light with different wavelengths is reflected at different positions along the CBG,
with a consequent delay difference. After passing through the ADC, the backward TE1
mode is converted into TE0 mode and guided into the lower branch waveguide, which is
connected to the drop port. The ADC-based mode de-multiplexer can significantly reduce
the reflections back to the input port while exhibiting a high fabrication error tolerance [30].
The light with wavelengths away from the Bragg wavelength will travel through the Bragg
grating to the through port.

Figure 1b shows the schematic view of the ADC. The ADC consists of a narrow branch
with a width of w3 and a tapered bus waveguide whose width increases from w2 to w1.
The gap between the branch and the bus waveguide is wgap, and the coupling length is
ltaper. When the effective index of TE1 mode in the bus waveguide equals the effective
index of TE0 mode in the branch waveguide, the phase-matching condition is satisfied and
efficient coupling between the modes can be achieved. Figure 2a shows the cross-section
of the TFLN waveguide. The heights of the slab and the rib are both 200 nm. Due to the
lithium niobate redeposition in Argon-based dry etch, the sidewall tilt angle is around
67◦. Figure 2b depicts the effective indexes of the TE0 and TE1 modes in the waveguide at
1550 nm. The effective indexes of the two modes are close to 1.824 when the waveguide
widths are 1 µm and 2.43 µm, respectively. To realize a high-fabrication-tolerance design,
we set the bus waveguide tapered from 2.3 µm to 2.6 µm, which covers the abovementioned
width of 2.43 µm. Using the eigenmode expansion (EME) method, we vary the gap and the
coupling length to find the maximum TE1 – TE0 coupling efficiency. The light propagation
of the TE0 – TE0 mode and the TE1 – TE0 mode are illustrated in Figure 2c. Figure 2d shows
the calculated ADC spectrum response. From 1550 nm to 1650 nm, the input transmission
(TE0 – TE0) is above −0.017 dB, the output coupling (TE1 – TE0) loss is decreased from
−0.09 dB to −0.37 dB, and the output crosstalk (TE0 in the bus waveguide – TE0 in the
branch waveguide) is reduced from −36 dB to −43 dB. The specific parameters of the
designed ADC are listed as follows: w1 = 2.6 µm, w2 = 2.3 µm, w3 = 1 µm, wgap = 300 nm
and ltaper = 38 µm.
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Figure 1. (a) Schematic view of the proposed mode-conversion based chirped Bragg grating on TFLN.
Schematic views of the adiabatic directional coupler (b) and the chirped Bragg grating (c) with design
parameters labeled out.

Figure 2. (a) Cross section of the TFLN waveguide. (b) Effective indexes of the TE0 and TE1 modes
versus the waveguide width. (c) Light propagation of the ADC when TE0 and TE1 modes are injected.
(d) The simulated ADC spectrum response.
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Figure 1c shows the schematic view of the chirped Bragg grating. The grating starts
with a longer period of Λstart, and the periods linearly reduce to Λend. This makes light
with different wavelengths reflect at varying positions of the CBG. The relation between
the Bragg wavelength λB, the effective indexes of two modes nTE0 and nTE1, and the Bragg
grating period Λ is given as follows [29]

λB = Λ(nTE0 + nTE1) (1)

The light reflected at the end of the CBG will exhibit a time delay difference ∆t from
the light reflected at the beginning. ∆t is the total time delay range of the CBG, which can
be expressed as

∆t =
(nTE0 + nTE1)lBragg

c
(2)

where lBragg is the overall grating length, c is the speed of light.
From Equations (1) and (2), we determined the design parameters of the CBG, which

are as follows: δw = 400 nm, Λstart = 440 nm, Λend = 433 nm, and lBragg = 4.7 mm. The
designed CBG is polarization sensitive. The TM modes, whose effective indexes are not
satisfied the Bragg condition described in Equation (1), would travel through the grating
without reflection in the desired wavelength range if injected into the CBG.

We use a commercial variational finite-difference time-domain solver (varFDTD, An-
sys, Inc., Canonsburg, PA, USA) to obtain the simulated reflection spectrum and group
delay of the CBG. As illustrated in Figure 3, the total group delay is 80 ps over a 21 nm
operating range. It can be seen that the group delay shows ripples because of the constant
corrugation widths. The ripples can be reduced by using apodization methods [22].

Figure 4 shows the image of the fabricated mode-conversion-based chirped Bragg
grating on TFLN and its close-up. The devices were fabricated on an x-cut lithium niobate-
on-insulator wafer with a 400-nm thick TFLN. The device pattern was defined by electron
beam lithography (EBL) and Argon-based inductively coupled plasma reactive ion etching.
The detailed fabrication process can be found in our previous work [33].

Figure 3. Simulated reflection spectrum and group delay of the CBG.

Figure 4. (a) Microscope image of the demonstrated mode-conversion-based CBG. (b) Close-up of
the ADC. SEM image of the grating coupler (c) and Bragg grating (d).
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3. Results

Different kinds of measurements were used to evaluate the performance of the mode-
conversion-based CBG. First, we measured the through and reflection spectrum using a
tunable laser and an optical spectrum analyzer, as shown in Figure 5a. Then, we mea-
sured the group delay of the CBG using an optical vector analyzer (OVA, Luna 5100, Luna
Innovations, Roanoke, VA, USA), as one can see in Figure 5b. Finally, a time-of-flight mea-
surement was carried out to record the time delays at different wavelengths, as illustrated
in Figure 5c.

Figure 5. Experimental setups of the reflection and transmission spectrum measurement (a), the group
delay measurement (b), time-of-flight measurement (c). CW: continuous wave laser; PC: polarization
controller; OSA: optical spectrum analyzer; OVA: optical vector analyzer; MZM: Mach-Zehnder
modulator; OSC: oscilloscope.

The reflection spectrum from the drop port and the transmission spectrum from the
through port are illustrated in Figure 6a,b, respectively. The spectrum was obtained by
subtracting the transmission spectrum of the reference grating coupler from the measure-
ment data. The fabricated CBG showed a total operating range of 15 nm (1565–1580 nm).
A suppression ratio of 20 dB between the unreflected and reflected wavelengths shown in
Figure 6b suggests a good reflectivity across the whole band. However, an upward-sloping
curve can be seen from 1565 nm to 1580 nm in the reflection spectrum in Figure 6a. This
is mainly due to the waveguide propagation loss. Light with a wavelength of 1565 nm re-
flected at the end of the CBG travels a total distance of 2 times the grating length. However,
light with a wavelength of 1580 nm reflects at the start of the grating and the propagation
distance can be considered zero. The loss is 6.87 dB at 1565 nm and 1.37 dB at 1580 nm.
Therefore, the average propagation loss of the TE0 and TE1 modes is calculated to be
5.85 dB/cm. The propagation loss is mainly due to the roughness of the grating waveguide
sidewalls and can be reduced by optimizing etching recipes. Figure 6a also shows the
group delay measured by the optical vector analyzer. The orange dash line is the fitted
group delay in the operation wavelengths. The total group delay is 73.4 ps and the negative
slope of the linear dispersion is −4.89 ps/nm. The undesired ripples in the group delay
response are mainly related to the strength of the index perturbation [23]. Decreasing the
corrugation width (δw) can reduce the ripples at the expense of lower reflectivity in the
spectrum and higher requirements for fabrication. One can also introduce apodization
methods, which adjust the corrugation width along the CBG, to suppress the ripples as
mentioned previously.

Figure 7 shows the time-of-flight measurement of a pulse falling edge at four different
wavelengths. As one can see in Figure 5c, a Mach-Zehnder modulator together (AX-0MVS-
40-PFA-PFA-LV, EOSPACE Inc., Redmond, WA, USA) with a pulse generator (81134A,
Keysight, Santa Rosa, CA, USA) was used to generate an optical pulse with a falling time
of 56 ps. An oscilloscope with optical ports (DSA8300, Tektronix, Inc., Beaverton, OR,
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USA) was used to record the delayed signals as we adjusted the wavelengths of the input
continuous wave laser. The delay differences ∆t1, ∆t2, and ∆t3 were measured to be −13.7,
−46.6, and −58.5 ps, respectively. The results agree well with the −4.89 ps/nm dispersion
slope obtained from the above group delay measurement, as plotted in Figure 7b.

Figure 6. (a) Measured reflection spectrum from the drop port and the corresponding group delay.
(b) Measured transmission spectrum from the through port.

Figure 7. (a) Measured time delays at different wavelengths of a falling edge. (b) Time delays plotted
with the −4.89 ps/nm linear dispersion slope.
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4. Discussion and Conclusions

The demonstrated structure uses an ADC-based mode de-multiplexer to guide re-
flected light to the drop port, which can conveniently interconnect CBGs with other on-chip
devices. For instance, high-performance electro-optic modulators on TFLN and other
integrated optical devices can be connected with the CBG via on-chip waveguides. At the
same time, the excess loss and the additional reflection are relatively low. This is important
for some specific applications to realize monolithic integration. A comparison of reported
CBGs on integrated photonics platforms is shown in Table 1. As mentioned previously,
most of the reported integrated CBGs use a 3-dB Y-branch or an off-chip circulator as the
drop function method, which is challenging or unsuitable for monolithically integrated
applications. As seen in Table 1, spiral CBGs exhibit a relatively large delay range because
of long grating lengths. Hence, we could enlarge the delay range in our future work using
spiral structures.

Table 1. Comparison of reported integrated chirped Bragg gratings.

Drop Function Method Grating Type Operation
Bandwidth (nm)

Delay
Range (ps)

Grating
Length (mm) Platform Ref.

Y-branch Spiral chirped 11.7 128.7 4 SOI [22]
Y-branch Spiral chirped 8.8 31.2 3 SOI [24]

Circulator Step-chirped 41.7 60 4.98 SOI [18]
Circulator Spiral chirped 9.2 1440 138 SiN [21]
Circulator Chirped 20 32 2.5 LNOI [20]

ADC Chirped 15 73.4 4.7 LNOI This work

A tunable version of CBG can be useful in certain conditions and applications. In op-
tical fibers, tunable spectrum and group delays can be achieved by applying strain and
temperature change [3]. Similarly, the proposed CBG on TFLN can be tuned by applying
refraction index change, which can shift the spectrum and the group delay response. How-
ever, compressing or stretching the spectrum, or tuning the dispersion range like the strain
does to the fiber CBGs would be difficult. The change of the refraction index on TFLN
can be achieved by applying an electric field along its z-axis. The Pockels effect of lithium
niobate provides linear and fast-response electro-optic modulations. A tuning efficiency
of 23.37 pm/V in a uniform Bragg grating was reported, and a 4 nm tuning window was
achieved [34]. The operating wavelength of CBG on TFLN can also be shifted by using two
electrodes across the waveguide. Additionally, thermal tuning can achieve higher efficiency,
but more power consumption and slower response compared to electro-optic tuning.

In summary, we report a mode-conversion-based chirped Bragg grating on thin-
film lithium niobate. The proposed device uses an ADC-based mode de-multiplexer to
guide the reflected light to the drop port. This allows the CBG operates in reflection
without using an off-chip circulator or introducing excess reflections back to the input.
The experimental results show that the device exhibits a 73.4 ps delay range over a 15 nm
operation bandwidth. The structure can be conveniently interconnected with other devices
on TFLN, making it a promising solution for applications in monolithically integrated
microwave photonics, sensing, and optical communication systems.
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